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Abstract

The deployment of large language models
(LLMs) is often hindered by the extensive mem-
ory requirements of the Key-Value (KV) cache,
especially as context lengths increase. Exist-
ing approaches to reduce the KV cache size
involve either fine-tuning the model to learn a
compression strategy or leveraging attention
scores to reduce the sequence length. We
analyse the attention distributions in decoder-
only Transformers-based models and observe
that attention allocation patterns stay consis-
tent across most layers. Surprisingly, we find a
clear correlation between the L, norm and the
attention scores over cached KV pairs, where a
low Ly norm of a key embedding usually leads
to a high attention score during decoding. This
finding indicates that the influence of a KV pair
is potentially determined by the key embedding
itself before being queried. Based on this obser-
vation, we compress the KV cache based on the
L5 norm of key embeddings. Our experimen-
tal results show that this simple strategy can
reduce the KV cache size by 50% on language
modelling and needle-in-a-haystack tasks and
90% on passkey retrieval tasks without losing
accuracy. Moreover, without relying on the
attention scores, this approach remains com-
patible with FlashAttention, enabling broader
applicability.

1 Introduction

Handling long contexts is desirable for large lan-
guage models (LLMs), as it allows them to perform
tasks that require understanding long-term depen-
dencies (Liu et al., 2024; Fu et al., 2024; Chen
et al., 2023; Staniszewski et al., 2023; Zhao et al.,
2024; Tworkowski et al., 2024). A key component
for modelling long context is the KV cache, which
stores the keys and values of past tokens in mem-
ory to avoid recomputing them during generation.
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Figure 1: ALR, as defined in Eq. (3), for each head
and layer in Llama2-7b. A lower value means a higher
correlation between L, norm and attention score.

However, processing long-context inputs often re-
sults in a high decoding latency since it requires re-
peatedly reading a potentially large KV cache from
high-bandwidth memory (HBM) to the streaming
multiprocessor (SM) during decoding (Fu, 2024).
Consequently, the practical deployment of LLMs
is frequently hindered by hardware limitations. To
address the issue of KV cache growth, various KV
cache compression methods have been proposed.
These methods can be broadly categorised into
trainable approaches, which involve modifications
to the model architecture (Ainslie et al., 2023), or
fine-tuning regime to inherently manage KV cache
size (Nawrot et al., 2024), and non-trainable ap-
proaches, which apply post-hoc compression tech-
niques to reduce the cache footprint without alter-
ing the underlying model (Li et al., 2024; Zhang
et al., 2024b). While these methods have shown
promise, they often involve complex algorithms or
significant computational overhead, limiting their
practicality; for example, post-hoc compression
algorithms usually evict KV pairs based on atten-
tion scores, which is not compatible with FlashAt-
tention (Dao et al., 2022) and thus prevents their
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Figure 2: Five heads at layer 9 of Llama2-7b. Attention score (top) and Ly norm (bottom) are highly correlated. We
observe similar patterns across most layers and for a wide range of inputs. More examples provided in Appendix D

applications in modern LLMs inference systems.
We show that the Lo norm of cached keys has
a high correlation with attention scores. More
specifically, we observe that a low Ly norm of a
key embedding usually leads to a high attention
score during decoding. Based on this observation,
we propose a simple and highly effective strategy
for KV cache compression: keeping in memory
only the keys with lowest Ly norm, and the corre-
sponding values. Unlike many existing methods,
our heuristic can be applied off-the-shelf to any
transformer-based decoder-only LLM without the
need for additional training or significant modifi-
cations. More importantly, our method estimates
the influence of cached key-value pairs without the
need to compute the attention scores. Therefore,
unlike other compression methods (Holmes et al.,
2024; Li et al., 2024), it can be easily integrated
with the popular FlashAttention (Dao et al., 2022).
Our experimental results demonstrate that this
heuristic allows maintaining model performance
in language modelling tasks and in tasks that
require the model to store and retrieve the
most critical information, such as passkey re-
trieval (Mohtashami and Jaggi, 2023) and needle-
in-a-haystack tasks (Kamradt, 2023).

2 Patterns in the Attention Matrix

We first examine the attention scores on the lan-
guage modelling task for a range of popular LLMs.
By analysing the key embeddings and the attention

distribution, we observe that key embeddings with
low Ly norm are often associated with higher at-
tention scores. In Fig. 2, we provide an example
using Llama-2-7b (Touvron et al., 2023), where
the first row presents the attention distribution over
the KV pairs, and the second row presents the Lo
norm of each key embedding. We observe that the
tokens with high attention scores, such as "<s>"
and ".", have significantly lower Ly norm values
than others. While Xiao et al. (2024) already ob-
served peaked attention distributions for specific
tokens, and Darcet et al. (2024) pointed out the in-
fluence of high Ly norm tokens on attention maps,
we are the first, to the best of our knowledge, to
point out the correlation between the Lo norm of
the key embeddings and attention score. Based
on our observation, we consider the following re-
search question: can we compress the KV cache
based on the Lo norm of the key embeddings?

An intuitive way to estimate the influence of
compressing the KV cache is by examining the
attention scores that are dropped due to the com-
pression. In the following, we formally define this
influence.

Given a prompt consisting of n tokens
(21,2, ..., Ty ), the LLM first encodes them into a
KV cache— this step is referred to as the pre-filling
phase. Then, the model autoregressively generates
the next token z,,4+1. When performing KV cache
compression, some key-value pairs may be dropped
and thus cannot be attended to. We define the at-
tention loss caused by the compression as the sum
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Figure 3: Perplexity for Llama 2-7b, Llama 3-8b and Gemma on language modelling task on wikipedia dataset.
Additional results on coding dataset are available in Appendix B

of the attention scores associated with the dropped
KV pairs:
L= Y aunyp (1)

pEDy

where a; 5, ,, is the attention score of the p-th token
in the layer [, head h. In Eq. (1), D; ;, denotes the
positions of m pairs of dropped KV, |D; ;| = m,
which depends on the compression method. An
ideal compression algorithm aims to drop the KV
pairs with the lowest attention scores, which will
have less impact on the output. However, such
attention scores are unavailable for a compression
algorithm since it needs x,,+1 to query the full KV
cache in advance. Instead, we drop KV pairs with
the highest Lo norm in key embeddings and use
attention loss caused by ideal compression as the
reference:

Vi = £ = £33 @

)

where £;n}fef is the reference attention loss, and

Y)"}, is a non-negative value. A lower )’} indicates
a lower difference and thus a higher correlation
between the attention score and the Lo norm. To
measure the overall difference between ideal atten-
tion score-based compression and Ly norm-based
compression, we sum up the )"} over different
numbers of compressed KV pairs7:

Vin=>_ Vi 3)
m=1

We name the ) ; as ALR, which indicates the
Attention Loss for a compression method using
ideal attention loss as Reference.

In Fig. 1, we plot the ) across layers and heads.
We observe that heads in the first two layers and
some middle layers around the 12th layer have rel-
atively high ) values. The heads in other layers
have lower ) values, indicating a high correlation

between Lo norm and attention score. By leverag-
ing this correlation, we can compress the KV cache
based on the Ly norm of key embeddings. Option-
ally, we can skip the compression at the layers with
low correlation. We show ablation experiments
skipping layers in Appendix B.

3 Experiments

We evaluate our method on language modelling
and two long-context modelling tasks, i.e., needle-
in-a-haystack and passkey retrieval. Based on the
observation supported by Fig. 1, the heads in the
first two layers usually have a low correlation be-
tween Lo norm and attention score, so we do not
perform compression on these layers as default. We
conduct experiments to investigate the impact of
compression on different layers in Appendix A.

Language Modelling For language modelling,
we let the KV cache grow until a specific pre-
defined length and subsequently start to discard
the tokens with the highest Ly norm. We show in
Fig. 3 that evicting even up to the 50% of KV Cache
does not impact perplexity. Perplexity increases, as
expected, once we exceed the pre-training context
length. We show more results, including next token
accuracy in Appendix B.

To further verify that keys with low Lo norm
capture significant information, we test other evic-
tion strategies, i.e. keeping tokens with highest Lo
norm and keeping random tokens. It is clear from
Fig. 3 that discarding tokens with low Ly impairs
performance, even more so than random discard-
ing, thus highlighting the importance of these low
Lo norm keys.

Pressure Test on Long-Context Tasks The
needle-in-a-haystack task (Kamradt, 2023) and
passkey retrieval task (Mohtashami and Jaggi,
2023) are two synthetic tasks that are widely used
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Figure 4: Score on long-context tasks for Llama-2-7b-80k and Llama 3.1

to pressure test the long-context modelling capa-
bility of LLMs. In both tasks, the model needs
to identify and retrieve the important information
from a long context to generate correct answers.
Thus, these tasks test the compression method’s
ability to keep important KV pairs and drop redun-
dant ones.

In Figure 4a and Figure 4b, we present the exper-
imental results of Llama-2-7b-80k (Fu et al., 2024).
We analyse additional models in Appendix C. The
model retains its performance on the needle-in-a-
haystack task with 30% KV cache compression
(Figure 4a) and maintains 99% accuracy with 50%
compression. It also achieves 100% accuracy on
the passkey retrieval task, even with 90% KV cache
compression (Figure 4b).

We compare other eviction strategies, like keep-
ing KV pairs with low Ly norm, with high L9 norm,
and random. In Figure 4a and Figure 4b, we ob-
serve that the model cannot answer correctly when
keeping only high L, norm KV pairs, obtaining
near zero accuracy. When we randomly compress
the KV cache, the performance decreases signifi-
cantly faster than keeping low Lo norm KV pairs.
The above analysis indicates that KV pairs with
low Lo norm are critical to generating the correct
answer and thus contain important information.

Experiments on LongBench Additionally, we
evaluate on LongBench (Zhang et al., 2024a). We
test on several subsets, including NarrativeQA (Ko-
cisky et al., 2018), Qasper (Dasigi et al., 2021),
HotpotQA (Yang et al., 2018), 2WikiMQA (Ho
et al., 2020), and QMSum (Zhong et al., 2021). We
report the results for the recently released long con-
text Llama3.1 in Figure 4c. In addition, we show
the complete per-subset results in Appendix C. The
experimental results show that compressing the KV
cache with low Lo norm only introduces a small ac-

curacy decrease even when compressing 50% KV
cache, while compressing KV cache with high L,
norm results in almost zero accuracy.

Comparison with FastGen Like the majority of
methods in the literature, FastGen (Holmes et al.,
2024) utilises attention scores, which makes it in-
compatible with the popular FlashAttention (Dao
et al., 2022), thereby limiting its efficiency and
usability. For a fair comparison, we implement
FastGen without using the attention scores, i.e., we
only consider local, punctuation and special tokens.
We perform experiments on language modelling
with the Llama3 model (Dubey et al., 2024). Our
method still outperforms FastGen with up to 50%
KV cache eviction. We show the results in Figure 5.

Llama 3 (wikipedia)
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Figure 5: Perplexity of Llama3-8b on the wikipedia
dataset when compared to FastGen (only local, special
and punctuation tokens).

Relationship between embedding and L, norm
After identifying a correlation between the Lo norm
of token key embeddings and attention scores, we
performed a further exploration by analyzing the
key prjections in the KV cache. We found that to-
kens with lower Lo norm show sparse activations,
with few dimensions having high values while most
remain near zero, indicating limited use of the vec-
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Figure 6: Key projections of the bos token < s > vs other tokens. Each value represents the activation in a specific
dimension for the embedding of the key projection. We found similar patterns across almost all heads and layers
and in multiple texts. Only a few peaked activations (~ 50, ~ 56 and ~ 120) control the attention mechanism (see

Figure 7). More plots like this in Appendix E
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random activations.
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(b) Attention maps of Llama3-8b when zeroing out
peaked activations of low L2 norm key embeddings.

Figure 7: How the attention maps change if we set to zero a random activation (a) vs the specific peaked activations
in the keys (b). In this example we set the values at iteration 5 during generation.

tor space (Figure 6). This sparsity aligns with the
concept of "sink" tokens (Xiao et al., 2024), where
many queries align with certain tokens, increas-
ing their attention scores. We hypothesise that the
lower Lo norm reflects a partial use of the available
embedding space, leading to increased attention for
these tokens. To test this, we zeroed out the dimen-
sions responsible for the peaked activations in low
L2 norm key embeddings and observed significant
changes in attention maps during generation (Fig-
ure 7). However, randomly altering dimensions did
not produce the same effect. This finding suggests
that the Lo norm may serve as a proxy for the ex-
tent to which an embedding utilises the available
vector space and, consequently, the degree to which
it influences attention. Lower Ly norm appears to
correspond to embeddings that drive disproportion-
ately high attention values due to their alignment
with a common "sink" direction.

4 Related Works

Recent long-context LLMs like Gemini-Pro-
1.5 (Reid et al., 2024), Claude-3 (Anthropic, 2024),
and GPT4 (Achiam et al., 2023) can process hun-
dreds of thousands of tokens, but face high decod-
ing latency. To address this, works like PageAtten-
tion (Kwon et al., 2023), Infinite-LLM (Lin et al.,
2024), and vAttention (Prabhu et al., 2024) propose
efficient memory management strategies. Others

focus on KV cache compression: DMC (Nawrot
et al., 2024) uses dynamic trainable token merg-
ing, while H20 (Zhang et al., 2024b), FastGen (Ge
et al., 2023), and SnapKV (Li et al., 2024) employ
various attention-based training-free compression
strategies. Unlike these methods, we uniquely use
key embedding Lo norm for compression. While
(Darcet et al., 2024) had previously found that high
Lo norm hidden states aggregate important infor-
mation, we are the first, to the best of our knowl-
edge, to discover and leverage the correlation be-
tween low Lo norm key embeddings and high at-
tention scores for efficient KV cache compression.

5 Conclusion

We introduced a simple yet highly effective strat-
egy for KV cache compression in LLMs based on
the Lo norm of key embeddings. We show that
there is a significant correlation between the Lo
norm of a key embedding and its attention score.
Leveraging this observation, we compress the KV
cache by retaining only those keys with the lowest
L9 norm. Our experimental results on various tasks
show that our compression strategy maintains the
predictive accuracy of the model while significantly
reducing the memory footprint. Our approach is
straightforward and can be applied directly to any
transformer-based, decoder-only LLM.
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6 Limitations

While our research offers valuable insights, we
tested only on relatively small models (Llama fam-
ily and Gemma up to 8 billion parameters). In
future work, we will assess our method on larger-
scale models to ensure our findings generalize Ad-
ditionally, while we show that the Lo norm played a
significant role in our experiments, we do not have
a comprehensive theoretical explanation for why
this is the case. Understanding the underlying rea-
sons behind the importance of the Lo norm would
require further theoretical exploration and empiri-
cal validation. Finally, we observed (Figure 1) that
compressing based on Lo norm can be less effec-
tive depending on the layer and head considered,
and we intend to investigate per-head compression
ratios to leverage this observation.
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Figure 8: Attention loss of ideal compression and Lo
norm-based compression in Llama-2-7b-80k. The z-
axis represents the compression ratio; the y-axis repre-
sents the attention loss (defined by Equation (1)) The
results average over 1024 chunks on Wikipedia, with a
length of 1024.

A Attention score loss when compressing
the KV cache

We discuss further the correlation between Lo norm
and attention scores. We already displayed in Fig-
ure 1 the Lo norm and attention correlation across
heads and layers using the original Llama2-7b and
the long context Llama2-7b-32k and Llama2-7b-
80k. We can see that patterns are quite consistent
across all the models. To better visualise how corre-
lation varies across different heads, in Figure 8, we
only consider two heads from layer 10 and layer O
and show the ALR from Equation (1). As expected,
we see that in layer O, the difference is larger due
to a lower correlation.

B More results on Language modelling
task

In the following, we show results when performing
compression only on layers that show a lower cor-
relation between Lo norm and attention score. We
show in Fig. 10 that for language modelling tasks,
the different layer drop has little impact on final
accuracy and perplexity. The difference becomes
significant only when the KV cache is pruned to
retain only one thousand pairs. All experiments are
averaged over 50 chunks from English Wikipedia.

C More Results on Long-Context
Modelling Tasks

In addition to llama-2-7b-80k (Fu et al., 2024),
we test the compression method using llama-2-7b-
longlora-32k-ft (Chen et al., 2023) on the needle-in-
a-haystack and passkey retrieval tasks. As shown
in Fig. 11a, we can see that compressing 30%
of KV cache only results in a slight performance
degradation on the needle-in-a-haystack task. We
also observe that the performance even increases
slightly when we compress 10% of KV cache. In
figure Fig. 11b, we observe that the llama-2-7b-
longlora-32k-ft maintains 100% performance when
compressing 80% of KV cache and only as a slight
decrease when compressing 90% of KV cache. Fur-
thermore, the model fails to generate correct an-
swers if we compress KV pairs with low Lo norm
and keep high Lo norm ones. The evaluation re-
sults of llama-2-7b-longlora-32k-ft are consistent
with the llama-2-7b-80k, which further indicates
the effectiveness of compressing KV cache using
Lo norm.

C.1 Analysis of Skipped Layers

As shown in Fig. 1, we find heads in the first
two layers and the middle layers have a relatively
low correlation between attention scores and Lo
norm. Thus, we conduct experiments to analyse
the impact of skipping layers that have a low cor-
relation for compression. As shown in Fig. 12a
and Fig. 12¢, we observe that only skipping the
first layer (layer-0) decreases the performance on
the needle-in-a-haystack task significantly. We can
see that skipping the first two layers (layer-0,1)
has a similar performance compared to skipping
the first three layers (layer-0,1,2). Furthermore,
as shown in Fig. 12b and Fig. 12d, only skipping
the first layer can result in significant performance
degradation. We also find that the compression
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Figure 11: Evaluation results of Llama-2-7b-longlora-32k-ft on the needle-in-a-haystack and passkey retrieval tasks.
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Figure 12: Analysing of skipping different layers for compression.
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Figure 13: Detailed results of Llama-2-7b-80k on the needle-in-a-haystack task.
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Figure 14: Detailed results of Llama-2-7b-longlora-32k-ft on the needle-in-a-haystack task.
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C.2 Longbench Evaluation

In this section we show detailed results from the
LongBench dataset (Zhang et al., 2024a). In Fig-
ure 17 we show results for Llama2-80k, while in
Figure 18 we show results for the long context
model Llama3.1-8b.

D More Visualizations
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Figure 17: Evaluation results of Llama-2-7b-80k on long context tasks from Longbench, including narrativeqa and

qasper, hotpotqa, 2wikimqa, and gmsum.
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Figure 18: Evaluation results of Llama-3.1-8B on long context tasks from Longbench, including narrativeqa and
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Figure 24: Norms of KV cache tokens in Llama2-7B
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E Additional token embeddings plots

We show in Figure 25 some additional figure that
represent Llama3-8b token embeddings sparsity.

F Experimental setup

In all experiments, we used the HuggingFace li-
brary and did not change the model’s default hy-
perparameters. For language modelling, results are
averaged across 50 samples. The Figure 8 and Fig-
ure 1 are the average results of 1024 examples with
a chunk size of 1024 using Wikipedia.
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Figure 25: Key projections of Llama3-8b of the bos |beginoftext| token vs other tokens. Each value represents the
activation in a specific dimension for the embedding of the key projection. We found similar patterns across almost
all heads and layers and in multiple texts.
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