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Abstract

The fusion of language models (LMs) and
knowledge graphs (KGs) is widely used in
commonsense question answering, but gener-
ating faithful explanations remains challeng-
ing. Current methods often overlook path de-
coding faithfulness, leading to divergence be-
tween graph encoder outputs and model pre-
dictions. We identify confounding effects and
LM-KG misalignment as key factors causing
spurious explanations. To address this, we in-
troduce the LM-KG Fidelity metric to assess
KG representation reliability and propose the
LM-KG Distribution-aware Alignment (LKDA)
algorithm to improve explanation faithfulness.
Without ground truth, we evaluate KG expla-
nations using the proposed Fidelity-Sparsity
Trade-off Curve. Experiments on Common-
senseQA and OpenBookQA show that LKDA
significantly enhances explanation fidelity and
model performance, highlighting the need to
address distributional misalignment for reliable
commonsense reasoning.

1 Introduction

In commonsense reasoning problems, many rely
on both explicit textual information and structured
domain knowledge (Hirschman and Gaizauskas,
2001) to compensate for the limited factual mem-
ory of LMs (Li et al., 2022) and provide insights
into the inference processes (Danilevsky et al.,
2020), however explanations can also be expressed
by highlighting a subset of this knowledge. Making
the model output the facts used to answer a particu-
lar question can increase trustworthiness and help
with debugging. Effective explanations should ac-
curately reflect the reasoning process of a model
(Herman, 2017). In knowledge-augmented com-
monsense QA, attention weights from message-
passing have been used to provide poc-hoc expla-
nations (Lin et al., 2019; Yasunaga et al., 2021),
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Figure 1: This figure depicts a class of models that inte-
grate KG and LM for question answering. The training
stage on the left side of the figure mainly includes LM,
KG, and their interaction through a knowledge exchange
fusion layer. The right side of the figure illustrates the
post-hoc explanation results. Explanations extracted
from the KG of models that produce the same correct
answers can be inconsistent and unfaithful.

as illustrated in Figure 1. However, the reliabil-
ity of these explanations has been questioned (Jain
and Wallace, 2019), and the criteria for evaluating
model explainability are often neglected, diminish-
ing their impact.

We argue that explanations from a broad class of
KG-enhanced LMs (LM-KG) are of limited faith-
fulness. The behaviour of graph encoder deviates
from the overall LM-KG model and it has lim-
ited influence on the prediction, so explanations
extracted from the graph encoder are unlikely to re-
flect the full set of facts. Besides, this process does
not guarantee that the extracted explanations will
be faithful to the reasoning of the model (Wiegreffe
and Pinter, 2019), leading to what we call spurious
explanations(Zhao et al., 2023).

Spurious explanations, which lie outside the gen-
uine rationale of the model’s prediction, can arise
due to various factors. The Graph Neural Network
(GNN) learned from the knowledge graph may pre-
serve the prediction but deviate from the original
model’s reasoning due to confounding effects. In
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LM-KG models, the LM compensates for the rea-
soning of the weakly-trained GNN, making it more
vulnerable to such issues. Consequently, the extrac-
tion of explanations becomes unreliable.

To address these challenges, we make the fol-
lowing contributions:

1. We measure model faithfulness by deeply de-
taching the LM’s ability to influence the fi-
nal prediction, providing a design method for
faithful models that can generalise to similar
architectures.

2. We analyse the underlying mechanism of spu-
rious explanations and discuss why graph
motifs (structure) can enhance model perfor-
mance but fail to produce faithful explana-
tions.

3. We propose the LM-KG Fidelity and
LM-KG Consistency metrics, which di-
rectly inspire the development of the LM-
KG Distribution-aware Alignment (LKDA)
training architecture.

4. We introduce a joint Fedility-Sparsity mea-
surement method to help analyse whether the
attention weights of the GNN contain explana-
tory paths.

Our analysis, conducted on the CommonsenseQA
and OpenBookQA datasets, demonstrates that
LKDA enhances KG fidelity across various LM-KG
models, representing a significant contribution to
graph explainability and setting a new benchmark
for future research. Furthermore, LKDA consis-
tently improves the overall performance accuracy
of models. On the OpenBookQA dataset, some
models exhibit an accuracy increase of approxi-
mately 10% while maintaining the same model ar-
chitecture and parameter count. These suggest that
our proposed method can assist models in better
utilising the structured knowledge contained within
the Knowledge Graph.

2 Related Work

2.1 Knowledge Graphs in NLP

Research has explored enhancing NLP with addi-
tional knowledge. Studies have shown pre-trained
language models can serve as implicit knowledge
bases (Pan et al., 2019; Petroni et al., 2019). Oth-
ers have integrated structured knowledge graphs

into language models for better knowledge repre-
sentation, focusing on processing the knowledge
graph (KG) and the language model (LM) sepa-
rately before combining them for question answer-
ing (QA) tasks (Mihaylov and Frank, 2018; Wang
et al., 2019; Zhang et al., 2022; Lin et al., 2019;
Yasunaga et al., 2021).

2.2  Multi-relational Graph Encoder

Graph Neural Networks (GNNs) are significant
in handling diverse graph structures (Kipf and
Welling, 2017; Velickovi¢ et al., 2018). For
multi-relational graphs like KGs, which have com-
plex relational data, R-GCNs and GAT have been
developed to handle these relations effectively
(Schlichtkrull et al., 2018; Velickovié et al., 2018).

2.3 KGs for Post-hoc Explanations in LMs

LMs struggle with interpretability (Danilevsky
et al., 2020). Grounding LM outputs in KGs has
been a method to provide explanations, but these
are often not fully representative due to the reliance
on text and graph embeddings (Feng et al., 2020;
Sun et al., 2022; Wiegreffe and Pinter, 2019; Zhang
et al., 2022; Yasunaga et al., 2021). Recent ap-
proaches like GraphMask attempt to improve faith-
fulness in explanations, but challenges persist in
quantifying the fidelity of graph encoder explana-
tions in LM-KG models (Schlichtkrull et al., 2021;
Aglionby and Teufel, 2022).

3 Model Architecture

3.1 Knowledge Graph Enhanced
Commonsense Reasoning

In this study, we focus on a category of models that
synergise a text encoder (LM) and a knowledge
graph encoder for the purpose of commonsense
question answering. These models effectively com-
bine linguistic and structured world knowledge to
enhance reasoning and understanding. In a multi-
choice commonsense question answering setting,
the model processes a question ¢ and a set of an-
swer choices C. For each answer choice a € C, a
concatenated input statement S = [g; a] is formed,
where g and a denote the vector representations
of question and option. The external Knowledge
Graph is then utilized to extract a relevant subgraph
G, guided by the input statement S. This contex-
tualized subgraph is formally defined as a multi-
relational graph G = (V,Z, ¢), where V represents
the set of vertices (or nodes), Z the set of edges,
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and ¢ the relational types in the graph. The lan-
guage model, denoted as LM, computes the context
embedding z = LM(S). This involves encoding
the concatenated question and answer choice into
a high-dimensional vector space, capturing the lin-
guistic nuances and semantic relationships.

Simultaneously, a graph encoder fq is employed
to encode the KG subgraph G. The encoding
g = fc(G) captures the structured relational infor-
mation and knowledge present in the graph. Finally,
a fusion module F' integrates the outputs of both the
LM and fg encoders to generate a joint represen-
tation F'(z, g). This module can range from sim-
ple feature concatenation to more complex archi-
tectures, such as a transformer-based fusion layer,
which effectively merges the linguistic context with
the structured knowledge graph information. The
output of this fusion model is then utilized to pre-
dict the plausible answer Y from the set of choices.
The joint representation F'(z,g)) is then passed
through a Multilayer Perceptron (MLP) to gener-
ate the final prediction from the set of choices C.
Formally, the training and prediction p(q, a) can
be represented as:

Y = p(q,a) = argmax,cc MLP(F(z,g)))
exp(p(q, a)) (D

tL=Eqac |1
s q,a,C | ~ 108 > acc exp(p(q,a))

where argmax selects the answer choice a that
maximises the output of the MLP applied to the
joint representation. During training, we maximise
the plausibility score of the correct answer a by
minimising the cross-entropy loss. We give detail
of KG encoding (fc(G)) in Appendix B

3.2 Post-hoc LM-KG Explanation Framework

Perturbation-based methods are often used to pro-
vide instance-level explanations. In this context,
perturbations are derived by sequentially masking
out the most weighted groups of connected edges
in the knowledge graph, focusing specifically on
the most weighted path connecting context nodes
and the predicted answer node.

Given a graph G = (V,Z, ¢), where nodes are
represented by an attribute matrix 7' € R™*? and
edges by an adjacency matrix A € R™*"™, The goal
of post-hoc explanation is to identify a subgraph
G’ with binary importance masks M4 € [0, 1]™*™
on the adjacency matrix and My € [0,1]"*% on
the node attributes, respectively. Formally, the sub-
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Figure 2: Behavior of GNN model from the causality
perspective in the form of Structural Equation Model.
There are two possible causal paths can be found, as
shown in the section 4.

graph is defined as ¢’ = {A ® My;T © Mr},
where © denotes elementwise multiplication.

Following the Feature Removal Principle
(Covert et al., 2020), when ground-truth explana-
tions are not available, we assess the explanation’s
effectiveness by measuring the model’s sensitivity
to explanations G’. This could be done by sequen-
tially masking out the most critical sets of nodes in-
dicated by M 4 that follows edge attention weights
a and observing the drop in performance (Yuan
et al., 2022). This approach ensures that the most
important nodes are recognised by the rate at which
the model’s accuracy deteriorates when these nodes
are not functioning.

Mathematically, the degradation is defined as:

AAce(Ty) = fa(G) = fal(G) )
st. G ' ~B(G,a,A,n,T)

where T}, denotes the set of n most influential

nodes. B represents the perturbations applied to

the original node attribute matrix 7. AAcc quanti-

fies the rate at which the accuracy decreases when

detachment is applied.

4 Spurious GNN Causality

Inspired by Zhao et al. (2023), spurious explana-
tions refer to those that do not align with the true
reasoning behind the predictions on G, rendering
the extraction of G’ for explanations anecdotal. To
illustrate this, we can model the GNN using a Struc-
tural Equation Model (SEM) as depicted in Fig-
ure 2. Here, variable C represents discriminative
causal factors, while variable S denotes confound-
ing environmental factors. The GNN learned from
fa might maintain prediction distribution Y due
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to the confounding effects of distribution shifts
or differing causal variables from the original G.
This issue is exacerbated in weakly-trained unsta-
ble GNNs in LM-KG models, making GNNs pre-
dictions unreliable. The model’s inference process
can be broken down into two paths:

1. G — C — Y: The causal path lies behind
the inference process, with the representa-
tion encoding the critical variables C. This
path utilises information from the entire input
graph G, including both the graph structural
information and the node embedding informa-
tion.

2. G + S — Y: The confounding effect of the
spurious factor S can influence the inference
process by leading the model to neglect the
semantics of node embeddings. Especially
when an input graph G’ is out-of-distribution
(OOD), the supportive GNN may fail to re-
flect its discriminative features. During infer-
ence, the encoded representation of G is dis-
tant from those seen in the training set, making
the generalise unreliably. This effect will be
transferred through fusion layers to the LM,
leading to better accuracy but unreliable ex-
planations.

To gain a deeper understanding of the reasons
behind this problem, we can examine the behavior
of a state-of-the-art LM-KG model from a causality
perspective. The GSC (Wang et al., 2021) model
provides a clear illustration of this issue. They
use Sparse-VD (Molchanov et al., 2017) to analyse
GNN components in many LM-KG commonsense
QA systems and find that the counting of edges in
the knowledge graph plays a crucial role in the rea-
soning process for LM-KG models. Even a simple
hard counting algorithm that counts the occurrence
of each possible edge triplet can achieve QA per-
formance comparable to complex GNN methods,
but the attention mechanism and node embedding
features in GNNs are not predominant. In such
cases, especially when there is support of reason-
ing from the LM and the training data is relatively
scarce, the message-passing process might fail to
capture effective causal factors other than graph
motifs, leading to the loss of significant symbolic
nodes’ ability, which are essential in the knowledge
graph, thus ignoring essential causal relationships.

Addressing this issue requires careful consid-
eration of the model’s learning objective and the
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Figure 3: This figure depicts the comprehensive struc-
ture of the fusion layer, through which the LM is deeply
integrated with the KG. The components highlighted in

signify the modules that exhibit a strong correla-
tion with the LM. The purple dashed line denotes the
specific segments that require LM detachment before
the final prediction to keep GNN faithfulness.

development of methods that can faithfully capture
the causal factors contributing to the predictions.

S LM-KG Explanation Evaluation
Metrics

Here we evalute GNN explanability in a fusion
model in two folds, namely, faithfulness and spar-
sity. With “faithful graph encoders”, we refer to
GNN representations being able to reflect the gen-
uine rationale of the prediction. While sparsity
means rationales should capture the most important
input features and ignore the irrelevant ones. We
argue that LM-KG fusion models are intrinsically
unable to provide graph-structured explanations
that are highly faithful to the full model.

5.1 LM-KG Fidelity

Intuitively, If trustworthy explanations are to be
extracted from the GNN, the GNN itself must
demonstrate predominant reasoning ability within
the overall model. Only then will the explanations
extracted from the GNN be faithful and truly repre-
sentative of the reasoning process. Hence, LM-KG
Fidelity here is defined as the intersection of pre-
diction between the original and the GNN with
fundamental changes. Concretely, we define LM-
KG Fidelity (Fkg) as the prediction agreement be-
tween the original model and the language model
factors detached model output.
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5.1.1 Proxy for Faithfulness

To maintain isolation and integrity of the GNN
model, we steadily detach text encoder from the
fusion layer without further training, as shown in
Figure 3. Inspired by (Schlichtkrull et al., 2021;
Aglionby and Teufel, 2022), Fkg is conducted us-
ing a controlled variable method with complemen-
tary masking, all factors are kept constant except
that the text encoder reasoning components are to-
tally detached from the interaction between modali-
ties in the fusion layer. Keeping nodes features and
the model architecture as is allows us to establish a
causal relationship between the text encoder vari-
able and the observed outcomes, especially in such
a model class with multiple deep fusions. Detach-
ing here can be equivalently thought of as adding a
certain type of noise when prediction, it contains
at best minimal useful information for answering
the question correctly. It can be categorised as be-
longing to the class of perturbation-based methods
(Guan et al., 2019; Schlichtkrull et al., 2021).

Specifically, follow Wang et al. (2022) Fkg is
defined as:

Fke = N
N A A
Crra(enen)
N (3)
s.t. Cp = argmax P (¢ | G, M),
ceC
CM\Z =argmax P(c| G, M\.)
ceC

The Fiq score is defined as the normalised Ham-
ming Distance dyg which represents the proportion
of instances where the predictions of the two mod-

els agree Where C is the set of choices, (A]Sf/)l and

Cg@l\ are the predictions for the ¢-th instance made

by the original model and the complementary mask
applied model M, , respectively. P(c | M) de-
notes the probability distribution of the output Y
given the model M. I(x,y) is the indicator func-
tion, which is 1 if x = y and 0 otherwise. N is the
total number of instances in the dataset considered.
Accuracy performance and comparison between
the complete model’s output and the LM-detached
model’s prediction are provided in the Figure 5 and
6. Measurement of Fk is reported in Table 3.

5.1.2 Consistent Fidelity

Note that the Fg metric studies the change of pre-
diction accuracy. In order to quantitatively assess
the divergence between the output density of our

original model M and its detached variant M, .,
we first devise the LM-KG Consistency (Crk)
metric to measure the alignment between the prob-
ability distributions of their outputs. Our chosen
metric is inspired by the Jensen—Shannon diver-
gence J (Lin, 1991), a symmetrised and smoothed
version of the Kullback-Leibler divergence (Kull-
back and Leibler, 1951), which offers a bounded
measure of similarity between probability distribu-
tion pairs. The Cpk metric is computed as follows:

CLK J (M,M\z) = /\]D)KL (P (Y ‘ M) HA)

4
+(1 = ANDrr(P(Y | M\2)|A)

Where Dk, represents the Kullback-Leibler di-
vergence. The key to the computation of J is the
average of the two distributions. A serves as the
mid-point reference distribution against which the
divergence of each of the two distributions is mea-
sured. By employing Crk as our metric, we aim
to capture the nuanced differences between the out-
put probability distributions of M and M, .. A
smaller Cpk indicates a high degree of similarity
or consistency between the two models, while a
larger value signifies a greater divergence in their
outputs, and even when the LM output is detached,
the graph encoder can still assign probabilities to
choices that closely align with the original model’s
decisions, making it potentially more representa-
tive of the original model’s thought process. Note
that Cy,i is more sensitive than Fkc.

5.2 LM-KG Explanation Sparsity

Good explanations should be sparse, which means
they should capture the most important input fea-
tures and ignore the irrelevant ones. The metric
Sparsity measures such a property. Specifically, it
measures the fraction of features in the final GNN
layer selected as important by explanation methods.
Formally, we define it as the percent of important
node embeddings masked in 7". Note that we must
evaluate model explanation performance by jointly
considering sparsity and other criteria. For mod-
els undergoing the same change in sparsity, those
exhibiting greater performance variation indicate
that the factors driving this change possess stronger
explanatory power for the model.

6 Methodology

To achieve a more faithful LM-KG interpretation,
it’s imperative to ensure that the introduced modifi-
cations of models do not substantially deviate from
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Figure 4: Illustration of our proposed new objective

the LM’s behaviour, implying that after introduc-
ing modifications, the GNN encoder should predict
a target distribution that mirrors the one emitted
by the unaltered model to retain its subtle reason-
ing ability. While traditional methods have relied
heavily on cross-entropy as the primary objective,
the unfaithful GNN encoder of existing LM-KG
models demands a more nuanced regularisation of
training procedure. We next introduce LM-KG
Distribution-aware Alignment (LKDA) to bridge
this gap.

6.1 Knowledge Graph Anchored Alignment
through Divergence

LKDA enhances the cross-entropy Log by intro-
ducing a consistency regularisation L¢; .. This
factor is an alignment loss used as an auxiliary
task incorporated into that ensures the graph en-
coder’s target prediction align closely with the orig-
inal model’s predictions. LKDA is given by:

Likoa(Cam, Cany ) = Vo Lom + A - Vo, Loy (5)

In this equation, 6; are the model parameters at
time step ¢, A controls the balance between pre-
diction preservation and alignmen, Lo represents
the cross-entropy loss, which was traditionally em-
ployed. L¢; . is the consistency term that measures
the divergence between the probability distribu-
tions of the original and LM-detached models. The
equation shows the parameter update rule, where
the gradients of the two losses are subtracted from
the current parameters #; to obtain the updated
parameters 6; 1. The algorithm details of this strat-
egy can be found in Appendix A.

6.2 Theoretical Analysis

From our previous discussions, it is evident that
G’ obtained via Equation 1 cannot be reliably used
as explanations. One critical issue with existing
GNN explanation methods lies in the inductive

Method ‘ IH-dev (%) IH-test (%)
QA-GNN 76.1 733
+LKDA 76.310.2 73.440.1
GreaseLM | 77.4 74.2
+LKDA 77.8T0.4 74'2T0-0
MHGRN 74.4 71.1
+LKDA 76.972_5 71'2T0-1

Table 1: Accuracy comparison of three different LM-
KG models in their original version and trained with
the LKDA scheme (grey background) on the Common-
senseQA dataset.

Method | Dev (%) Test (%)
QA-GNN 724 704
+LKDA 79.006.6 80.019.6
GreaseLM | 73.4 71.6
+LKDA 80.6T7.2 82‘4T10~8
MHGRN 69.4 67.4
+LKDA 71'2T1-8 66.6“),8

Table 2: Accuracy comparison of three different LM-
KG models in their original version and trained with the
LKDA scheme (grey background) on the OpenBookQA
dataset.

bias: achieving the same outcomes does not guar-
antee the same underlying causes, leaving these ap-
proaches vulnerable to spurious explanations. This
is illustrated in Figure 4. The objective proposed
in Equation 1 optimizes the mutual information be-
tween the model prediction Y and the ground truth
T, which corresponds to maximizing the overlap
So U Sq between I(7';Y) in Figure 4(a) and Figure
4(b).

However, this learning target cannot prevent the
generation of spurious explanations. Provided KG
explanation may fall into region S; U S3, which
does not faithfully represent model reasoning. In-
stead, a more sensible objective should be maxi-
mizing region Sp U S5 in Figure 4(b). The intu-
ition behind this is that in the search input space
that causes the same outcome, no matter correct
or wrong, the identified G’ should account for both
the representative and discriminative parts of the
original LM-KG model, to prevent both unfaith-
ful KG and spurious explanations that produce the
same outcomes due to different causes. Ensuring
the alignment of M and M, , while increasing the
area of Sy will inevitably reduce the area of 55U Ss3.
Therefore, our method can reduce the occurrence
of incorrect or shortcut spurious explanations.
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Figure 5: The bar charts compare the accuracy of the
model on CommonsenseQA before and after LKDA
training when the LM is detached. The models trained
with LKDA are shown with a gray background.

7 Experiment Settings
7.1 Datasets & KG

We assess our methods using two multiple-choice
question answering datasets: CommonsenseQA
in-house (IH) data split (Talmor et al., 2019; Lin
et al., 2019) and OpenBookQA (Mihaylov et al.,
2018), serving as benchmarks for commonsense
reasoning. We also use ConceptNet (Speer et al.,
2017), a broad commonsense KG, for our tasks.
Details can be found in Appendix C.

7.2 LM-KG Faithfulness Baseline Models

To assess our LKDA training and LM-KG Fidelity
metric, we compare it with three LM-KG mod-
els: QA-GNN (Yasunaga et al., 2021), GreaseLM
(Zhang et al., 2022), and MHGRN (Feng et al.,
2020). Each uniquely integrates language models
with knowledge graphs: QA-GNN uses a context
node, GreaseLM enhances interaction through a fu-
sion mechanism, and MHGRN offers a multi-hop
relational reasoning architecture.

For fair comparison, we use RoBERTa-Large
(Liu et al., 2019b) model and its generated concepts
embedding for our experiments.

We also include the TrainTE (Aglionby and
Teufel, 2022) (—T' F) ablation for faithfulness com-
parison, freezing text encoder weights to enhance
the GNN'’s reasoning contribution. Unlike the
—Embed (Aglionby and Teufel, 2022) ablation,
which detaches the text encoder only from the fi-
nal MLP, —TFE better aligns with our goal. Im-
plementation and hyper-parameters are detailed in
Appendix D.

OpenBookQA
Model ‘ IH-dev TH- lesl dev test

B QA-GNNp g 335 305 456 455
' MHGRNT g 29.7 24.5 44.8 41.0
N QA-GNN 43.5 39.8 39.3 45.5
g GreaseLM 412 40.7 60.3 62.7
MHGRN 523 51.0 754 73.0

< QA-GNN 98.5 98.7 97.6 98.0
2 GreaseLM 98.9 980  99.6  99.6
~ MHGRN 95.5 95.0 96.2 97.4

Table 3: LM-KG Fidelity measurement of three LM-KG
models variations on two datasets.

8 Results Analysis & Discussion

Table 3 presents the LM-KG Fidelity results on
CommonsenseQA and OpenBookQA for LKDA-
trained models and three LM fully detached mod-
els. LKDA notably enhances faithfulness across
all scenarios, with GreaseLM [,k p4 on the Com-
monsenseQA IH-dev split achieving a 57.7% and
QAGNN xpa on the IH-test split achieving a
58.9% accuracy increase. This highlights LKDA’s
effectiveness in addressing model unfaithfulness
and bolstering graph encoder predictions, thus lay-
ing a foundation for reliable graph interpretation.
Additionally, Tables 1 and 2 report accuracy under
original models and LKDA settings. It is notewor-
thy that these tables show consistent improvements,
including an 10.8% improvement for GreaseLM on
the OpenBookQA test dataset.

8.1 LM-detached Models

Figures 5 and 6 show that removing the text en-
coder significantly drops performance in all mod-
els. For instance, in CommonsenseQA IH-dev,
GreaseLM’s accuracy drops by 39.7%. This high-
lights the text encoder’s crucial role. However,
LKDA models without the LM embedding show
only minor drops or slight improvements in accu-
racy. This suggests the graph encoder now has the
most influence, ideal for reliable explanations.

LKDA-trained models consistently outperform
those without fidelity regularization. On the Open-
BookQA test set, QA-GNN/,x pa achieves 80.0%
accuracy, a 9.6% increase over the vanilla QA-
GNN. GreaseLM[ xpa achieves 82.4%, surpass-
ing the original by 10.8%, and matches the fine-
tuned TS5 model. This indicates that LKDA im-
proves reasoning in the graph encoder, making it a
reliable proxy for the model’s reasoning process.
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Figure 6: The bar charts compare the accuracy of the
model on OpenBookQA before and after LKDA training
when the LM is detached. The models trained with
LKDA are shown with a gray background.

8.2 LM-KG Fidelity

Table 3 shows that Fig scores significantly in-
creased after LKDA training. In CommonsenseQA
IH-test, QA-GNN’s fidelity rose from 75.7% to
98.7%, GreaseLM from 40.7% to 98.0%, and
MHGRN from 51.0% to 95.0%. All models
showed over 95% Fi ., indicating high faithfulness
of graph encoders to the original model outputs.
GreaseLLM’s fidelity improved notably, achieving
99.6% on OpenBookQA dev and test sets, demon-
strating LKDA’s effectiveness.

8.3 Explanation Fidelity

Evaluating the explainability of the obtained GNNs
is challenging due to the lack of commonsense KG
explanation ground-truth. We specifically study
this by observing prediction changes when sequen-
tially removing important nodes from the final
GNN layer. We define importance as the atten-
tion weights (« in Figure 3) between the head node
and tail nodes learned by the model to test its ex-
planation performance. Generally, the removal of
truly important edges would significantly degrade
the classification performance. Thus, a faster per-
formance drop represents stronger fidelity.

Figures 7 show the results of comparing the
explanability of original models and LKDA archi-
tectures of QAGNN and GreaseLM on Common-
senseQA. We analyse the effect on model target
predictions by incrementally removing node fea-
tures, thereby increasing sparsity, and jointly eval-
uating both sparsity and fidelity. The experiments
are divided into three variants:

QAGNN - Dev

—_
560

5 50

<40 Original
30| —*— LKDATop

=+~ LKDA Random

20

00 02 04 06 08 1.0
Sparsity

(@)
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—s— LKDATop
-+~ LKDA Random
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Original
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+~ LKDA Random
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N +~ LKDA Random
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00 02 04 06 08 1.0
Sparsity

(©) (d

Figure 7: The line graphs depict Fidelity-Sparsity re-
sults of three variants of QAGNN and GreaseLM on
CommonsenseQA. Faster accuracy drops with increas-
ing sparsity indicate stronger fidelity and more effective
explanations.

* Feature reduction on the original model
(ORIGINAL)

e Random removal of node features on the
LKDA-aligned model (RANDOM)

* Masking nodes according to the magnitude of
edge attention values (TOP)

As shown in Figure 7, as GNN sparsity increases,
both random and top methods exhibit a much more
rapid accuracy drop compared to the original ver-
sions. For example, after sparsity increases to 0.1,
the accuracy of the original QA-GNN remains rel-
atively steady on both dev and test sets, while for
LKDA, the accuracy drops by around 10%, indicat-
ing that the explanations from LKDA better cap-
ture the critical edges. The more rapid degradation
for LKDA as important edges are removed demon-
strates that its explanations can better reflect the
true reasoning process. Moreover, in all the fig-
ures, it is evident that at the same sparsity level,
the accuracy drop of the top method is consistently
faster than that of the random method. This ob-
servation further validates the effectiveness of the
attention mechanism in identifying the most criti-
cal edges for the model’s prediction. This analysis
provides quantitative evidence that the knowledge
graph explanations extracted from the LKDA model
are more faithful and plausible.
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9 Limitations

While LKDA enhances explanation faithfulness in
LM-KG models, some limitations exist. Evalu-
ation relies on perturbation methods due to lack
of ground-truth explanations, which may not fully
capture explanation. LKDA introduces computa-
tional overhead, potentially restricting applicability
to larger models and datasets. LKDA assumes a spe-
cific LM-KG architecture, and adapting it to other
architectures may require further modifications.
Quantitative metrics should be complemented with
human evaluations to assess plausibility and under-
standability. Future research should incorporate
user studies.
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A LKDA Algorithm

Algorithm 1 LKDA Training and Explanation Pro-
cess

Require: Text s = [g; a], background subgraph G,
model M
1: Imput: Question ¢, Answer a € C, Subgraph
g
2: Initialize: Language model encoder LM,
Graph encoder Fxg
Step 1: Text and Graph Encoding
Text representations: Zpy; < LM(s)
Generate graph embeddings: Fkg < fc(9)
Step 2: Fusion and Masking
Combine Z1,\ and Ekg in the fusion module:
F(z,9)
Mask text representation: M ,
9: Calculate target distribution P(Y| M, ;)
10: Step 3: Alignment and Optimization
11: Minimize Jensen-Shannon divergence:
12 J(P(Y|M), P(Y|M.))
13: Update model parameters 6; <— 6, — Vjy,L
14: Step 4: Post-hoc Explanations
15: Analyze attention weights «;; to identify key
weighted edges in G
16: Output: Faithful explanations indicating rea-
soning process of model M

A A T

(2]

B Graph Neural Network Modeled
Knowledge Graph Encoding

The graph encoder fq processes the subgraph G

by assigning initial embeddings {U§0)’ e ,vf,o)}

to the graph’s nodes using pre-trained embed-

dings. In each GNN layer, these embeddings
{v((f*l),vgfl), . ,v((]é*l)} are updated through

information exchange among nodes, leading to up-
dated node embeddings for each entity. Here, vg
typically represents the context node:

9,0y = fa(ulY
for/=1,...,. M
6)

This process uses a modified graph attention net-
work (GAT), similar to Yasunaga et al. (2021). The

GNN calculates node representations v;.(
node v; through message passing:

,U;(f) = f, Z

Vs ENUj U{v;}

0 for each

aggm | + ol ()

Here, ij is the neighborhood of node v;, mg;
is the message from neighbor v, to v; and f,, is
a two-layer Multilayer Perceptron (MLP). Here,
g represents the attention weight between source
node s and target node j.

C Datasets & KG

We assess our methods by using two multiple-
choice question answering datasets: Common-
senseQA (Talmor et al., 2019) and OpenBookQA
(Mihaylov et al., 2018), serving as benchmarks for
commonsense reasoning.

CommonsenseQA. A dataset of 12,102 ques-
tions in a 5-way multiple-choice format which re-
quires commonsense knowledge beyond mere lan-
guage understanding. For our experiments, we
adopted the in-house (IH) data split by Lin et al.
(2019) to facilitate comparison with established
baseline methods.

OpenBookQA. A dataset with its 4-way
multiple-choice structure, assesses elementary
scientific knowledge through its collection of
5,957 questions, accompanied by a compilation
of scientific facts. For this dataset, we relied on
the official data splits provided by Mihaylov et al.
(2018).

ConceptNet (Speer et al., 2017), a broad knowl-
edge graph, for our tasks. A subgraph G for each
QA context is extracted using the method by Feng
et al. (2020) with hop size k=2.

D Implementation & Training Details

Our model, following Feng et al. (2020); Yasunaga
et al. (2021), includes a 4-head, 5-layer graph en-
coder (dimension D = 200) with a 0.2 dropout
rate (Srivastava et al., 2014). Using RAdam (Liu
et al., 2019a) with batch size 128, we refine param-
eters. Input node features from concatenated [q; a]
pass through RoBERTa-Large, yielding 1024d to-
ken embeddings. Gradient clipping at 1.0 (Pascanu
et al., 2013) and learning rates of le—® (LM) and
le~3 (GNN) are set. Training takes about 2 hours
for 30 epochs (10 random seeds) on a 40G A100
GPU, with hyperparameters tuned on the develop-
ment set.
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