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Abstract

Despite the recent advancements in information
retrieval (IR), zero-shot IR remains a significant
challenge, especially when dealing with new
domains, languages, and newly-released use
cases that lack historical query traffic from ex-
isting users. For such cases, it is common to use
query augmentations followed by fine-tuning
pre-trained models on the document data paired
with synthetic queries. In this work, we propose
a novel Universal Document Linking (UDL) al-
gorithm, which links similar documents to en-
hance synthetic query generation across multi-
ple datasets with different characteristics. UDL
leverages entropy for the choice of similarity
models and named entity recognition (NER) for
the link decision of documents using similar-
ity scores. Our empirical studies demonstrate
the effectiveness and universality of the UDL
across diverse datasets and IR models, surpass-
ing state-of-the-art methods in zero-shot cases.
The developed code for reproducibility is in-
cluded in the supplementary material. !

1 Introduction

In information retrieval (IR), zero-shot learning
is an essential problem that emerges when deal-
ing with a new language or domain with little
to no availability of the associated queries. Tra-
ditional IR methods primarily utilized sparse re-
trieval, while recent methods revolve around dense
retrieval (DR), demonstrating the promising result
(Neelakantan et al., 2022). Yet, using pre-trained
DR directly on zero-shot cases results in substantial
performance degradation, requiring dedicated fine-
tuning (Izacard et al., 2021; Zhang et al., 2021).
One strategy for fine-tuning without relying on
query traffic involves expanding the queries based
on existing queries or documents with rule-based
methods or language models (LMs) to obtain ad-
ditional context in unseen domains (Wang et al.,

*Work was done outside of Amazon
1https ://github.com/eoduself/UDL

{dhwang,

hppnd, nechaey}@amazon.com

2023; Jagerman et al., 2023; Weller et al., 2024).
RM3 (Abdul-Jaleel et al., 2004) and Axiomat-
icQE (Yang and Lin, 2019) are classical ways to
expand the queries with additional relevant terms
while the recent studies indicate that large LMs
(LLMs) can produce sophisticated synthetic data
(Schick and Schiitze, 2021), often resulting in bet-
ter transfer learning than human-curated datasets
(Liu et al., 2022). While LLMs like Gemini (Team
et al., 2023) generate superb synthetic queries for
fine-tuning, devising a cost-effective way for IR
remains challenging without additional recipes like
dimensionality reduction (Hwang et al., 2023b).
To address the limitations of document-to-query
generation, we propose a novel algorithm called
Universal Document Linking (UDL), which of-
fers an intuitive yet effective solution for zero-shot.

Table 1: Synthetic queries augmented by UDL.
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educated about the risks so that they can
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This method links similar documents, aiding in the
generation of synthetic queries spanning multiple
documents. The UDL algorithm relies on selecting
a similarity model based on term entropy and deter-
mining the link decisions using named entity recog-
nition (NER) models. This approach facilitates
the link decisions tailored to each dataset’s unique
characteristics, highlighting the universality of our
method. Moreover, UDL is flexible to be combined
with other query augmentations which reveals the
high extensibility. With UDL, small LM can out-
perform LLM with a low cost. Table 1 presents
examples demonstrating how UDL generates addi-
tional relevant queries that would not be generated
by its absence. In this work, we make two main
contributions: (1) Exploring the document link-
ing for query augmentation with empirical studies
which was not investigated previously, and (2) In-
troducing the UDL algorithm and demonstrating its
effectiveness across diverse query augmentations,
IR models, and datasets with varying tasks.

2 Motivation

Figure 1 illustrates the overall flow of fine-tuning a
retrieval model in zero-shot scenario, where actual
queries do not exist during fine-tuning. Instead, we
use documents to generate synthetic queries, which
aids the IR model in learning the distribution of the
unseen domain (Thakur et al., 2021).

According to Hwang et al. (2023a) and our initial
findings (Table 11), merely increasing the size of
synthetic data doesn’t consistently improve results.
This is because query augmentation associates a
synthetic query with a single document, whereas
queries in datasets can be linked to multiple doc-
uments. Our insight from this led us to develop a
method to link similar documents for the generation
of synthetic queries that cover multiple documents.

Query Retrieval
Augmentation Model User

-
@ Synthetic > € —Tser
[€4Y Queries { B Queries

Linked
Document

Documents
Docu-
ment Set of
Documents

Universal Document
Linking

Figure 1: Overall zero-shot case. IR model is fine-tuned
with synthetic queries, then interacted with user queries.

Algorithm 1 Universal Document Linking

Data: A set of documents in each dataset

Result: Linked documents

Parameters: Thresholds in similarity model v and
score d, decision of similarity model Dj; and
score D, pre-trained general NER N, and spe-
cialized NER N

Step A. Decision of Similarity Model

1. Measure TF-IDF in all documents

2. Calculate Entropy for each term in TF-IDF
across documents

. __ # of terms in Entropy > 1
3.if Dy = # of terms in Entropy <1 > then
| Use pre-trained LM as similarity model

else
| Use TF-IDF as similarity model

end
Step B. Decision of Similarity Score

1. if candidate documents not in English then
| Translate to English

end
2. Eliminate the special characters in candidates

3 Dy = {5, if Ky, x Vi, > Kn, X Vi,
1 -4, otherwise
K: Number of keywords from NER
V': Vocabulary size of NER
Step C. Link Documents

1. Measure the cosine-similarity between candi-
date documents using a model from A
2. if cosine-similarity > score from B then
| Link documents
end

3 Universal Document Linking

Algorithm 1 outlines the procedural steps in the
UDL. In the first step, denoted as A, the appropri-
ate similarity model is selected for each dataset.
We explore term frequency-inverse document fre-
quency (TF-IDF) and pre-trained LM to derive doc-
ument embeddings. Notably, TF-IDF considers
lexical similarity, which is valuable for identifying
unique features (e.g., disease like COVID), while
pre-trained LM provides semantic similarity, aiding
in contextual understanding. To determine the suit-
able similarity model, we initially compute TF-IDF
scores for all documents, followed by calculating
D) based on the Shannon entropy of terms using
TF-IDF. Entropy values greater than 1 (i.e., numera-
tor in D) describe high uncertainty since random
variables have approximately uniform distribution
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in multiple classes. This concept is extended to the
term entropy (Equation (1)) where we calculate the
entropy for each term across documents.

To accommodate the Dj, for the massive docu-
ments, we introduce the ~ value where articles and
relatively common terms are mostly distributed in
entropy greater 1 as expected (see Table 12). Doc-
uments with an overwhelming presence of these
terms are not desirable for TF-IDF since it can
obscure the unique characteristics of documents,
affecting link decisions. In such cases, considering
semantically similar documents using pre-trained
LM proves to be a more viable alternative.

After defining the similarity model, we proceed
to determine the criteria in step B for deciding
whether candidate documents should be linked.
Each dataset contains varying levels of domain-
specific terminology, which must be taken into ac-
count during document linking. To address this,
we initially translated non-English documents into
English using Google Translator 2 to handle mul-
tilingual cases. After removing special characters,
we compute D7 based on the number of keywords
extracted from NER models that are pre-trained
on general (N,) and specialized documents (/Vy)
while considering the vocabulary size of each NER
for unbiased comparison. Note that a large size of
vocabulary can have a higher chance of capturing
broad keywords. The entity coverage is detailed in
Table 9, where N, effectively identifies keywords
in documents related to the natural conversation
and question-answering (QA), while N, adequately
finds keywords from professional jargon like medi-
cal and scientific claims.

Based on this analysis, a higher value of Dy in-
dicates that a dataset is more similar to a group of
general documents, enabling the linking of diverse
documents without concerns of domain-specific jar-
gon, resulting in a lower score (i.e., ). Conversely,
alower D value suggests that a dataset consists of
specialized documents, which benefits from link-
ing similar documents that share domain-specific
jargon, resulting in higher scores (i.e., 1 — §). Thus,
general and specialized documents are considered
opposites. In Section 4, we tested the UDL across
multiple datasets from different domains (e.g., QA,
scientific documents) to show its applicability with-
out requiring a specific NER for each domain. This
was confirmed with the selected NERs but our UDL
could be readily extendable to any other NER.

2https ://github.com/ssut/py-googletrans

Table 2: Query augmentations with Distilled-BERT. Per-
formances (SD) are from NFCorpus, SciFact, ArguAna.

Method N@10 R@100 | #Parameters
Off-the-shelf 40.7 (0.0) | 67.5(0.0)

Cropping (Izacard et al., 2021) 38.8 (0.4) | 68.3(0.5)

RM3 (Abdul-Jaleel et al., 2004) 41.7 (0.4) | 70.2 (0.4)
AxiomaticQE (Yang and Lin, 2019) | 43.4 (0.5) | 69.7 (0.3) -
Summarization (Zhang et al., 2020) | 43.3 (0.6) | 69.4 (0.2) 569M

Flan (Chung et al., 2024) 443 (0.3) | 70.4 (0.3) 248M
OpenLLaMA (Geng and Liu, 2023) | 47.0 (0.4) | 72.5(0.5) 3B
QGen (Raffel et al., 2020) 46.3 (0.5) | 71.9 (0.4) 109M
UDL + RM3 44.0 (0.4) | 71.6 (0.5) 109M
UDL + AxiomaticQE 445 (03) | 71.4 (0.5) 109M
UDL + Summarization 45.1(0.4) | 71.7 (0.4) 678M
UDL + Flan 45.2(0.6) | 72.1 (0.5) 357TM
UDL + OpenLLaMA 48.2(0.2) | 73.1(0.3) 3.1B
UDL + QGen 49.5(0.3) | 73.6 (0.4) 218M
Mapping + QGen 47.6 (0.4) | 72.6 (0.5) 218M
TF-IDF + QGen 477 (0.5) | 72.9 (0.5) 218M
LM (Song et al., 2020) + QGen 48.2(0.3) | 72.7 (0.3) 218M
Fixed score (0.4) + QGen 46.9 (0.4) | 72.1 (0.4) 218M
Fixed score (0.6) + QGen 47.8 (0.2) | 72.5 (0.4) 218M

Finally, in step C, we calculate the cosine simi-
larity between documents based on the model from
step A and establish links when the similarity sur-
passes a score from step B.

4 Results and Discussions

Experimental Setup The details of the experi-
mental setup are covered in Appendix A, where
we empirically set two hyperparameters in UDL
as v=0.7 and 0=0.4, and reported the averaged
NDCG@k (N@k) and Recall@k (R@F), along
with the standard deviation (SD). For reproducibil-
ity, the training framework is covered in Appendix
B, and the code is included in the supplementary
material. Steps of fine-tuning are as follows: (1)
Classifying linked and unlinked documents based
on UDL, taking into account the order of the linked
ones. (2) Feeding them as the inputs to the models
and generating the synthetic queries with the same
process as the original approach (e.g., model or
prompt-based generations). (3) Fine-tuning the IR
models based on generated queries.

Research Questions We aim to address four re-
search questions (RQs): RQ1. What is the most
suitable query augmentation method in zero-shot
IR? RQ2. How does UDL enhance zero-shot IR?
RQ3. How well does UDL generalize? RQ4. Is
UDL competitive with state-of-the-art (SOTA)?
Main Results Table 2 shows averaged results
based on different query augmentations where we
generated the same number of queries for each
method. The overall trend of LM-based approaches
outperforming simpler methods persists when UDL
is added. However, a relatively parameter-efficient
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Figure 2: Distribution of rank of correctly classified queries when k=100 in NFCorpus, SciFact, ArguAna. (a)
Single linked query-document. (b) Multiple linked query-documents. Blue line: Median value.

combination of UDL+QGen (218M) showed the
best performance overall (RQ1), outperforming
UDL+OpenLLaMA (3.1B). This promises signif-
icant savings of computational resources at scale.
From our initial investigation, we found that Open-
LLaMA tends to become more verbose after in-
corporating UDL, which may increase the risk of
hallucination. In contrast, QGen generates more
concise queries that are likely more accurate and
relevant to the document. Additionally, we did not
modify the LLM prompts based on UDL in this
work, which presents a valuable future direction to
optimize the prompts to better cover linked ones.

Furthermore, we ablated the document merging
mechanism of UDL by generating the synthetic
queries from each document individually and map-
ping them to documents found by the linking proce-
dure (Mapping+QGen in Table 2). While this still
outperformed the corresponding baseline (QGen),
it performed worse than complete UDL. This sug-
gests that generating queries from the merged doc-
uments improves model generalization by introduc-
ing harder queries with increased ambiguity com-
pared to the original. Indeed, Table 1 anecdotally
shows that resulting queries fit both linked docu-
ments and are generally less specific. Besides, the
linking mechanism itself provides a more exhaus-
tive way of identifying positive query-document
pairs, improving the performance (RQ?2). Figure 2
illustrates this behavior: Distributions with UDL
are more compact, have fewer outliers, and allocate
higher ranks for relevant documents.

Lastly, we investigated the influence of deci-
sions in UDL separately. We compared the results
between fixed similarity models (i.e., TF-IDF or
LM+QGen) and flexible ones (i.e., UDL+QGen)
where the latter excels. Also, we tested the re-
sults by fixing the similarity scores (i.e., Fixed
score (0.4) or Fixed score (0.6)+QGen) and LM

where flexible scores from UDL enhances the per-
formance. Therefore, our evolved approach with
flexible choices of the similarity models and scores
promises the results.

Hyperparameters Choice Figure 3 shows the
grid search for UDL’s hyperparameters using NF-
Corpus, SciFact, and ArguAna yielding v=0.7 and
0=0.4 as most optimal. (see Tables 14 and 15 for de-
tailed results). We also checked the quality between
synthetic queries and the offered train queries in
used datasets. Detail of logic is shown in Algorithm
2 where 93% of synthetic queries generated from
linked documents in UDL have sufficient quality
as the train set to map the relevant documents.
Does UDL generalize? Table 3 compares the
results of off-the-shelf models to those that have
been fine-tuned across various models and English
datasets. Interestingly, fine-tuning with QGen does
not always improve the results, especially in high-
performance models (e.g., All-MPNet). This sug-
gests that synthetic queries can potentially decrease
domain adaptation. Generally, we observe further
improvements with UDL, except for SCIDOCS
with All-MPNet. In such cases, UDL remains su-
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Table 3: Performances in English datasets. 7: In-domain result since Quora was exposed for pre-training before
fine-tuning with UDL. SD is always lower than 0.7. QGen and UDL+QGen have same number of generated queries.

Data NFCorpus SciFact ArguAna SCIDOCS Climate-FEVER | TREC-COVID Quora

Model Method Metrie N@10 | R@100 | N@10 | R@100 | N@10 | R@100 | N@10 | R@100 | N@10 | R@100 | N@10 | R@100 | N@10 | R@100
Off-the-shelf 333 339 65.6 94.2 46.5 98.7 238 55.0 22.0 54.5 513 10.6 87.5t | 99.61
All-MPNet QGen 33.1 31.3 65.2 91.6 584 98.8 19.1 44.4 23.8 54.9 59.8 10.8 86.01 | 99.2f
UDL + QGen 35.9 34.9 67.1 94.8 61.0 99.5 225 513 24.1 55.4 69.5 12.2 88.11 | 99.71
Off-the-shelf 25.6 233 53.8 84.6 ‘ 42.6 ‘ 94.6 133 29.7 20.2 44.6 47.8 72 85.5 98.9
Distilled-BERT QGen 29.0 27.1 59.6 90.1 503 98.5 144 33.1 22.0 523 56.9 9.8 845 98.7
UDL + QGen 31.2 30.8 61.5 90.7 55.8 99.2 16.6 40.5 223 52.8 61.7 10.9 85.8 99.1
Off-the-shelf 21.7 233 543 85.7 ‘ 41.1 ‘ 94.6 11.7 26.9 20.8 455 572 9.3 81.7 97.8
SGPT QGen 24.1 23.8 56.8 88.9 47.4 96.9 12.6 29.8 21.1 48.0 61.6 9.5 839 98.6
UDL + QGen 24.6 26.0 57.4 90.0 52.0 99.1 15.3 37.1 21.5 48.4 64.5 10.6 85.0 99.0
Off-the-shelf 20.0 242 39.0 74.7 ‘ 48.7 ‘ 97.1 9.3 275 13.0 375 239 35 824 98.4
M-Distilled USE QGen 24.8 24.7 48.9 81.9 47.9 97.3 13.5 32.0 16.3 40.0 57.0 10.6 834 98.6
UDL + QGen 26.9 27.9 49.9 84.1 49.1 98.5 15.1 38.3 16.7 2.7 62.0 11.5 84.3 99.0

Table 4: Performances in non-English datasets where
SD is always lower than 0.7.

Table 5: Performances in shopping query dataset where
SD in Distilled-BERT is always under 0.4. SOTA results
are exported from Sun et al. (2023).

Data ViHealthQA GermanQuAD
Model Metric N@10 | R@100 | N@10 | R@100 Model Method Data N@50 | R@100 ‘ R@500 | # Parameters
Method Off-the-shell 390 | 578 | 735
Off-the-shelf 93 216 | 334 | 67.0 Distilled-BERT QGen | Document | 435 | 652 806 66M
M-Distilled USE QGen 222 33.8 31.7 65.8 UDL + QGen 446 | 668 82.5
UDL +QGen  23.0 348 | 347 | 69.0 BIBERT 20.1 | 614 78.1
Off-the-shelf ‘ 13.8 ‘ 276 B B MTBERT Pre-training + | Query + 40.0 61.4 78.4 ~109M
V-SBERT QGen 229 33.6 - N MADRAL Fine-tuning | Document | 40.4 61.7 78.5
UDL + QGen  23.8 348 B R ATTEMPT 40 | 623 792
Off-the-shelf | 10.9 | 23.4 - -
V-SimeCSE QGen 225 334 - = . . . .
UDL+QGen 234 346 i i Table 6: Comparison with SOTA in zero-shot scenarios.
Off-the-shelf [ -] - 250 | 535 UDL.: Fine-tuning All-MPNet with UDL.
G-Electra QGen - - 28.1 59.7
UDL + QGen 5 = 30.6 | 608
Off-the-shelf | - [ - 8.3 24.7 Contr- | SPLA- COCO- | DRA-
G-XLM-R QGen - - 360 | 70.5 Model | BM25 | TAS-B | Soor | DE++ | ANCE| DR | gone P
UDL + QGen - - 366 | 712 N@10 | 405 | 382 | 408 | 448 | 356 453 438 467
R@100 | 50.1 | 51.6 | 545 | 537 | 46.7 53.9 534 580

perior to naive fine-tuning. Table 4 demonstrates
the results of UDL compared to the off-the-shelf
models in Vietnamese and German datasets. The
findings show the superiority of UDL when applied
to non-English languages which confirms the flex-
ibility of UDL. Table 5 covers the results in MA-
Amazon (Reddy et al., 2022) with our approach and
compares them with SOTA. This dataset contains
interactions between user search queries and prod-
uct information, along with relevance labels, mak-
ing it well-suited for evaluating the extensibility
of our method in real-world scenarios. Similar to
the previous experiments, QGen improves the zero-
shot performances where it is further enhanced
consistently with the UDL approach. Therefore,
our UDL is still generalized properly in potential
real-world implementations. Even if SOTA models
have bigger sizes and access to real user queries
for pre-training and fine-tuning, the combination
of UDL and QGen outperforms them significantly.
Note that SOTA models consist of larger param-
eters and utilize the 482K unique documents for
pre-training and 17K query-document pairs for fine-
tuning. This confirms both the cost-effectiveness
and resource-effectiveness of the UDL to achieve

better performance than SOTA. Thus, we can ver-
ify that UDL works well across multiple datasets,
languages, and models (RQ3).

A comparison between SOTA and QGen with
UDL in English datasets is shown in Table 6 where
all IR models have approximately 100M parame-
ters for each encoder. Notably, All-MPNet with
UDL wins others, demonstrating the superiority of
UDL (RQ4). In the case of UDL implementation,
some of the SOTA models were exposed to the
documents of the target dataset during pre-training,
but our method achieved better results. Lastly, we
focused on directly fine-tuning with UDL, which
could be extended to other applications like docu-
ment expansion. This highlights the versatility of
UDL for various tasks and models.

5 Conclusions

We propose a novel UDL to mitigate the limitations
of conventional fine-tuning of IR models in zero-
shot. UDL uses entropy and NER to tailor a linking
method for each dataset with diverse tasks. Our
comprehensive experiments show the effectiveness
of UDL across various datasets and models.
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6 Limitations

The proposed UDL offers significant advantages as
an application. However, there are three possible
limitations to consider. Firstly, while we consis-
tently surpassed naive fine-tuning, there is an inher-
ent limit to the enhancements. The performance
of the retrieval model is influenced by the qual-
ity of synthetic queries. In general, the advanced
pseudo-query generation methods manage multiple
documents more effectively, indicating a valuable
future direction to combine UDL with competitive
pseudo-query generation approaches for further im-
provement. It also highlights the importance of
selecting appropriate query augmentation strate-
gies early in the project. Secondly, there is poten-
tial to introduce dynamic criteria, such as v and
0 in UDL, which were empirically defined in this
study. Adjustments could be made for each candi-
date document, tailored to the similarities between
documents and their types. Lastly, our comprehen-
sive evaluation of UDL spanned ten datasets with
diverse domains and languages (see Tables 3 - 5).
There is a scope to extend this to larger documents
and other languages, which was challenging due to
computational resource constraints. These identi-
fied limitations present valuable research directions
for those considering the proposed UDL in their
applications.
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A Setup

Databases We tested ten datasets where the sum-
mary of the database is shown in Table 7: NF-
Corpus (Boteva et al., 2016) has automatically
extracted relevance judgments for medical docu-
ments. SciFact (Wadden et al., 2020) consists of
expert-annotated scientific claims with abstracts
and rationales. ArguAna (Wachsmuth et al., 2018)
contains the pairs of argument and counterargu-
ment from the online debate. SCIDOCS (Cohan
et al., 2020) has seven document-level tasks from
citation prediction, document classification, and
recommendation. Climate-FEVER (Diggelmann
et al., 2020) consists of real-world claims regard-
ing climate-change with manually annotated evi-
dence sentences from Wikipedia. TREC-COVID
(Voorhees et al., 2021) contains the COVID-related
topics with a collection of literature articles where
biomedical experts measure the relevancy between
articles and topics. Quora (Csernai, 2017) is built
for identifying the duplicate question which is nec-
essary for a scalable online knowledge-sharing plat-
form. GermanQuAD (Moller et al., 2021) is high-
quality and human-labeled German dataset which
includes the self-sufficient questions with all rel-
evant information. ViHealthQA (Nguyen et al.,
2022) consists of health-interested QA in Viet-
namese. Multi-Aspect Amazon ESCI Dataset (MA-
Amazon) (Reddy et al., 2022) has user queries for
product search and long lists of product informa-
tion like title, description, brand, color with four
relevance labels.

Models In this work, we considered the diverse
sets of models where the summary of them is cov-
ered in Table 8: For query augmentation, we tested
five pre-trained models: PEGASUS (Summariza-
tion) (Zhang et al., 2020), T5-Base (QGen) (Raf-
fel et al., 2020) for English datasets, mT5-Base
(QGen) (Xue et al., 2020) for Vietnamese and Ger-
man databases, Flan T5-Base (Flan) (Chung et al.,
2024), OpenLLaMA (Geng and Liu, 2023; Com-
puter, 2023; Touvron et al., 2023).

For retrieval task, eight pre-trained retrieval mod-
els are experimented: M-Distilled USE (Yang et al.,
2019), All-MPNet (Song et al., 2020), Distilled-
BERT (Sanh et al., 2019), SGPT (Muennighoff,
2022), V-SBERT (Nguyen and Nguyen, 2020), V-
SimeCSE (Gao et al., 2021), G-Electra (Clark et al.,
2020), G-XLM-R (Conneau et al., 2020).

For pre-trained LM in similarity model, we
employed three pre-trained models: All-MPNet

Table 7: Details of datasets used where we only cover
the size of test set which is our point of interest. Note
that ViHealthQA did not report the licenses in the paper
or a repository.

Size of Test Set

Dataset I # Queries | # Document License
NFECorpus English 323 3K CC-BY-SA-4.0
SciFact English 300 SK CC-BY-NC-2.0
ArguAna English 1K 8K CC-BY-SA-4.0
SCIDOCS English 1K 25K CC-BY-4.0
Climate-FEVER English 1K 5M CC-BY-SA-4.0
TREC-COVID English 50 171K CC-BY-SA-4.0
Quora English 10K 523K CC-BY-SA-4.0
GermanQuAD German 2K 2M CC-BY-4.0
ViHealthQA Vietnamese 2K 9K -
MA-Amazon English 8K 164K Apache-2.0

(Song et al., 2020) for English datasets, V-SBERT
(Nguyen and Nguyen, 2020) for Vietnamese
database, G-BERT (Chan et al., 2020) for German
dataset.

For comparison, ten SOTA models are investi-
gated: TAS-B (Hofstitter et al., 2021), Contriever
(Izacard et al., 2021), SPLADE++ (Formal et al.,
2022), ANCE (Xiong et al., 2020), COCO-DR
(Yu et al., 2022), DRAGON+ (Lin et al., 2023),
BIBERT (Lin et al., 2022), MTBERT (Kong et al.,
2022), MADRAL (Kong et al., 2022), ATTEMPT
(Sun et al., 2023).

Table 9 describes the details of NER models
used in this work. NER model trained with general
sources (Ny) covers the diverse types of general
entities while NER model trained with specialized
sources (V) addresses the various types of medical
and scientific entities mostly related to the jargon.
UDL Details For the UDL, we tested three dif-
ferent methods (Concatenation, Summarization,
Random permutation of the order) to link the two
closest documents where we empirically selected
Concatenation at last (Table 16). We generated
three synthetic queries for each linked and unlinked
documents, noting that there is a limitation to im-
provements based on size (Table 11). To decide
the similarity model, we considered scikit-learn >
for TF-IDF, while All-MPNet (Song et al., 2020),
V-SBERT (Nguyen and Nguyen, 2020), and G-
BERT (Chan et al., 2020) were used for English,
Vietnamese, and German datasets in pre-trained
LM. The spaCy (Honnibal et al., 2020) is utilized
to import the N, (en_core_web_tr f 4) and N,
(en_core_sci_scibert 5). As shown in Tables 14
and 15, we empirically decided the hyperparame-

Shttps://scikit-learn.org/stable/
‘https://spacy.io/models/en
51’1ttps ://allenai.github.io/scispacy/
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Table 8: Details of models used. Some models did not
clearly report the licenses in the paper or a repository.

Number of .
Model Language Parameters License
PEGA.SUS English 569M Apache-2.0
(Summarization)
T(S)C?:r?f Multilingual |~ 109M Apache-2.0
“‘(ESGE:;E Multilingual | 390M Apache-2.0
E 1"“21?12:)3““ Multilingual |~ 248M Apache-2.0
OpenLLaMA | Multilingual 3B Apache-2.0
M-Distilled USE | Multilingual 135M Apache-2.0
All-MPNet English 109M Apache-2.0
Distilled-BERT English 66M Apache-2.0
SGPT English 125M MIT
V-SBERT Vietnamese 135M -
V-SimeCSE Vietnamese 135M -
G-Electra German 110M -
G-XLM-R German 278M MIT
G-BERT German 109M MIT
TAS-B English 66M Apache-2.0
Contriever English 109M CC-BY-NC-4.0
SPLADE++ English 139M Apache-2.0
ANCE English 124M Apache-2.0
COCO-DR English 109M MIT
DRAGON+ English 109M CC-BY-NC-4.0
BIBERT English ~109M -
MTBERT English ~109M -
MADRAL English ~109M -
ATTEMPT English ~109M Apache-2.0

Table 9: Details of NER models used.

General NER (V)

Specialized NER (V)

Types of
Entities

General: Numerals, Date,
Event, Objects, Countries,
Language, Person, Quantity
Monetary, Time, Companies,
Mountain ranges ...

Medical: Organism,

Gene, Chemical,
Pathological formation,

Cell, Tissue ...

Scientific: Task, Method,
Metric, Material, Professional
and Generic terms ...

Sources

OntoNotes 5 (OntoNotes, 2013)
ClearNLP (ClearNLP, 2015)
WordNet 3.0 (Fellbaum, 2005)
RoBERTa-Base (Liu et al., 2019)

OntoNotes 5 (OntoNotes, 2013)
Common Crawl (Crawl, 2007)
GENIA 1.0 (GENIA, 2007)
SciBERT (Beltagy et al., 2019)

Vocabulary
Size

50K

785K

License

MIT

CC-BY-SA-3.0

ters (v=0.7, §=0.4) to get the promising results. For
datasets with more than 1M documents, we con-
sidered a maximum 30K documents during query
augmentations and UDL to meet the resource con-
straints, except for MA-Amazon where we used
60K documents. We trained the retrieval model
three times with different random seeds to account
for random initialization. Currently, our suggested
algorithm, UDL, will follow the MIT license.

B Notes on Reproducibility

Total Computational Budget and Infrastructure
used For UDL and fine-tuning the retrieval mod-
els, we employed the Intel(R) Xeon(R) CPU @
2.20GHz and NVIDIA A100. All of them used
RAM 80GB and we trained three times with differ-
ent seeds to get the averaged results. For decision

Table 10: Hyperparameters in UDL.

Parameter | Setting
0% 0.7
§ 0.4
Max features
in TF-IDF 36000
Epoch 1
Learning Rate | 2e-5
Weight Decay le-2

Table 11: The effect of size of synthetic queries gener-
ated from QGen. Retrieval model is Distilled-BERT.

NFCorpus
Metrics | 1 synthetic | 3 synthetic | 9 synthetic
queries queries queries
N@l 35.9 36.9 36.2
N@10 27.9 29.0 28.4
N@100 25.0 25.8 26.1
R@1 4.3 4.5 43
R@10 13.2 13.6 13.4
R@100 26.0 27.1 26.3

of similarity model, TF-IDF required about 34 sec-
onds and LM needed about 174 seconds for 10K
documents. For decision of similarity score, it took
about 787 seconds for 10K documents. The query
augmentation for 10K documents took about 6699
seconds for summarization, 2970 seconds for Flan,
12542 seconds for OpenLLaMA and 721 seconds
for QGen. Other augmentations like random crop-
ping and RM3 are fast enough to be negligible.
Fine-tuning is affected heavily by the size of the
model and synthetic queries. For example, it took
about 20 seconds when training a 135M parameters
model with 11K queries and 4K documents. Note
that, these computational costs do not affect the
inference time during retrieval. In all experiments,
we mainly utilized the BEIR environment (Thakur
et al., 2021; Kamalloo et al., 2023) to evaluate the
retrieval performances.

Hyperparameters In Table 10, we cover all the
hyperparameters considered in this work which
are based on the empirical results. During fine-
tuning, we used MultipleNegativesRankingLoss °
with AdamW (warmup scheduler=10% of train set)
(Loshchilov and Hutter, 2017). During the eval-
uation, cosine-similarity is utilized to retrieve the
documents given queries.

*https://www.sbert .net/docs/package_
reference/losses.html
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Table 12: Examples of terms from TF-IDF according to
the Shannon Entropy.

Shannon Entropy | Examples of Terms

the, this, an, a, yes, no, is,
was, has, have, old, new ...
hala, storms, ipad, sari, coax,
intermediate, pulse,
peculiarities, swearing,
enlisting, endures, fervour ...

Greater than 1

Less than 1

Table 13: Decisions of similarity model and type of
document from UDL in each dataset.

Dataset Decisions of the UDL
Model | Type of Document

NFCorpus LM Specialized

SciFact TF-IDF Specialized
ArguAna LM General

SCIDOCS LM Specialized
Climate-FEVER | TF-IDF General

TREC-COVID | TF-IDF Specialized
Quora LM General
GermanQuAD | TF-IDF General

ViHealthQA LM Specialized
MA-Amazon LM General

C Term Entropy in UDL

Equation (1) explains the term entropy measure-
ment used in UDL.

B(X) = _Eﬁ\; P(X;)logy, P(X;) (1)

where E is the entropy, X is the term, P(X;) is
the distribution of terms across documents, NV is
the number of documents.

D Ablation Study

Detailed Investigation of UDL Table 11 shows
the limitation of improvement after increasing the
size of synthetic queries which confirms the impor-
tance of UDL. Table 12 shows the examples of term
entropy where article and relatively common words
have entropy greater than 1 while the professional
and relatively uncommon words have entropy less
than 1. Table 13 covers the overall decisions of
UDL in each dataset. Tables 14 and 15 reveal the
details of ablation studies for hyperparameters in
UDL. Table 16 explains the results depending on
the different merging methods in UDL. Compared
with random permutation, concatenation gives bet-
ter results which reveals the importance of the order
of sentences. Compared with summarization, con-
catenation shows better results which confirms the
importance of the original structure of sentences.

Algorithm 2 Quality Checking
Data: Train queries and documents in each dataset
and synthetic queries
Result: Sufficient quality of synthetic queries to
map the used documents

Parameters: Queries in train set Q = {q1 ... ¢, },
synthetic queries Q ={q1 ... ¢m}, documents used
for generating synthetic queries and mapped by
train queries Doc = {doc; ... docy}
1. Find train queries mapping the linked docu-
ments in UDL: ¢;, doc,, docy,

2. Measure cosine-similarity in pairs of ¢;-doc,,
gi-docy: Score(q;, docy), Score(q;, docy)

3. Measure cosine-similarity in pairs of §;-doc,,
gj-docy, where g; is generated from linked doc,-
docy: Score(q;, doc,), Score(q;, docy)

4.if Score(q;, doc,) < Score(q;, doc,) &

Score(q;, docy) < Score(g;, docy,) then
| ¢; properly maps both documents

else

if Score(q;, doc,) < Score(§;, doc,) then
| ¢, appropriately maps doc,

end

if Score(q;, docy) < Score(q;, docy) then
| ¢; appropriately maps docy,

end

end

Quality of Synthetic Queries Algorithm 2 re-
veals the overall logic of quality checking based
on the offered train set in NFCorpus and SciFact.
We first found train data which covers same doc-
uments considered as linking in UDL. Then, we
measured the cosine-similarity between the train
query and relevant documents, and compared this
with the cosine-similarity between the generated
synthetic query and those same documents. If gen-
erated query has higher scores, this argues that our
generated data has enough quality to link the sin-
gle/multiple documents.

From our analysis, 93% of generated queries
properly maps both documents where it increases
up to 99% for single document. Thus, most of
queries generated from linked documents in UDL
have the sufficient quality to map the relevant doc-
uments without additional quality control.
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Table 14: Different similarity models for UDL. Retrieval model is Distilled-BERT and similarity score is 0.6 for
NFCorpus, Scifact and 0.4 for ArguAna. v = 0.7 is our final decision.

Metrics NFCorpus SciFact ArguAna
7y=01]y=03|~=07|7v=09|~9=01|y=03|~=07|v=09|~+v=01|v=03|~=07|~v=09
N@l 37.7 37.6 39.0 35.8 49.2 49.0 50.4 49.6 29.2 30.1 30.3 277
N@10 30.5 30.4 31.2 28.9 60.1 60.1 61.5 61.1 54.6 55.2 55.8 53.9
N@100 28.4 28.5 28.9 25.2 65.1 65.2 64.9 64.1 57.9 59.2 59.2 55.4
R@1 4.3 43 44 39 46.8 46.5 48.1 48.0 29.0 29.5 30.3 27.7
R@10 14.2 14.3 14.7 132 75.2 72.5 73.3 73.2 84.0 84.3 85.1 78.8
R@100 30.1 30.3 30.8 27.8 38.4 88.2 90.7 90.2 99.1 98.7 99.2 98.4

Table 15: Different similarity scores for UDL. Retrieval model is Distilled-BERT and similarity model is fixed to
TF-IDF. § = 0.4 is our final choice.

NFCorpus SciFact ArguAna

0=02|0=04]|6=06|0=08|0=02]6d=04][0=06|6=08|0=02|0=0.4]|5=06]0=038
N@l 374 39.2 36.7 372 44.0 50.4 473 473 25.6 26.8 25.6 254
N@10 28.1 29.0 28.6 28.1 57.9 61.5 59.3 58.8 50.9 51.5 50.3 49.5
N@100 | 253 26.3 26.1 26.0 60.8 64.9 63.2 62.6 54.6 55.7 54.6 54.1

R@1 4.4 4.6 3.8 4.0 41.8 48.1 44.9 44.8 25.6 26.8 25.6 25.1
R@10 12.8 12.9 134 132 71.2 73.3 73.9 71.4 79.3 80.1 79.3 77.0
R@100 25.9 27.3 26.6 26.1 88.3 90.7 89.6 90.1 974 98.4 97.9 97.2

Metrics

Table 16: Results according to the merging approaches in UDL. Random permutation: Concatenate two documents
and then, randomly mix up the order. Summarization: Using Flan T5-Base (Chung et al., 2024), summarize each
document separately and then, concatenate them. Title is always attached directly.

NFCorpus SciFact ArguAna
Metrics Concatenation Rando@ Summarization | Concatenation Randoxln Summarization | Concatenation Randorp Summarization
Permutation Permutation Permutation
N@l 39.0 375 38.6 50.4 473 483 30.3 29.6 234
N@l10 31.2 30.0 29.6 61.5 58.9 59.4 55.8 54.8 459
N@100 28.9 28.4 28.0 64.9 62.6 63.4 59.2 58.1 51.5
R@1 4.4 4.0 4.3 48.1 44.9 45.9 30.3 30.0 23.4
R@10 14.7 14.2 135 73.3 72.5 72.0 85.1 83.9 73.7
R@100 30.8 30.1 30.0 90.7 89.2 90.3 99.2 98.7 98.0
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