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Abstract

We introduce an evaluation methodology for
reading comprehension tasks based on the intu-
ition that certain examples, by the virtue of their
linguistic complexity, consistently yield lower
scores regardless of model size or architecture.
We capitalize on semantic frame annotation
for characterizing this complexity, and study
seven complexity factors that may account for
model’s difficulty. We first deploy this method-
ology on a carefully annotated French reading
comprehension benchmark showing that two of
those complexity factors are indeed good pre-
dictors of models’ failure, while others are less
so. We further deploy our methodology on a
well studied English benchmark by using Chat-
GPT as a proxy for semantic annotation. Our
study reveals that fine-grained linguistically-
motivated automatic evaluation of a reading
comprehension task is not only possible, but
helps understand models’ abilities to handle
specific linguistic characteristics of input exam-
ples. It also shows that current state-of-the-art
models fail with some for those characteristics
which suggests that adequately handling them
requires more than merely increasing model
size.

1 Introduction

Generative language models, and very large ones
in particular, define the current state-of-the-art in a
number of Natural Language Processing tasks. Yet,
despite the impressive quantity of scientific studies
dedicated to them, the capabilities, limitations, and
risks of these models remain largely unknown.

In this work, we argue that black-box evaluations
across various tasks, datasets, and languages (Liang
et al., 2023; Srivastava et al., 2023) is not enough
to portrait current models abilities and instead pro-
pose in Section 2 a linguistically fine-grained eval-
uation methodology that capitalizes on semantic
frame annotation (Baker et al., 1998) to character-

ize examples thanks to a small number of complex-
ity factors we describe in Section 3.

Question Answering (QA) from documents has
been extensively studied since the advent of deep
neural network-based models, facilitated by large
evaluation corpora such as SQuAD (Rajpurkar
et al., 2016) and MultiRC (Khashabi et al., 2018),
part of the SuperGLUE benchmark (Wang et al.,
2019). Transformer-based models consistently top
leaderboards!, outperforming humans. For a nu-
anced view, see the position paper by (Tedeschi
et al., 2023), but we acknowledge this belief as
highlighting the challenge of evaluating QA, due
to the subjective nature of answer generation and
models capturing training data biases (McCoy et al.,
2019). Thus, QA offers an interesting playground
of our evaluation method that we consider here.

As a proof of concept, we apply our methodol-
ogy to a publicly available reading comprehension
benchmark CALOR (Béchet et al., 2019), which
includes French Question-Answer pairs with de-
tailed semantic annotations on the relation linking
questions and answers. We demonstrate that certain
complexity factors can effectively predict model
limitations, regardless of size or architecture. In
Section 5, we extended our methodology to the
NaturalQA (Kwiatkowski et al., 2019) benchmark,
using ChatGPT to compute complexity factors. Our
results show that models of various sizes and ar-
chitectures struggle with certain examples, suggest-
ing that addressing these challenges requires more
than just scaling up model size. By presenting
a method to automatically select these challeng-
ing examples, we provide a means for monitoring
further progress in reading comprehension. The
data used and collected in this study is available
on the following link: https://gitlab.lis-1ab.
fr/calor-public/complexity-calor.

"https://rajpurkar.github.io/

SQuAD-explorer,https://super.gluebenchmark.com/
leaderboard
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2 Method

Our goal is twofold: first, to partition an evaluation
corpus into several subsets, each with a distinct (lin-
guistic) level of complexity; and second, to identify
linguistically motivated factors that explain the vari-
ations in complexity across these subsets. We par-
tition examples based on the analysis of systems’
output inspired by the ROVER method (Fiscus,
1997). To ensure independence from any single
model when doing so, we propose using a set of
models M = my,mao, ..., m, adapted to perform
the task and bin examples according to the number
of models that agree in their answer with the ma-
jority vote. Thus, examples are partitioned into n
bins (from total disagreement to full agreement);
partition 1 grouping examples where all n systems’
outputs differ, while partition n gather examples
where all systems agree.

To explain why some subsets are more complex
than others, we confront linguistic assumptions
formulated as complexity factors to examples in
each bin, proceeding as follows:

1. We formulate several assumptions about se-
mantic complexity factors (F' = f1, fa,...)
as binary questions applicable to examples in
the evaluation corpus. For instance: Does find-
ing the answer require solving a coreference
chain?

2. For each factor f, we divide the evaluation cor-
pus into two subsets based on whether the ex-
amples answer “yes” (E y=difficult subset) or
“no” (E r=easy subset) to the question posed
by the factor. When a binary factor requires
a threshold to effectively divide the corpus
(as in is the value corresponding to the fac-
tor higher (“yes”) than the threshold or not
(“no”)?) we use quantitative data to set this
threshold in order to ensures a balanced divi-
sion of the corpus.

3. For each factor f and model m, we compute
the performance of model m on partitions E
and Ey: S(m, Ey) and S(m, Ey), and com-
pute §(m, f), a score which quantifies perfor-
mance degradation of model m due to com-
plexity factor f as | (S(m, Ef)—S(m, Ey))*
100].

4. Finally, we calculate a measure of statisti-
cal significance for §(m, f) with the Mann-
Whitney U test with a 5% risk level between

the two partitions £y and E ¢ This test takes
into account the value of §(m, f) and the char-
acteristics of each set in the partition.

As stated in the introduction, we applied our
method to a reading comprehension task, which
involves a QA process based on documents. The
complexity factors we evaluate in this study were
defined through a controlled experiment on the
CALOR evaluation corpus, which was manually
annotated with semantic frames and enriched with
QA based on these frames. This process is de-
scribed in the next section.

3 Semantic complexity factors

3.1 A semantically-controlled QA corpus

We use the publicly available CALOR corpus
(Marzinotto et al., 2018a) which contains docu-
ments semantically annotated with the Berkeley
Framenet semantic model. This corpus includes
French texts from Wikipedia as well as a collec-
tion of historical documents covering three main
themes: First World War, archaeology, and antiq-
uity. The semantic annotation of this corpus con-
sists of Semantic Frames that describe prototypical
situations (e.g., decide, lose, attack, defeat). A
trigger word of the Frame, called the Lexical Unit
(LU), is identified, followed by the specification of
the arguments, known as Frame Elements (FE).

In (Béchet et al., 2019), it was enhanced with
semantically controlled question-and-answer ex-
amples. This process involved selecting a seman-
tic Frame and a corresponding FE from sentences,
then having annotators generate questions whose
answers were the selected Frame Elements, with
the remaining elements providing context. By vary-
ing these selections, a dataset of questions, answers,
and their semantic classes was created. Corefer-
ence chains were also annotated when needed. This
approach produced a corpus of 1785 questions from
54 semantic frames, serving as a valuable resource
for validating our methodology under controlled
conditions. An example of an annotated sentence
from the corpus is shown in Figure 1. Based on
these two frame annotations, annotators could have
formulated several questions, such as: "(1) Who
lost the majority of their troops on December 102"
or "(2) Who started the attack on December 10?"
In both instances, the sentence provides the an-
swer "armies." However, the correct answer, de-
rived from resolving the coreference chain in the
paragraph, is "Central Empire coalition."
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Frame:Losing

FE:Owner FE:Time LU FE:Possession

The armies that launched then December 10 have lost| 80% of their personnel.

FE:Assaillant Lu FE:Time FE:Result

Frame:Attack

Figure 1: Example of sentence annotated with two se-
mantic frames

3.2 Designing complexity factors

We consider in this study three types of factors
based on the semantic frame annotation available
in the corpus: factors capturing potential train-
ing biases (fy;q5); factors based on lexical choices
and syntactic structures of QA examples (fcoref»
ftriggera fLU inq fdist) inSPifed by CompleXity fac-
tors proposed for automatic parsing of frames
in (Marzinotto et al., 2018b); finally factors linked
intrinsically to the semantic relation defined by
a frame (f,,p FEs and fentropy). Here’s a concise
overview of these factors, with examples for all but
frias and feorer presented in Figure 2.

frias : bias in the training/adaptation corpus.
In the experiment section, we use the French QA
corpus FQuAD (d’Hoffschmidt et al., 2020) for
adapting several models to the QA task. This com-
plexity factor explores the relationship between
the frame distribution in this adaptation corpus
and the model scores in the evaluation corpus. To
explore this factor, we used the tool described in
(Marzinotto et al., 2019) to automatically annotate
the text data (context) of the FQuAD adaptation
corpus with Frames and estimated the frequency of
each Frame. We then defined two sets of Frames:
F'+ for the more frequent Frames and F'— for the
less frequent ones. The set £y consists of QA ex-
amples based on Frames in F'— (the rare ones),
while E includes those based on Frames in F'+
(the common ones).

feorep : coreference. The need to resolve a coref-
erence is a potential complexity factor. As men-
tioned in Section 3.1, coreference chains are anno-
tated for the arguments of the semantic relations
linking questions and answers, allowing us to di-
vide the test corpus in two parts: examples with a
coreference chain to be resolved to find the answer
E and the others E . Both examples of question
given for figure 1 belongs to E as a coreference
resolution is needed to find the answer.

ftrigger - nature of the semantic relation trigger.
The triggers of a frame in the FrameNet model,
called Lexical Unit - LU, can be either verbal or
nominal. It has been shown (Marzinotto et al.,
2018b) that relations triggered by a nominal LU
are more difficult to process. We therefore divide
the examples in the evaluation corpus according to
the nature of the LU: either nominal E, or verbal
Ey.

fLu in ¢ : presence of the frame trigger in the
question. When the same term triggers the se-
mantic relationship in the context and in the ques-
tion, the example is intuitively simpler to treat. To
capture this, we bin examples in subset £y where
the trigger is different between the question and
context, and in F ¢ otherwise.

faist : syntactic distance between the frame trig-
ger and the answer. The syntactic distance be-
tween the frame trigger and the answer may poten-
tially challenge models as a greater distance may
increase ambiguity for finding the answer to the
question. We calculate the distance in terms of de-
pendency arcs through a syntactic analysis of the
corpus” and group together examples with at least
two dependency arcs between the trigger and the
response in the subset £y, and group those with
only one arc in E.

fnb FEs : number of arguments in the frame.
Certain semantic relations exhibit varying numbers
of Frame Elements (FEs). The number of FEs
within the semantic relation underlying a question-
answer pair can influence model efficiency: a
higher number of FEs provides a richer contextual
basis for accurately identifying the answer, while
a smaller number of FEs can make the task more
ambiguous. We categorize examples with no more
than two annotated FEs into the subset Ef, and
those with more than two FEs into £/ ¢. Our focus
is on the manually annotated FEs present in the
context of the question, rather than the theoretical
number of FEs for the frame in Berkeley FrameNet.

fentropy : measure of entropy in the distribution
of LUs for a given frame. Some frames are con-
sistently triggered by the same terms, while others
exhibit much greater diversity, leading to ambigu-
ity in their triggers. This measure of “surprise’ can
be quantified through the entropy of the LU distri-
bution in the evaluation corpus. A higher entropy

2We used the spaCy toolkit: https://spacy.io
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suggests increased ambiguity in frame triggering.

trigger

Jellyfish have existed for at least 600 million years, and in many ways they remain a mystery.

- In this process, water loss through evaporation is limited, which is an advantage in a dry environment.
LU (NOUN)

LUinq
All these defects stemmed from the general inadequate preparation of our entire army.
Lu
Where do all these defects stem from? - Whats behind all these defects?
dist
What water do souls drink to forget the whole of the past?
1 11
l—o [ — i vl T — v v | V1 v

But before leaving this place, souls must drink the water of the river Lethe.
L

What have archaeologists found at burial sites?

3
— T — — T s

Mostly discovered during archaeological excavations of burial sites, these sumptuous textiles were used.
L

nb FEs

Agent Hidden_object Hiding_place Place

LU (Frame : Hiding_objects)

No, comrades, our ideal of human reconciliation and the pursuit of social happiness is not sinking.

LU (Frame : Scrutiny)

entropy

|- Frame : Installing {[Hard | Frame : Request
Possible triggers : [install, seat, transfer, found zg;sr:?alisnogf?;rs ;gsﬂégt’aZLdeigeggi‘ifsh
establish, installation, implant] : ! » Propose, + prop !

iengage, require, obtain, wish, claim, demand]

Lower diversity of trigger — lower entropy Higher diversity of trigger — higher entropy

Figure 2: Example of some complexity factors considered

2016),

contains questions based on French

We include examples in the subset E; for frames
with an entropy value above a threshold «, and in
E ¢ for frames below the same threshold, calculated
as the median entropy value across all frames.

4 Controlled experiment

We compare seven pre-trained language models:
one is a classification model based on a BERT
architecture (Devlin et al., 2019) developed for
the French language, CamemBERT (Martin et al.,
2020); three models are multilingual generative
models based on TS (T5-LARGE, FLAN-TS5-
LARGE (Wei et al., 2021), MT5-LARGE (Xue
et al., 2021)), and three models are current Large
Language Models (LLMs): LLAMA?2 (Touvron
et al., 2023), Mixtral 8x7B (Jiang et al., 2024) and
ChatGPT-3.5%.

All these pre-trained models, except Chat-
GPT3.5 and Mixtral 8x7B, have been adapted to
our QA task using the French corpus FQuAD
(d’Hoffschmidt et al., 2020). This corpus, con-
structed similarly to SQuAD (Rajpurkar et al.,

3API from https://chat.openai.com

Wikipedia documents.

We used fine-tuning (on FQuAD) for Camem-
BERT and the TS5 models with 2 epochs, and the
Low-Rank Adaptation method (LoRA) (Hu et al.,
2021) on the LLAMA?2 model. For GPT-3.5 and
Mixtral 8x7B, respectively, a one- and two-shot
prompting approach was used, which involved
specifying to the model the requirement for an ex-
traction of the original document with one example
of input/output in the expected format.

4.1 Evaluation

We evaluate these models on the evaluation cor-
pus with two kinds of metrics: automatic and hu-
man metrics. For the automatic metrics we use the
ROUGE-L score from the ROUGE toolkit* (Lin,
2004). This is a similarity score between the ex-
tractive reference answer and the systems output.
For the human metrics we perform a manual anno-
tation of all the systems’ output. Annotators were
presented with triplets consisting of a context, a
question, and an answer. They were tasked to la-

*We use the google research implementation available here,
with the stemmer and camembert-base tokenizer.
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bel each answer as ’correct’, ’partially correct’,
or ’incorrect’. The output from all systems, along
with the ground-truth answers, was used to create
a total of 14,280 triplets (1,785 triplets per system,
including 7 systems and the ground-truth). After
removing duplicates in the answers, we obtained a
set of 5857 unique triplets, which were then divided
into 10 folds and evaluated by 10 human annota-
tors®. Any annotator labels that contradicted the
ground-truth labels were reviewed to either correct
the reference annotations or adjust the annotators’
decisions. Two metrics were derived from this man-
ual annotation:

* Hscore: This metric assigns a score of 1 to an-
swers labeled as correct, 0.5 to those labeled
as partially correct, and 0 to those labeled as
incorrect.

* Hcorrect: This metric represents the propor-
tion of answers labeled as correct by the an-
notators for a given system.

Model adapt | #param | Rouge-L | Hscore % Hcorrect
CamemBERT FT 335M 0.82 0.85 78.9
T5-L FT 738M 0.81 0.84 78.0
FLAN-T5-L FT 783M 0.80 0.85 79.2
MTS5-L FT 1.2B 0.80 0.84 71.5
LLAMA-2 LoRA 7B 0.69 0.78 72.2
Mixtral-8x7b | prompt | 47B 0.80 0.87 82.6
GPT 3.5 prompt | 175B 0.72 0.88 82.5
ROVER - - 0.84 0.88 823

Table 1: Description of the 7 models used in our ex-
periments with their performance in terms of Rouge-L,
Hscore and Hcorrect scores. The last line indicates
the performance of systems’ combination through the
ROVER method.

Overall, the results achieved by the various mod-
els are notably lower compared to those show-
cased on leaderboards of analogous tasks such as
SQuAD © or MultiRC in SuperGLUE 7. This dis-
crepancy can be attributed in part to the character-
istics of the evaluation corpus and its differences
with the adaptation corpus FQuAD as well as the
absence of systematic model optimization through
hyperparameterization.

The Rouge-L score of the T5-based generation
models and the CamemBERT-based classification
model are closely aligned, whereas those of the

SAll these human annotations as well as systems’
output and complexity factors annotations are publicly
available : https://gitlab.lis-lab.fr/calor-public/
complexity-calor

6https ://rajpurkar.github.io/SQuAD-explorer
"https://super.gluebenchmark.com/leaderboard

two LLMs, LLAMA-2 and GPT3.5, significantly
lag behind. This comes from the fact that the
references in the evaluation corpus are extractive
(comprising segments of the original text) and
that RougeL inherently leans towards models that
merely replicate segments without introducing ad-
ditional words. When considering human evalu-
ation, the results are inverted: generative LLMs
that are lightly adapted with prompting, that tend
to introduce additional elements for presentation or
explanation, are preferred by humans and outper-
form other models on both Hscore and Hcorrect
metrics.

This analysis underscores the necessity for eval-
uation metrics beyond string similarity between
a single reference and the output of a generative
model for abstractive tasks. Notably, unlike GPT-
3.5 and Mixtral, the LLAMA-2 model’s perfor-
mance remains low in human evaluations. This
discrepancy can be attributed to the ineffective
LoRA adaptation, despite being monitored using
the Rouge-L score. Although the final Rouge-L
score was low, it was comparable to that of GPT-
3.5, leading us to initially attribute the low score
to the model’s abstractive capabilities. However,
human evaluation revealed this was not the case.
Due to the high cost of human annotation, it was
not feasible to use this metric to refine and optimize
our adaptation process. Consequently, we exclude
the results obtained with LLAMA-2 from now on
and use our human metrics instead of Rouge-L.

4.2 Complexity factors

We apply the methodology described in section 2
for partitioning QA examples by complexity and
assessing the relevance of the complexity factors
describes in section 3.

To sort QA examples by complexity, we uti-
lize the agreement between models, which is as-
sessed using the ROVER score as detailed above.
Given that we are working with both extractive
and abstractive models, we calculate the agree-
ment between the outputs of two models, M (z)
and Ms(x), for a given input x using the Leven-
shtein distance, denoted as disty(.), between the
two strings. The agreement is defined as:

agree(My, My, x) < distr,(Mi(x), Ma(z)) < «

In our experiments, we arbitrarily fixed « = 5
to allow strings that differ only by the deletion or
addition of a specifier to be considered as agreeing.
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Figure 3: Performance in Hscore according to the agree-
ment number with the ROVER systems’ combination
method

The ROVER performance is displayed in the last
row of Table 1. It performs best for Rouge-L and
Hscore metrics and closely approaches the best for
Hcorrect. ROVER forms the basis of our proposed
method for sorting QA examples by complexity. By
using 6 models in the voting process, we categorize
examples into 6 partitions (P1 to P6) based on the
level of agreement among systems. P1 contains ex-
amples where the 6 systems’ outputs differ, while
P6 includes those where all systems agree. In Fig-
ure 3, we plot the Hscore of ROVER and all other
models across these 6 partitions. The alignment
between the number of agreements and complexity
measurement is consistent across all models, with
ROVER scores closely mirroring Hscore, which in-
creases nearly linearly with agreement count. From
this curve, we deduce that our evaluation corpus
is relatively easy. Nearly half of the corpus (48%,
combining P5 and P6) has an Hscore over 90% for
all models. Of the remaining corpus, 40% (P3 and
P4) are of moderate complexity, where larger mod-
els outperform smaller ones. The final 12% are the
most difficult examples for all models, regardless
of their size.

Is complexity linked to semantic relations?
The ROVER partitioning produced reliable clus-
ters but did not clarify why some clusters are more
challenging than others. To investigate this, we
explore the correlation between semantic relation-
ships linking questions, answers and model per-
formance. Semantic relationships are represented
by the frames used to generate the questions (de-
tailed in Section 3.1). We segmented our corpus
into 54 sub-corpora based on the frames, allowing
us to evaluate each model’s performance for each
specific frame.

Figure 4 illustrates the distribution of ROVER
scores across each frame sub-corpus®. This dis-
tribution is non-uniform, validating our intuition
that model performance varies with underlying se-
mantic relations. This brings us to the second step
of our method, which involves validating the com-
plexity factors proposed in Section 3.

Complexity factor

models/factors | bias | coref | trigger | LUinq | dist | nbFEs | entropy
size of Ef (%) | 42% | 6% | 37 % 45% | 30% | 59% 50%

CamemBERT -1 -7 -1 -2 -1 -4 -1
TS5 0 -9 -1 -2 -3 -4 -5
FLAN -1 -6 -1 -3 -4 -3 -5
MT5 -1 -15 0 -2 -3 -4 -4
GPT-3.5 0 -2 0 1 -1 -1 -2
mixtral-8x7b 0 -2 -2 -2 -2 -4 -1
ROVER 1 -7 0 -2 -1 -2 -2

Table 2: Validation results for complexity factors across
models, showing § values in each cell with statistically
significant differences in bold. ’Size’ indicates propor-
tions of partitions E relative to the total corpus.

Evaluation of complexity factors. Table 2
shows the results for these 7 complexity factors. In
each cell, for a model m and a factor f, the value
corresponds to the impact of f on m expressed by
the difference in terms of Hscore § presented in
Section 2. Values in bold correspond to factors that
have validated the Mann-Whitney U test for statisti-
cal significance with a 5% risk. This methodology
allows us to systematically analyze and quantify
the impact of different complexity factors on model
performance, providing rigorous statistical valida-
tion of observed differences in Hscore between
linguistically easier and more complex subgroups.
As we can see, the generic factor fy;,s correspond-
ing to the link between the frequency of a frame in
the adaptation corpus and in the evaluation corpus
has very little influence on the results.

Factor f.or.; shows that resolving co-reference
chains is a complexity factor for all models but
significantly impacts only smaller models like TS
and MT5. While LLMs also experience some per-
formance loss, it is less significant, indicating their
better handling of co-references.

The nature of the Frame trigger (firigger) iS a
complexity factor for all models but differences
are not statistically significant. Factor fri7 i ¢ 1S
validated for all models except GPT-3.5, but signif-
icant only for FLAN and MTS5. Factor fy;s; mainly
affects smaller models, supporting the idea that

8Similar distributions were observed across all models,
even if there is some variation in the frame ranking. The
figures for all models are in Appendix A.8
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Figure 4: Performance of ROVER according to each frame sorted by Hscore measure. The number of occurrences

of each frame in the corpus is given between brackets

LLMs better encode syntactic structures.

Interestingly, the most reliable factors are those
intrinsically linked to the semantic relations rep-
resenting the frames (f,; FEs and fentropy) rather
than their contextual use. Thus, these two factors
can be associated with the measure of semantic
ambiguity in question/answer relations.

For example, the Request frame has over 20 trig-
gers in the Berkeley Framenet lexicon®. In our
evaluation corpus, it has 33 occurrences with 6 dif-
ferent triggers, resulting in high entropy and Hscore
scores from 0.55 to 0.84 depending on the model.

In contrast, the Installing frame, defined as "An
Agent places a Component in a Fixed Location so
that the Component is attached and interconnected
and thereby functional" has only two triggers (in-
stall and installation). It has 30 occurrences in our
corpus with 2 triggers, low entropy, and Hscore
scores from 0.79 to 0.90.

Factor f,; prs shows frames with a low number
of Frame Elements in their examples (< 2). For
instance, the Origin frame has two *core’ FEs (Ori-
gin and Entity), while the Giving and Contacting
frames have more ’core’ and non-core FEs. This
aligns with factor fep¢ropy, Where the Origin frame
scores below average, while Giving is an ’easy’
frame.

Selecting semantically complex QA examples.
Complexity factors can be used to identify chal-
lenging QA examples by considering one or more
factors. Our analysis focuses on the most signifi-
cant factors, fnp FEs and fentropy. Figure 5 shows

*https://framenet.icsi.berkeley.edu/frameIndex

Hscore values for subsets of the corpus categorized
by examples influenced by neither, one, or both
of these factors, plus any additional factors. Most
models exhibit the greatest score disparity between
subsets with no factors and those with at least one
of fup FEs OF fentropy- The score difference is min-
imal between subsets with one factor and those
with both, except for TS5, MT5, and LLaMA-2.

/P P6 | P5 | P4 | P3| P2 | P1
P (fuyFEs) | 052 ] 0.56 | 0.62 | 0.64 | 0.62 | 0.80
P (fentropy) | 0.51 | 0.57 | 0.60 | 0.59 | 0.58 | 0.54

Table 3: Probability of having the fr,5 rEs and fentropy
factors according to the agreement partitions of increas-
ing complexity P6 to P1

The last step of our analysis is to study if our
semantic factors can explain the differences in com-
plexity among the different partitions P1 to P6 ob-
tained through the ROVER method. Table 3 shows
the probabilities of the QA examples in each par-
tition P to have factor f,; pEs OF fentropy- As can
be observed, probabilities for f,,;, rEs and feniropy
increase clearly from P6 to P5 and to a lesser ex-
tent from P5 to P4, indicating that examples with
higher semantic ambiguities are more likely to be
occurring in the difficult partitions within P3 to
P1.

S Experiments with NaturalQA

To evaluate the transferability of our two main com-
plexity factors (f,5 FES and fentropy) to other QA
datasets and languages, we used a subset of Natu-
ralQA (Kwiatkowski et al., 2019) and the predic-
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Figure 5: Hscore on 4 partitions of the evaluation corpus according to combinations of complexity factors

tions of 48 models provided by HELM (Liang et al.,
2023) on their natural_qa_openbook_longans10
scenario. This subset consists of 1,000 examples
from the Natural QA evaluation distribution, each
comprising a question, a "short" answer, and the
context, which in this case is the corresponding
"long" answer from NaturalQA (typically equiva-
lent to a paragraph). For brevity, we present the
results of 8 of the 48 models in Table 5'!, selected
to represent the full range of mean F1 scores across
all models. Additionally, we display the ROVER
score estimated across all (48) models.

Applying feniropy to NaturalQA. For this
dataset, lacking an automatic Frame analysis, we
used a proxy method: we compiled all poten-
tial triggers from Berkeley FrameNet frames and
checked their exact presence in the questions. Each
question provided a list of triggers and their cor-
responding frames. Using a custom prompt'2, we
employed GPT-3.5 to determine the most appropri-
ate pair for each question.

For example with the question : How long
did the democrats control the house and sen-
ate? we can extract the following list of 11
triggers and their potentials frames : [(’Dura-
tion_description’, ’long’), ("Buildings’, house’),
(Desiring’, ’long’), (’Dimension’, ’long’),
(Firefighting’, ’control’), (’Controller_object’,
control’), (’Measurable_attributes’, ’long’),
(’Containing’, "house’), ("Experimentation’, ’con-
trol’), CBeing_in_control’, ’control’), (" Control’,
“control’)]. The chosen pair in this case being :
(’Being_in_control’, ’control’).

We decided to use a proxy via ChatGPT rather
than automatic analysis in a semantic framework
for several reasons. First, this approach offers

Ohttps://crfm.stanford.edu/helm/lite/latest/#/
groups/natural_ga_openbook_longans

See result for all model in A.9

12Appendix A.5

simplicity in implementation and scalability
to other languages, requiring only hypothesis
extraction via keyword search and API calls.
Second, our analysis is focused on questions, not
paragraphs of text, unlike the typical training data
for most semantic frame models, and we had
reservations about the models’ performance in this
context.

We performed a manual evaluation on 50 sen-
tences, where two annotators assessed ChatGPT’s
frame predictions as fully correct, partially correct,
or erroneous. The results, shown in Table 4, demon-
strate overall good performances, with some errors
observed.

Evaluation Full | Partial | Erroneous
Frame Prediction | 57 18 25
Frame Elements 66 22 12

Table 4: Manual evaluation (in %) of ChatGPT’s frame
predictions across 50 random sentences

Out of 1000 examples, 18 had no extractable trig-
gers and were discarded. On the generated frames
by ChatGPT, 35 were unknown from our Frame dic-
tionary and were also discarded. We then assessed
our fentropy factor by calculating the median en-
tropy across all Berkeley FrameNet frames.

We computed the variation in F1-score between
examples that validated fep¢ropy (high entropy) and
those that did not. Across all models, the aver-
age difference in performance between these sub-
sets was -3.17 (x 1.82) F1 points, indicating that
fentropy 1s also a significant complexity factor for
the NaturalQA benchmark. In Table 5, we present
the F1 variation for the 8 selected models as well
as for ROVER, showing that most models have a
significant F1-lost when considering fetropy €X-
amples.

Applying f.; pps to NaturalQA. For f,; rrs,
following the prompt method used for fenropy, We
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Factors
models/factors F1 | nbFEs | entropy
size of Ey (%) 78% 52%
google_text-bison@001 0.81 0 -1
openai_text-davinci-003 0.77 -4 -5
ROVER 0.77 -4 -3
meta_llama-3-70b 0.74 -3 -4
mistralai_mixtral-8x7b-32kseqlen | 0.70 -6 -4
openai_gpt-3.5-turbo-0613 0.68 -4 -6
google_gemma-7b 0.66 -4 -3
AlephAlpha_luminous-extended | 0.61 -7 -5
databricks_dbrx-instruct 0.55 -2 0
\ ROVER 077] 4 | 3 ]

Table 5: Validation results for f,, res and fentropy
across models on naturalQA. ’Size’ indicates propor-
tions of partitions F; relative to the total corpus.

automatically extracted the FEs based on the pre-
viously predicted frames using an empirically de-
veloped prompt'?. We extracted Frame Elements
for 937 examples where frames were successfully
predicted out of 961 attempts (24 were discarded
due to output issues).

We then categorized these examples based on
our fnp pps factor: those with more than 2 FEs
are considered easier, while those with 2 or fewer
are considered more challenging. Typically, exam-
ples with more than 2 FEs score above average,
while those with 2 or fewer score below. How-
ever, on average, this difference is smaller com-
pared to fentropy. Across all models, the average
difference in performance between these subsets
is -3.84 (+ 2.44) F1 points. This may be due to
NaturalQA questions being simpler and containing
fewer Frame Elements compared to our original
corpus, increasing the proportion of challenging
examples from 60% to 78%.

6 Related Work

Our work situates itself within the domain of model
evaluation. Our approach contrasts with broad-
scale evaluations that span multiple tasks, corpora,
and languages (Laskar et al., 2023; Liang et al.,
2023; Srivastava et al., 2023; Brown et al., 2020;
Wang et al., 2019). It relates to focused studies
addressing specific linguistic phenomena such as
negations (Truong et al., 2022, 2023; Zhang et al.,
2023; Ravichander et al., 2022), ambiguity in infer-
ence tasks (Liu et al., 2023), and open information
extraction (Lechelle et al., 2019), that utilizes small,
meticulously curated datasets to precisely evaluate
the capabilities of models for the task. Our study

3 Appendix A.5

echoes the latter, exploring focused linguistic eval-
uations.

This study aligns with other efforts evaluat-
ing ’closed’ LLMs like ChatGPT, accessible only
through APIs, on benchmarks such as knowledge-
based question answering (KBQA) (Tan et al.,
2023). These studies highlight ChatGPT’s ro-
bust performance across diverse NLP tasks (Kocon
et al., 2023; Laskar et al., 2023), yet also note its
potential to lag behind task-specific models.

Overall, this study pushes the idea that we need
a more precise evaluation framework and can be
related to other studies such as (Ribeiro et al.,
2020) that identify critical failures in both com-
mercial and state-of-the-art models by proposing
a model and task-agnostic testing methodology or
(Gehrmann et al., 2023) insisting on the fact that to
compare models we need more "careful annotation
process [...] to characterize their output quality
and distinguish between them".

7 Conclusions

This paper presents a methodology for identify-
ing intrinsic complexity factors in NLP tasks. Our
results reveal that some examples consistently pro-
duce lower scores due to their inherent linguistic
complexity. Through an empirical study on a QA
task, we identified and validated several factors of
semantic complexity, with results directly linked
to human evaluations of model predictions. We
have also validated these factors on another dataset
in another language, confirming their robustness.
In addition, we have developed corpora of increas-
ing semantic complexity, suggesting that taking
these complexities into account requires more than
simply improving the model’s parameters.

8 Limitations

The main limitation of our study is to have con-
sidered a single task, a limited set of languages
(French and English) and corpora (CALOR and
NaturalQA). Our focus in this article revolves
around the viability of conducting focused, cost-
effective studies, requiring less than 100 GPU
hours (inclusive of hyperparameter search) and ap-
proximately $10 for the GPT-3.5 API. These stud-
ies prioritize linguistic analysis to draw conclusions
that extend beyond the specific corpus, task, and
language. We believe that such complementary
studies have a place in academic Natural Language
Processing conferences.
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9 Appendix

A Technical information about the
training process and the data

FQuAD dataset download link : https://fquad.
illuin.tech/

A.1 Training of CamemBert

CamemBert was finetuned using the default pa-
rameters of the HuggingFace trainer for 4 epochs,
with model check-pointing keeping the best overall
checkpoint.

Training hardware :

GPU : 1 x Tesla V100-SXM2-32GB

A.2 Training of TS5, MTS and FLAN-T5S

The training was performed using a modified
version of this training script script from Hug-
gingFace : https://github.com/huggingface/
transformers/blob/main/examples/pytorch/
question-answering/trainer_seqg2seq_qa.
Py

Training parameters are bellow, all
other parameters are the default one of
the HuggingFace trainer (transformers
installation from source at commit
686c68f64c9d0181bd54d4d2e2446543c3ecalfa).

{
"max_seq_length": 512,
"adafactor”: true,

"learning_rate" : 3e-05,
"num_train_epochs” : 2,
"evaluation_strategy”: "steps”,
"metric_for_best_model”: "f1",
"load_best_model_at_end": true,

"seed": 260,
"max_answer_length"”: 40

Data format :

"question: {question}
contexte : {context}”

Training hardware :

GPU : 1 x Tesla V100-SXM2-32GB
Training time :

* T5 ~ 2h15mn

* MT5 =~ 2h30mn

* FLAN-TS5 ~ 2h30mn

In total, a few run of tests (= 12) for the prompt,
optimizer and learning rate were done with similar
running times.

The inference time vary a bit between model
and is ~ 30mn.

A.3 Adaptation of llama2-7b

The LoRA adaptation was performed using https:
//github.com/huggingface/peft library, with
the config given bellow.

LoraConfig(
r=32,
lora_alpha=64,
target_modules=["q_proj"”, "v_proj"l,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",

The modified training argument are given bellow,
the rest are default.

transformers.TrainingArguments(
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
num_train_epochs=1,
learning_rate=2e-4,
fp16=True,
save_total_limit=3,
logging_steps=1,
max_steps=80,
optim="paged_adamw_32bit",
lr_scheduler_type="cosine",
warmup_ratio=0.05,

)

Prompt format : The prompt was constructed
with the same three examples randomly selected
from FQuAD for both training and inference.

18387


https://doi.org/10.18653/v1/2023.findings-acl.472
https://doi.org/10.18653/v1/2023.findings-acl.472
https://fquad.illuin.tech/
https://fquad.illuin.tech/
https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/trainer_seq2seq_qa.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/trainer_seq2seq_qa.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/trainer_seq2seq_qa.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/trainer_seq2seq_qa.py
https://github.com/huggingface/peft
https://github.com/huggingface/peft

Below is a paragraph of text, paired with a
question. Extract the sequence of words in
the article that answers the following
question, or answer NULL if there are no
answers.

### Paragraph:

Aprés le tournage, Hal B. Wallis [...]
### Question:

Qui ne peut pas se libérer pour la scéne
envisagée par Wallis ?

### Answer:

"Claude Rains”

### Paragraph:
Riquet étudie de facon approfondie [...]
### Question:

Quel est 1'un des points sur lequel le projet

de Riquet reste imprécis ?
Answer:
"tracé du canal”

### Paragraph:

Dans cet intervalle de 31 jours, [...]
### Question:

Combien sont-ils & étre frappés ?
Answer:

"quelques-uns"

Training hardware :

GPU : 1 x GPU Nvidia A100-80GB
Training and inference time :
* training ~ 70sec
* inference ~ 17mn
A.4 rouge-L results and significativity for the

complexity factors

A.5 Extraction of Frames and Frame Element
on NaturalQA

Prompt for Frame extraction :

From a list of (frame, lexical unit) from
FrameNet, predict which is the most likely
for the given question. Only answer with
the correct (frame, lexical unit) pair.
List : {list}

Question : {question}

Complexity factor
models/factors | bias | coref | trigger | LUinq | dist ‘ nb FEs ‘ entropy
size of Ef (%) | 42% | 6% | 31% | 45% | 12% | 59% | 46%

CamemBERT | -1 -4 -1 -2 -7 -3 -1
T5 -1 -9 -2 -1 -7 -5 -2
FLAN -2 -4 -3 -2 -4 -5 -3
MT5 0 -13 -1 -1 -1 -4 -2
llama-2 0 -3 -1 3 -3 -7 -2
GPT-3.5 0 4 -1 0 -4 -4 -3
mixtral-8x7b 0 1 -2 -1 -5 -6 0

Table 6: Complexity factor validation results with the
Rouge-L score. Each box contains the ¢ value of each
factor for each model. Bold indicate statistically signifi-
cant differences. The size line displays the proportions
of the E'y partitions relative to the total size of the cor-
pus.

Prompt for Frame Element extraction :

From a FrameNet (frame , lu/trigger) pair
and a context extract the corresponding
Frame Elements from the given question.
The LU can't be a FE. Output a json.
Pair : {pair}

Question : {question}

A.6 Complexity factor examples

Number of Arguments in the Frame (f5) :
Easy (more FEs in context, here > 2) :
Comment est mort Kleitarchos en 341 ?

(How did Kleitarchos die in 3417)

Quand les congres de Zimmerwald et de Kiental
ont-ils commencé le processus de renversement de
I’ ordre établi ?

(When did the Zimmerwald and Kiental congresses
begin the process of overthrowing the established
order?)

Lors de la bataille d’ Actium, Caius Sosius a dirigé
quelle partie de la flotte ?

(At the battle of Actium, which part of the fleet did
Caius Sosius command?)

En quelle année Silvestras Zukauskas a-t-il été
étudiant a I’école des cadets d’infanterie de Wilna ?
(In what year was Silvestras Zukauskas a student
at the Wilna Infantry Cadet School?)

Hard (less FEs in context, here 2) :
Qu’est-ce qui est caché ?
(What’s hidden?)
Quand les Russes attaquent-ils ?
(When do the Russians attack?)
Quel est le sujet ?
(What’s the subject?)
Who shoots the ammunition?
(Who shoots the ammunition?)
Qui a découvert de nouvelles techniques de
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création ?
(Who’s discovered new creative techniques?)

A.7 Annotator compensation

The human annotators are volunteer PhD students
from the same laboratory (from different teams to
the authors). They were paid 45€ via gift vouchers,
as our country’s legislation does not allow direct
pay-per-task remuneration.

A.8 HumanScore results per frame for all
models

A.9 Result on all model of naturalQA for f5
and f6
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Average Hscore by Frame for Camembert_baseline
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Average Hscore by Frame for T5-large
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HumanScore score
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Average Hscore by Frame for mixtral-8x7b
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Figure 6: f5 complexity factor on all the examples of natural QA
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Figure 7: f6 complexity factor on all the examples of naturalQA
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