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Abstract

Amidst rising concerns about the internet be-
ing proliferated with content generated from
language models (LMs), watermarking is seen
as a principled way to certify whether text was
generated from a model. Many recent water-
marking techniques slightly modify the out-
put probabilities of LMs to embed a signal in
the generated output that can later be detected.
Since early proposals for text watermarking,
questions about their robustness to paraphras-
ing have been prominently discussed. Lately,
some techniques are deliberately designed and
claimed to be robust to paraphrasing. However,
such watermarking schemes do not adequately
account for the ease with which they can be
reverse-engineered. We show that with access
to only a limited number of generations from a
black-box watermarked model, we can drasti-
cally increase the effectiveness of paraphrasing
attacks to evade watermark detection, thereby
rendering the watermark ineffective.1

1 Introduction

Given the remarkable fluency and relevance with
which language models (LMs) respond to varied
queries, it is challenging for humans to distinguish
language model outputs from human-written text.
Past studies note that human performance in mak-
ing such a distinction is close to that of random
chance (Gehrmann et al., 2019; Brown et al., 2020).
In response, watermarking language models is seen
to be a principled way to certify whether a piece of
text was generated by a model.

A prominent watermarking approach works by
implanting a signal during decoding, wherein
a certain set of tokens (aka a green list) is
boosted (Kirchenbauer et al., 2023a). This sig-
nal, albeit imperceptible to an unsuspecting reader,

1Data and code to replicate our evaluation is available at:
https://github.com/codeboy5/revisiting-
watermark-robustness

can be verified by running a statistical test. For
watermarking to be effective, the implanted signal
should be easy to detect and hard to remove. Unsur-
prisingly, there has been considerable discussion
about the robustness of watermarking approaches
against paraphrasing attacks (Krishna et al., 2023;
Kirchenbauer et al., 2023b).

There exist different ways of choosing tokens in
the green list and the extent to which they should
be boosted. These approaches offer varying levels
of robustness against paraphrasing. The original
paper (Kirchenbauer et al., 2023a) recommends
pseudo-randomly selecting a different set of green
tokens at every timestep based on a hash of the last
k tokens. The authors note that higher values of k
would render the watermarking scheme ineffective,
as any changes to a token would disrupt the green
lists for the next k timesteps, and therefore suggest
using the last one or two tokens (k = 1 or 2).
A recent study (Zhao et al., 2023) argues that “a
consistent green list is the most robust choice,” as
any modifications to the input text have no effect
whatsoever on the (fixed) green list. Relatedly, Liu
et al. (2024) propose a “semantic-invariant robust”
watermarking (SIR) which is designed to produce
similar green lists for semantically-similar contexts
and is touted to be robust to paraphrasing.

In this ongoing debate, our work highlights just
how easy it is to decipher the green list for both
the semantic-invariant watermarking scheme (Liu
et al., 2024) and watermarking with consistent
green list (Zhao et al., 2023). While a recent con-
temporaneous study (Jovanović et al., 2024) corrob-
orates that watermarking with a fixed green list can
be easily reverse-engineered, we show that similar
results also hold for semantic-invariant watermark-
ing scheme from Liu et al. (2024). For both these
watermarking schemes, with just 200K tokens of
watermarked output, we can predict green lists with
over 0.8 F1 score. This knowledge of green lists
can be exploited while paraphrasing to launch at-
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tacks that cause the detection rates to plummet
below 10%, rendering the watermark ineffective.

Overall, our findings suggest that one should
consider the possibility of reverse-engineering the
watermarking scheme, when discussing its robust-
ness to paraphrasing attacks. Our work also raises
potential concerns about the generalization of wa-
termarking algorithms that use machine learning
models to generate the watermarking signal.

2 Background

A prominent approach to watermarking is to com-
pute watermarking logits that are added to log-
its generated by a language model at each gen-
eration step. Formally, for a language modelM
with vocabulary V , and a prefix comprising tokens
w1,w2, . . . ,wn, the scheme involves first comput-
ing the logitsM(w1 . . . ,wn) = (l1, . . . , l|V |) of
the language model that would ordinarily be used
to predict the subsequent token. As per (Kirchen-
bauer et al., 2023a), the last k tokens, wn−k+1 to
wn, are then fed to a psuedo-random function F
to partition V into a green list G and a red list R
such that |G|+ |R| = |V |. Finally, the logits cor-
responding to the tokens in the green list, G, are
boosted by δ (δ > 0). The watermark can then
be detected through a one-proportion z-test on the
fraction of green tokens in the generated text.

A recent study (Zhao et al., 2023) makes a case
for using a fixed green list (where the partitioning
function, F , does not depend on the context) to
confer robustness to paraphrasing attacks. The
underlying intuition is that any changes in the
text will not disrupt the constant green list. To
counter paraphrasing attacks, another recent pro-
posal (Liu et al., 2024) is to train a model, W ,
to output watermarking logits using the context:
W(w1 . . . ,wn) = (δ1, . . . , δ|V |). This model,W ,
is designed such that similar contexts yield simi-
lar watermarking logits. This property is supposed
to make models robust to paraphrasing. Further,
diverse contexts are supposed to yield different
watermarking logits, thus making it hard to reverse-
engineer the green list—this is not true in practice,
as we show later in our experiments (§4.2).

Paraphrasing Attacks. Krishna et al. (2023)
introduce a controllable paraphraser and launch
paraphrasing attacks on various text detectors.
Their findings indicate that although paraphras-
ing reduces the effectiveness of most AI-generated
text detectors, watermarking is the most resilient

method. Another study (Kirchenbauer et al.,
2023b) investigates the reliability of watermarks
across different paraphrasing models and suggests
that the reliability of watermarking should be dis-
cussed in terms of the length of the available in-
put. The study concludes that watermarking is
extremely reliable for longer texts.

3 Methods

We study the robustness of watermarking ap-
proaches against paraphrasing attacks. Unlike prior
attacks (Krishna et al., 2023; Kirchenbauer et al.,
2023b), we first attempt to decipher the tokens in
the green list and then incorporate that knowledge
in existing paraphrasing attacks.

3.1 Estimating Green Lists

We assume access to only generations from the wa-
termarked model, with no access to model weights
or its tokenizer. To decipher the green list, we use
a simple counting-based algorithm similar to the
ones used in prior work (Zhao et al., 2023; Sada-
sivan et al., 2024). Specifically, we compare the
relative frequencies of tokens in a corpus generated
by the watermarked model against their relative
frequencies in a corpus of human-written text. To-
kens that exhibit a higher relative frequency in the
watermarked corpus compared to the reference cor-
pus are classified as green tokens. We present the
detailed algorithm in Appendix A.

This approach is similar to the one proposed in
a contemporaneous work (Jovanović et al., 2024),
where for each token, they compute two conditional
probabilities: probability of a token given its pre-
ceding context in a watermarked corpus and the
same probability in a base corpus. They investigate
two scenarios for obtaining the base corpus: using
a non-watermarked version of the same language
model or using a different language model as a
proxy for the base distribution. In contrast, our
approach does not require access to the unwater-
marked language model for the base distribution;
instead, we derive our base distribution from the
OpenWebText corpus.2 Furthermore, our approach
assigns binary scores of 0 and 1 for tokens in the
red and green lists, respectively. Please note that
the green list once estimated using the algorithm

2To demonstrate the robustness of our algorithm across
different base distributions, we present additional results in
the appendix, where we estimate the green list using the Real-
NewsLike subset of the C4 dataset (Raffel et al., 2020).
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can be used to launch paraphrasing attacks on a
variety of downstream datasets (details in §4.1).

A note about metrics: Prior work relies on F1
score to evaluate the correctness of predicting the
green list. However, this metric assumes equal
importance for all tokens and fails to account for
the fact that natural language follows a Zipf’s law,
wherein the frequency of a word is inversely pro-
portional to its rank in the list (sorted in decreasing
order of word frequencies). While it may seem like
a minor technicality, we show that the traditional F1
score overestimates the security of watermarking.

To address this limitation, we suggest using a
generation-based F1 score that computes the F1
score for classifying tokens into green or red list
for each token in text generated from watermarked
models. This small change incorporates the relative
frequency of each token.

3.2 Paraphrasing with Green Lists

One can imagine that incorporating prior knowl-
edge about green lists should be able to improve
the efficiency of off-the-shelf paraphrasers to re-
move the watermark signal and evade detection.
Since many paraphrasing models are also auto-
regressive generative models (Krishna et al., 2023;
Lewis et al., 2020; Lin et al., 2021; Witteveen and
Andrews, 2019), one can introduce an inverse wa-
termarking signal into the generated text. Specif-
ically, at every generation timestep, we subtract a
small positive δ from the logits corresponding to
tokens predicted to be in the green list.

4 Results & Discussion

We first share details about our setup and then dis-
cuss the results of paraphrasing attacks.

4.1 Experimental Setup

We primarily consider two watermarking schemes
that are designed and thought to be robust against
paraphrasing, namely, the semantic-invariant ro-
bust (SIR) watermarking (Liu et al., 2024) and
watermarking with a fixed green list, which is re-
ferred as UNIGRAM WATERMARKING in a recent study
that analyzes the robustness of this approach (Zhao
et al., 2023). We use the LLaMA-7B model (Tou-
vron et al., 2023) and apply the two watermark
algorithms with hyperparameters of γ = 0.5 (frac-
tion of green tokens) and δ = 2.0 (value used to
boost the logits for green tokens) for all results pre-
sented in the main paper. Additional results using

Figure 1: We show that with a limited amount of gener-
ated tokens, we can achieve a high F1 score for predict-
ing the green lists of two watermarking schemes.

the Pythia model and other watermark hyperparam-
eter choices are presented in Appendix B.

To evaluate the watermarking schemes and
their robustness to paraphrasing, we use 50-token
prompts from Wikipedia articles (Foundation,
2022) to generate 200-token completions. (Note
that this dataset is different from the one used to
estimate the green list.) We consider the subse-
quent 200 tokens from the Wikipedia articles as
human-written text for comparison. Additionally,
we present results on prompts from arXiv papers
(Cohan et al., 2018) and Booksum (Kryscinski
et al., 2022) dataset in the Appendix (§B.3) to
demonstrate the effectiveness of our attack on gen-
erations using prompts from diverse domains.

The results for each attack setting are aggregated
across 500 generations from the LLM. We use the
DIPPER paraphrasing model (Krishna et al., 2023)
and incorporate the knowledge of (estimated) green
list tokens (as described in §3.2). To evaluate the
detection accuracy of watermarking algorithms, we
follow prior work and measure the True Positive
Rate (TPR) at a low False Positive Rate (FPR) of
1% and 10%. The False Positive Rate is set to low
values to avoid falsely accusing someone of pla-
giarism. We use the P-SP metric (Wieting et al.,
2022) to assess the semantic similarity of para-
phrases, past work considers the semantics of the
paraphrase to be preserved if the P-SP value ex-
ceeds 0.76 (Krishna et al., 2023). Additionally, we
assess the quality of produced text by calculating
the perplexity (PPL) using LLaMA-13B, which we
consider as an oracle model.
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(a) in-domain samples (b) out-of-domain samples

Figure 2: For SIR watermarking, we depict the cosine similarity of the context embeddings (x-axis) vs the cosine
similarity of the watermarking logits (y-axis). For in-domain samples, similar contexts produce similar watermarking
logits and dissimilar ones produce different logits, however, this is not the case for out-of-domain samples.

UNIGRAM-WATERMARK SIR

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 99.3±0.7 100.0 1.00 14.5±1.0 93.3±0.0 98.8±0.1 1.00 12.8±0.8

DIPPER (L20) 88.7±2.4 98.0±0.5 0.95 11.3±0.7 45.5±0.9 82.7±4.1 0.94 10.1±0.6

DIPPER (L60) 62.8±2.2 92.1±0.7 0.90 10.5±0.7 24.0±0.5 62.3±2.4 0.90 9.6±0.4

Ours (L20) 3.2±0.8 ↓ 13.4±2.5 ↓ 0.87 11.6±1.0 7.3±2.1 ↓ 20.3±5.5 ↓ 0.88 10.6±0.5

Ours (L60) 0.2±0.2 ↓ 1.9±0.7 ↓ 0.78 11.1±1.1 3.8±0.8 ↓ 10.2±3.1 ↓ 0.81 10.2±0.8

Table 1: We compare the detection rates of UNIGRAM-WATERMARK and SIR against paraphrasing attacks. We use two
settings of the paraphrasing model, DIPPER, with lexical diversities (LD) of 20 and 60; higher LD implies stronger
attack. Our attack involves modifying DIPPER with the estimated knowledge of the green list (details in §3.2). We
report the median P-SP & PPL values.

4.2 Results

We show that with just as few as 200K tokens, we
can accurately predict whether a token belongs
to green list (Figure 1). It may be unsurprising
that one can decipher the fixed green list used in
the UNIGRAM WATERMARKING, as also documented
by Jovanović et al. (2024). However, is notewor-
thy and surprising that even semantic-invariant wa-
termarking (SIR) scheme, which dynamically pro-
duces a green list (based on the embeddings of the
context) is just as vulnerable.

While the SIR approach aspires to produce sim-
ilar watermarking logits for similar contexts and
dissimilar ones for dissimilar contexts, we discover
that this is not the case in practice. In Figure 2, we
plot the cosine similarity of the context embeddings
vs the cosine similarity of the watermarking log-
its. Interestingly, we notice that the aspired notion
of producing similar watermarking logits for only
similar contexts holds true only for in-domain sam-
ples and breaks for out-of-domain (OOD) samples.

For OOD samples, the produced watermarking log-
its are highly similar regardless of the similarity
in contexts (Figure 2b), suggesting that the green
lists in SIR are not as dynamic as previously be-
lieved and are susceptible to be deciphered. Our
findings suggest that other (future) watermarking
algorithms that use machine learning to generate
the watermarking logits might suffer from similar
generalization concerns.

From Figure 1, we can also observe that the
vanilla F1 scores present an overly optimistic pic-
ture about the security of watermarking approaches.
As discussed in §3.2, the vanilla F1 metric weighs
in all tokens uniformly. This approach fails to
account for the long tail of rare tokens—whose
presence in green or red list is hard to predict—
which (by definition) occur infrequently in practi-
cal application. However, tokens that are actually
generated can be predicted far more accurately, as
can be clearly seen through about a 50% higher
generation-based F1 score in Figure 1.

Finally, we present results showing how the
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two watermarking schemes hold up against para-
phrasing attacks (Table 1). We notice that the de-
fault DIPPER attack reduces the performance of
both watermarking schemes. For FPR of 1%, it
brings down the TPR to 88% (from 99.3%) for
UNIGRAM-WATERMARK and to 45.5% (from 93.3%)
for SIR. When we empower the attack with the
knowledge of (estimated) green lists, the TPR val-
ues plummet to below 10%, rendering the water-
marking schemes unusable. Across all setups, we
confirm that the quality of LMs (measured through
PPL) and the semantic meaning of paraphrases
(evaluated via P-SP scores) is largely preserved.
Interestingly, our attack is slightly less effective for
SIR than UNIGRAM-WATERMARK as our estimates for
green lists are less accurate for SIR.

A Note about Adaptive Text Watermark. Just
recently, an approach called Adaptive Text Water-
mark (ATW) was proposed, aiming to generate
high-quality text while maintaining robustness, se-
curity, and detectability (Liu and Bu, 2024). Con-
ceptually similar to SIR, Adaptive Text Watermark
generates a logit scaling vector (v) based on the
semantic embeddings of previously generated text.
The watermark is added to the LLM logits by pro-
portionally scaling the original logits by a factor
of (1 + δ.v), where δ > 0 controls the watermark
strength. We find that while our attack strategy
can significantly reduce the detection rate of ATW
by about 10% (Table 5), it is considerably more
robust than the other two approaches. Further anal-
ysis reveals that unlike SIR, the semantic mapping
module of ATW (that converts embeddings of pre-
fixes to logits) generalizes better for out-of-domain
distribituions. This result suggests that semantics-
based watermarking may be a viable alternate to de-
fend against paraphrasing attacks, however, we sug-
gest practitioners to confirm whether such learning-
based approaches generalize to OOD domains.

5 Conclusion

We analyze watermarking schemes believed to be
specifically robust to paraphrasing and show that
it is easy to reverse engineer these algorithms and
launch severe paraphrasing attacks. The effective-
ness of our attacks underscores the need to account
for the ease of reverse-engineering watermarking
schemes, when discussing its robustness to para-
phrasing attacks. Additionally, we highlight that
existing metrics concerning the security of water-
marking are overly optimistic.

6 Limitations

Our work focuses specifically on watermarking
schemes proposed to be robust against paraphrasing
attacks. Future work can focus on other schemes,
such as (Kuditipudi et al., 2024; Aaronson, 2023),
which implant the watermark signal during sam-
pling and claim to preserve the original distribu-
tions up to certain generation budgets. Another
limitation of our work is that we do not address
how effectively (ill-intentioned) humans can re-
move the watermark signal once they are aware of
the estimated green lists. Additionally, paraphras-
ing attacks require significant compute as it uses a
large language model for generating paraphrases.
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A Additional Experiment Details

A.1 Algorithm for estimating the green list

To estimate the green list, we compare the distribu-
tion of tokens between watermarked text and text
from OpenWebText (Gokaslan et al., 2019) dataset
(to simulate the distribution of non-watermarked
text). We query the LLaMA-7B watermark model
with 50 token prompts from (Gokaslan et al., 2019)
to generate 256 token completions. We calculate
the relative token frequencies for the watermarked
text and text from the OpenWebText dataset. We
use a minor modification of the algorithm used in
(Zhao et al., 2023), with the difference being using
relative frequencies instead of absolute and using a
small positive threshold τ . We use a constant τ of
1× 10−6 across all our experiments.

Dwtm and Dhuman refer to the distribution of to-
kens in watermarked and non-watermarked text.

Algorithm 1 Estimating the Green List tokens

1: for every token v in the vocabulary V do
2: ∆(v)← Dwtm(v) − Dhuman(v)
3: if ∆(v) ≥ τ then
4: v is in the Green List.
5: else
6: v is in the Red List.
7: end if
8: end for

A.2 Estimating the green list using a different
base distribution

To evaluate the robustness of Algorithm 1, we
present additional results on estimating the green
list using the RealNewsLike subset of the c4 dataset
(Raffel et al., 2020) as the base distribution (Dhuman
in Algorithm 1). The results of these experiments,
summarized in Table 2, span evaluations on two
distinct base models. Our findings demonstrate
that the algorithm’s performance remains consis-
tent across different choices of base distribution,
thus confirming its robustness.

B Additional Results

We present additional results for other choices of
γ (0.1, 0.25) in §B.1 and present results on Pythia
1.4B and Mistral 7B in §B.2. These additional
analyses serve to underscore the generalizability of
our findings.

Figure 3: Comparision between the traditional F1 score
and generated-based F1 score. We can observe that
across all choices of γ, the traditional F1 metric can
understate the security robustness.

B.1 Results for other choices of γ

We compare the F1 and generation-based F1 score
across other choices of γ (Figure 3). We consis-
tently observe a gap between the two metrics. We
also note that we can reverse engineer the water-
mark across all choices of γ. Additionally, we
present the impact of paraphrasing on the water-
marking scheme in Table 6. Our results indicate
that our attack remains highly effective regardless
of the value of γ.

B.2 Results on Additional Models

We present the performance of watermarking
schemes against paraphrasing attacks, using Pythia-
1.4b (Biderman et al., 2023) and Mistral 7B (Jiang
et al., 2023) as the base language models in Table 7
and Table 8. For all experiments, we set the water-
mark hyperparameters to γ = 0.5 and δ = 2.0. Our
results demonstrate that the proposed paraphrasing
attack significantly degrades the performance of
both watermarking schemes evaluated. These re-
sults indicate that our findings are applicable across
different model classes and sizes.

B.3 Efficacy of our paraphrasing attack on
prompts from diverse datasets

To demonstrate the effectiveness of our proposed
paraphrasing attack on generations from diverse
domains, we evaluate our attack on prompts from
arXiv papers (Cohan et al., 2018) and Booksum
(Kryscinski et al., 2022). We follow a similar setup
as explained in §4.1. These results also serve as
evidence that the green list estimated once using a
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LLaMA 7B Mistral 7B

Precision Recall FPR F1 Precision Recall FPR F1

UW 0.89 0.46 0.05 0.61 0.91 0.51 0.05 0.65

UW
generation-based

0.96 0.88 0.08 0.92 0.98 0.92 0.05 0.95

SIR
generation-based

0.82 0.77 0.27 0.79 0.88 0.72 0.22 0.79

Table 2: We evaluate the performance of our watermark reverse engineering approach using a corpus of 1 million
tokens, with the RealNewsLike subset of the C4 dataset serving as the base distribution. Our assessment metrics
include precision, recall, false positive rate (FPR), and F1 score. These results indicate that our proposed paraphrasing
attack is robust to the choice of the base distribution we use to reverse engineer the watermark scheme.

Precision Recall FPR F1

UW 0.89 0.48 0.05 0.62

UW
generation-based

0.96 0.92 0.09 0.93

SIR
generation-based

0.88 0.80 0.24 0.83

Table 3: We report the precision, recall, FPR and F1 for
reverse engineering the watermarking using 1 million
tokens. This table complements the results reported in
Figure 1 and provides additional insight that the differ-
ence in F1 score is primarily driven by the difference
in recall. This aligns with our intuition that we fail to
correctly classify tokens that are less frequent.

particular dataset (OpenWebText (Gokaslan et al.,
2019) in this case) can be used to launch paraphras-
ing attacks on a variety of downstream datasets.
The results are summarized in Table 9 and Table 10
for arXiv papers and Booksum dataset respectively.

C Paraphrasing attacks against EWD

Entropy-based Text Watermarking Detection
(EWD) (Lu et al., 2024) introduces a novel ap-
proach to watermark detection by incorporating
token entropy. This method assigns higher impor-
tance to high-entropy tokens during the detection
process, thereby enhancing detection performance
in low-entropy contexts. We conducted an em-
pirical investigation into the robustness of EWD
against paraphrasing attacks. The results of our
analysis are presented in Table 4, providing insights
into the method’s resilience to paraphrasing attacks.
From the results we can observe that incorporating
the estimated green list can significantly improve

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 100.0 100.0 1.0 15.3
DIPPER (L20) 99.2 99.8 0.95 11.8
DIPPER (L60) 93.2 98.0 0.90 11.0

Ours (L20) 9.0 ↓ 19.2 ↓ 0.88 12.3
Ours (L60) 0.2 ↓ 0.6 ↓ 0.81 11.9

Table 4: Paraphrasing attacks against EWD algorithm.

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 96.5 99.7 1.0 11.6
DIPPER (L20) 67.2 91.7 0.94 7.9
DIPPER (L60) 43.5 82.0 0.90 7.8

Ours (L20) 57.2 ↓ 89.5 ↓ 0.92 8.4
Ours (L60) 33.7 ↓ 76.0 ↓ 0.88 8.4

Table 5: Paraphrasing attacks against Adaptive Text
Watermark.

the effectiveness of the paraphrasing attack.
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UNIGRAM-WATERMARK with γ = 0.1 UNIGRAM-WATERMARK with γ = 0.25

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 97.0 99.8 1.00 13.03 99.0 100.0 1.0 15.27
DIPPER-L20 76.6 94.8 0.94 10.33 87.2 98.6 0.95 12.33
DIPPER-L60 49.2 83.6 0.90 9.85 65.2 89.8 0.90 11.05

Ours-L20 14.0 45.6 0.90 10.68 10.6 31.6 0.87 12.2
Ours-L60 2.8 15.8 0.85 10.20 1.6 7.6 0.81 11.4

Table 6: Performance of UNIGRAM-WATERMARK (Zhao et al., 2023) across different fractions of green list γ. We can
observe that our attack is highly effective irrespective of the value of γ.

UNIGRAM-WATERMARK SIR

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 99.4 100.0 1.0 18.7 100.0 100.0 1.0 21.1
DIPPER-L20 96.2 99.0 94.6 13.7 87.5 98.4 0.95 15.3
DIPPER-L60 81.8 97.0 90.7 12.1 69.3 93.3 0.91 13.2

Ours -L20 4.2 13.6 0.88 14.4 11.1 43.1 0.90 15.6
Ours -L60 1.6 2.8 0.79 12.9 4.2 14.2 0.85 13.6

Table 7: Performance of UNIGRAM-WATERMARK and SIR against paraphrasing attacks. Pythia-1.4B is used as the base
language model for all the experiments.

UNIGRAM-WATERMARK SIR

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 98.4 99.8 1.0 15.8 83.3 93.5 1.0 11.9
DIPPER-L20 87.4 98.0 0.95 11.8 48.0 72.2 0.95 9.6
DIPPER-L60 64.6 91.4 0.91 10.7 25.5 52.8 0.92 9.2

Ours -L20 5.4 30.9 0.89 12.5 1.3 6.6 0.9 10.4
Ours -L60 0.4 4.0 0.82 11.7 0.2 1.1 0.82 10.4

Table 8: Performance of UNIGRAM-WATERMARK and SIR against paraphrasing attacks. Mistral 7B is used as the base
language model for all the experiments.

UNIGRAM-WATERMARK SIR

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 100 100 1 27.9 98.6 100.0 1.0 29.6
DIPPER (L20) 93.4 99.2 0.93 19.87 65.3 87.7 0.94 22.0
DIPPER (L60) 57.2 88.8 0.88 16.3 23.1 59.3 0.88 16.80

Ours (L20) 2.4 ↓ 11.2 ↓ 0.85 19.1 2.6 ↓ 11.7 ↓ 0.86 17.87

Table 9: Result demonstraing the efficacy of paraphrasing attacks on prompts from the arXiv papers dataset.
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UNIGRAM-WATERMARK SIR

Attack
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL
TPR @
1% FPR

TPR @
10% FPR

P-SP PPL

No Attack 99.8 100.0 1.0 28.1 99.3 99.7 1.0 25.0
DIPPER (L20) 99.6 100.0 0.94 24.4 91.7 74 0.94 23.8
DIPPER (L60) 92.0 98.4 0.87 22.5 39.1 68.2 0.88 20.6

Ours (L20) 9.8 ↓ 26.4 ↓ 0.83 24.61 16.8 ↓ 32.4 ↓ 0.87 22.9

Table 10: Result demonstraing the efficacy of paraphrasing attacks on prompts from the Booksum dataset.
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