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Abstract

Large language models (LLMs) and their fine-
tuning techniques have demonstrated superior
performance in various language understanding
and generation tasks. This paper explores fine-
tuning LLMs for predicting stock returns with
financial newsflow. Return prediction is fun-
damental for quantitative investing tasks like
portfolio construction and optimization. We
formulate the model to include a text represen-
tation and forecasting modules. We propose
to compare the encoder-only and decoder-only
LLMs, considering they generate text represen-
tations in distinct ways. The impact of these
different representations on return forecasting
remains an open question. Meanwhile, we com-
pare two simple methods of integrating LLMs’
token-level representations into the forecasting
module. The experiments on real investment
universes reveal that: (1) aggregated representa-
tions from LLMs’ token-level embeddings gen-
erally produce return predictions that enhance
the performance of long-only and long-short
portfolios; (2) in the relatively large investment
universe, the decoder LLMs-based prediction
model leads to stronger portfolios, whereas in
the small universes, there are no consistent win-
ners; (3) return predictions derived from LLMs’
text representations are a strong signal for port-
folio construction, outperforming conventional
sentiment scores. These findings suggest the
potential of LLM fine-tuning for enhancing re-
turn prediction-based portfolio construction.

1 Introduction

Quantitative investing relies on extracting quantita-
tive features or signals from various data sources
including market prices, economic indicators, fi-
nancial text, etc., to build and optimize investment
portfolios (Fama and French, 1996; Ang, 2014).
In recent years, the use of text data for quantita-
tive investing has grown significantly, thanks to
the advancement of natural language processing

(NLP) techniques (Xu and Cohen, 2018; Sawh-
ney et al., 2020; Qin and Yang, 2019). In partic-
ular, large language models (LLMs) have demon-
strated superior performance on various language
understanding and generation tasks (He et al., 2021;
BehnamGhader et al., 2024; Jiang et al., 2023; Tou-
vron et al., 2023; Dubey et al., 2024), and the fine-
tuning technique allows for adapting the pre-trained
LLMs to fit investing-related applications (Hu et al.,
2021; Ding et al., 2023).

This paper! is focused on return prediction with
financial news for stock portfolio construction. Re-
turn forecasting is useful for picking stocks with
profit potentials to include in portfolios. Financial
news reports on events and announcements related
to companies, industries, the economy, etc., and
shows notable predictive power for stock future
performance in previous studies (Liu et al., 2018;
Hu et al., 2018; Guo et al., 2020).

The conventional way of applying financial
news data to stock picking involves a multi-step
extraction-and-validation process as illustrated in
Fig. 1(a), i.e., formulating the numerical features
(e.g., sentiments, popularity, etc.) with the expecta-
tion that these features have a predictive relation-
ship with stock future performance (e.g., forward
return, volatility, etc.) (Allen et al., 2019; Shapiro
et al., 2022), developing the feature extraction pro-
cess (e.g., train a financial sentiment classification
model), and validating the predictive power of ex-
tracted features by statistical analysis or building
forecasting models. This process might be time-
consuming and require additional data (e.g., la-
beled sentiment data) and continuous refinements.

LLMs generate numerical representations (or
embeddings) of text that capture semantic relations,
and these representations can naturally serve as
features for forecasting tasks. Based on this in-
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Figure 1: Comparison of different workflows of utiliz-
ing financial news for stock picking. (a) Conventional
feature extraction-and-validation process, e.g., finan-
cial sentiments. (b) News-to-return forecasting by fine-
tuning LLMs.

tuition, this paper explores direct news-to-return
prediction through fine-tuning LLMs. Fig. 1 il-
lustrates the difference between the conventional
feature extraction-and-validation process and our
LLM-based news-to-return process. Though some
previous works attempted to use text embedding
for forecasting (Liu et al., 2018; Wang et al., 2019;
Qin and Yang, 2019; Guo et al., 2020), few works
have explored the potential of fine-tuning LLM:s for
stock return forecasting with newsflow. Moreover,
this paper has the contribution as follows:

* We design an LLM-based return prediction
model comprising the text representation and
the forecasting modules.

* We hypothesize that the text representations
from encoder-only and decoder-only LLMs
perform differently due to their distinct meth-
ods of encoding sequences in pre-training and
fine-tuning; thus, we propose to compare the
encoder-only (DeBERTa) and decoder-only
LLMs (Mistral, Llama3) as the representation
module of the prediction model.

* Considering that LLM-generated text repre-
sentations are at the token level, we present
two simple methods to integrate token repre-
sentations into the forecasting module: bottle-
neck and aggregated representations.

* We perform experiments on real financial
news and various investment universes. In
addition to evaluating prediction errors, we as-
sess two types of portfolios built on return pre-
dictions through backtesting in out-of-sample
periods. The experimental comparison be-
tween encoder-only and decoder-only LLMs

and between bottleneck and aggregated repre-
sentations offers insights for identifying suit-
able text representations for different investing
strategies and markets.

2 Related Work

Numerous works have investigated using financial
text data for forecasting tasks. (Weng et al., 2018;
Xu and Cohen, 2018) extracted the sentiment score
from financial newsflow, social media, and tweets
for stock price predicting. (Liu et al., 2018; Hu
et al., 2018) explored learning numeric represen-
tations of financial news by attention mechanisms
for modeling stock movements. (Wang et al., 2019)
studied combining sentiment and text representa-
tions for return prediction.

The advent of LLMs and related techniques pro-
vides a new powerful way of using text data for
forecasting tasks in quantitative investing (Zhao
et al., 2023; Li et al., 2023). Encoder-only mod-
els such as BERT (Devlin et al., 2019) and De-
BERTa (He et al., 2020, 2021), focus on learning
contextual embeddings for input text. Decoder-
only models like GPT-3 (Radford et al., 2018) and
Mistral (Jiang et al., 2023) are trained to generate
text by predicting the next token in a sequence.

LLMs are pre-trained on vast amounts of text
data to learn general language patterns. The prompt
technique is to design specific inputs to guide the
pre-trained LLLM to produce the desired output
without modifying the LLM’s parameters (Rad-
ford et al., 2019; Brown et al., 2020; Kojima
et al., 2022). Fine-tuning techniques adjust the
pre-trained LLM’s parameters to adapt to spe-
cific tasks (Gunel et al., 2020; Wei et al., 2021;
Ding et al., 2023; Chung et al., 2024). In par-
ticular, parameter-efficient fine-tuning techniques
have gained popularity (Hu et al., 2021; Ding et al.,
2023; Liu et al., 2024).

Some recent works use LLMs as feature extrac-
tors to obtain predictive signals from text. (Araci,
2019; Liu et al., 2021) explored the fine-tuning
of pre-trained LLMs to provide more accurate fi-
nancial sentiment analysis. Instead of fine-tuning
LLMs, (Wang et al., 2024) extracted factors from
the financial news and price history by prompts on
generative LLMs. (Kim et al., 2024) used chain-
of-thought prompts (Wei et al., 2022) on gener-
ative LLMs to analyze financial statements. (Li
et al., 2024) fine-tuned LLMs for generating text
responses of prediction and explanations.
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Unlike existing works that extract features from
text using LLMs, this paper focuses on fine-tuning
LLMs to directly model the relationship between
financial news text and numerical return values.
Meanwhile, we evaluate the text representations
from different types of LLMs to study their differ-
ent effectiveness for the return forecasting task.

3 From Financial Newsflow to Stock
Portfolios through LLMs

3.1 Problem Statement

Assume an investment universe consisting of a set
of stocks U = {s}5_,, where s represents the stock
index. In quantitative investing, the stock-picking
process selects a subset of the universe as the in-
vesting portfolio based on quantitative criteria. As
market conditions and various information change,
the stock-picking process is repeatedly performed
to update or rebalance the portfolios at (regular)
time intervals, e.g., weekly, monthly, etc.

Stocks with

Financial Newsflow
stock a LLM-based Return Return Ranking
Forecasting Model Forecasts

E . high

text to vector  forecasting .
representation module ¢
through LLM

Long-only
Portfolio

stock b

stock ¢
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Figure 2: Illustration of the LLM-based return forecast-
ing model for the stock-picking process. Assume an
investment universe of 3 stocks denoted by a, b, c. Each
stock has an associated list of news. Then, given the
return forecasts and ranks, stocks can be selected into
long-only or long-short portfolios.

Let r5¢1¢ € R be the ¢-step forward return of
stock s w.r.t. timestep ¢. The textual content of
news reported at time ¢ and w.r.t. stock s is denoted
by x, ;, a list of text tokens. At time ¢, the news text
available for predicting 7 ;1 ¢ in a look-back time
window W is {x;}ie7; ., Where T < represents
the set of timesteps of available news.

Considering the large sequence length that
LLMs can process nowadays (Zhao et al., 2023;
Li et al., 2023), we concatenate the set of news in
the look-back window into one sequence denoted
by X <t = ®{xs,i}ieT; ,» Where © denotes the
concatenation operation. Next, we formulate the
return forecasting model as a composite structure
of a text representation module and a forecasting
module as defined in Eq. 1:

P it = fog (Xs,<t) (1)

We aim to explore realizing Eq. 1 by jointly
fine-tuning a pre-trained LLM as ¢(-) and train-
ing a dense layer as f(-). In particular, Eq. 1 is a
sequence-level task requiring the text representa-
tion module g: X, ~; — h, ~; to encode the se-
quence X, 4 into a numerical vector h, 4 € RP.
Then, the forecasting module f: h, o4 — 74
transforms hg - to the return forecast. We train
the model using a set of data instances pooled
from individual stocks and associated news, i.e.,
{(rs 140, Xs,<t) }scuteT Where T represents the
timestamps in the training period.

At test time, besides evaluating prediction errors
such as the root mean square error (RMSE), we
implement the return prediction-based stock pick-
ing to construct long-only and long-short portfolios
which are subsequently backtested. This process is
illustrated in Fig. 2.

Long-Only Portfolios are intended to include
stocks with the expectation of a price rise above
the universe average. In practice, it is built by rank-
ing the stocks based on the return forecasts and
selecting the top-K stocks. K is usually chosen
according to the decile or quantile of the universe,
e.g., 10% of the total number of stocks.

Long-Short Portfolios include both the stocks
with the expectation of a price rise and drop. For
the stocks with a price drop expectation, the port-
folio can profit by selling them at the present price
and repurchasing them at a lower price in the fu-
ture. In this paper, the long-short portfolio is built
by including the top-K and bottom-K stocks based
on the forecast ranks.

3.2 Methodology

LLMs can be categorized into three main
types: encoder-only, decoder-only, and the hybrid
encoder-decoder. All these LLMs transform text
into high-dimensional vector representations, how-
ever, their different pre-training objectives lead to
text representations with varying implications.

In the following, we describe the text representa-
tion difference in encoder-only and decoder-only
LLMs. Then, we present two simple methods of
integrating the token-level representations from
LLMs into the forecasting module. These meth-
ods introduce no additional parameters to learn and
provide a clear comparison of the native represen-
tations of different LLMs for return forecasting.

Encoder-only vs. Decoder-only LLMs. Given
a sequence of text tokens X = {z1,---,zp},
LLMs output a sequence of vector representations
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{hy,--- ,hp} corresponding to the input tokens.
However, as presented below, the vector represen-
tations from encoder-only and decoder-only LLMs
encode the different parts of the input sequence.
Pre-training an encoder LLM is mostly based
on masked-language modeling (Devlin et al., 2019;
Lan et al., 2019; He et al., 2020). Concretely, it pre-
pares a training text sequence X by randomly mask-
ing some tokens, leading to X = {Tmask ifi €
Melse z; Vi = 1,--- L}, M C {1,---,L}
represents the indices of tokens to mask. The mask
token xmusk 1S a special token without concrete
meaning and plays as the placeholder. The pre-
training objective is to predict masked tokens, i.e.,
maximizing the likelihood of masked tokens as:

logp({xm}mEM | X)

= Z logp(l'm | X <ms Tmasks X>m)
mem (2

~ Y logp(@m | hu)

meM

In Eq. 2, Xy, = {z1, -+ ,Zm—1} and X5, =
{Zm, - ,zr} represent the tokens before and af-
ter z,,. Maximizing Eq. 2 encourages the repre-
sentation h,,, to incorporate both the left and right
contexts, i.e., X, and X,,, for predicting the
masked token. Particularly, in the attention mecha-
nism of Transformers, h,,, is derived based on the
similarities between the mask token &,k and the
context tokens X, and X .

On the other hand, a decoder-only LLM mod-
els an input sequence autoregressively using the
next-token prediction task (Radford et al., 2018;
Touvron et al., 2023). The pre-training objective
function is defined in Eq. 3:

logp(l’l,’ e 7:1:L|X)

= ) logp(wi| X)
i=1, L (3)

~ > logp(wi|hi1)

7

For modeling the first token, the practical way is
to add a Beginning-of-Sequence (BOS) token, i.e.,
X = Zpos @ X. Similar to the mask token, the BOS
token has no concrete meaning. The representation
h;_; encodes the information from already seen
tokens and is derived based on the relation between
zi—pand X1 = {z1, -+ ,xi—2}.

Bottleneck vs. Aggregated Representations.
As LLMs output the token-level vector represen-

tations, to obtain a representation encoding the se-
quence, the idea of bottleneck representation is
to push LLMs to compress the sequence informa-
tion into a single vector representation during fine-
tuning (Yang et al., 2019; Wang et al., 2023a,b).

In practice, this is achieved by appending an End-
of-Sequence (EOS) zgos to the input sequence,
e.g., X <t @ Tros. As TEps 1S constant across se-
quences, its vector representation hgog depends on
the real tokens of the sequence. During fine-tuning,
hgos is fed into the forecasting module as shown in
Eq. 4. The backpropagation process propels hgos
to summarize real tokens’s representations through
the forecasting module.

7s,t+¢ = f(hgos) )

The bottleneck representation has different implica-
tions for encoder-only and decoder-only LLMs. In
encoder-only LLMs, the vector used for predicting
is obtained based on the mask token and the real
context tokens during the pre-training, as explained
in Eq. 2. As aresult, appending an EOS token (iden-
tical to the mask token used in pre-training) aligns
the fine-tuning with the pre-training. This consis-
tency might facilitate the EOS token representation
to summarize sequence-level features effectively.
In decoder-only LL.Ms, the vector representation
of each token is conditioned on the already-seen
tokens; thus, the last token of a sequence naturally
summarizes the whole sequence, making an addi-
tional EOS token redundant.

Meanwhile, considering the recent works on the
representation collapse issue of the last token in cer-
tain conditions (Barbero et al., 2024), we present
a simple alternative to bottleneck representation,
i.e., allowing the forecasting module to aggregate
the representations of all tokens. This can be done
using various methods like averaging, or sophisti-
cated ones like attention mechanisms (Lee et al.,
2024). In this paper, we choose the simple av-
eraging method, since it introduces no additional
parameters to train and enables a clear comparison
with the bottleneck representation.

1
Poire=f (L > hl) )
l

For encoder-only LLMs, the pre-training and fine-
tuning discrepancy arises when using aggregated
representations, because each token’s represen-
tation is based on context and itself, instead of
the mask token in pre-training. For decoder-only
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Figure 3: Decile Performance of Bottleneck and Aggregated Representations in the North American Universe (best
viewed in color). Top Row: Decile RMSE. Middle Row: Decile Precision. Bottom Row: Decile Return. The up (or
down) arrow indicates the higher (or lower) values are desirable.

LLMs, averaging all representations might lead to
bias towards the early tokens of the input sequence.
This is because, in the autoregressive setting, the
early tokens are repeatedly incorporated into the
representations of all subsequent ones.
Implementations. We experiment with one
encoder-only LLM DeBERTa (He et al., 2021) and
two decoder-only LLMs, Mistral-7B and Llama3-
8B base models (Jiang et al., 2023; Dubey et al.,
2024) and use the mean squared error (MSE) as the
loss function. More details are in the Appendix.

4 Experiments

In this part, we present some main results, while
further details and a qualitative interpretation of
predictions are provided in the Appendix.

Data. We use company-level financial newsflow
data from 2003 to 2019 provided by a financial data
vendor. Each piece of news has an attribute includ-
ing the company identifier(s) the news is primarily
about. Meanwhile, we have three investment uni-
verse datasets of the North American (NA), Euro-
pean (EU), and Emerging (EM) markets.

Setup. The long-only portfolio is built by taking
the stocks with the return predictions falling in the
top (9th) decile of prediction rankings. The long-
short portfolios take the stocks in the top (9th) and

bottom (Oth) deciles. The stocks in all portfolios
are equally weighted.

We perform backtesting to evaluate the portfo-
lios in monthly rebalancing. Besides comparing the
portfolios built on return predictions by different
LLMs, we also compare them with the sentiment-
based portfolio construction by FinBERT (Araci,
2019) and FinVADER (Hutto and Gilbert, 2014,
Korab, 2023). The sentiment-based portfolios are
built using the same method but with sentiment
values as the ranking criteria.

Metrics. As mentioned in the problem state-
ment of Sec. 3.1, the downstream stock picking
for building portfolios is based on the deciles of
forecasts; thus we report three decile-wise met-
rics to align with downstream scenarios, i.e., decile
RMSE, decile precision, and decile return. For port-
folio backtesting, we report the cumulative return
charts and performance statistics like annualized
returns and Sharpe ratios in the testing period.

Results. In the following, we mainly present and
discuss the results of the NA universe. The results
of the EU and EM universe are in the Appendix.

Bottleneck vs. Aggregated Representations: In
Fig. 3, we compare the bottleneck and aggregated
representations for the three LLMs in the North
American universe through the decile RMSE, pre-
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Table 1: Statistics of Portfolios in the North American Universe. The Universe Equally-Weighted represents the
universe performance reported under the Long-only Portfolio column.

Long-only Portfolio Long-short Portfolio
Ann. Return % (1) | Sharpe Ratio (1) | Ann. Return % (1) | Sharpe Ratio (1)
Universe Equally-Weighted 9.76 0.68 — —
Sentiment_FinVader 12.26 0.72 2.92 0.39
Sentiment_FinBert 20.64 1.22 8.81 0.92
DeBERTa_Bottleneck 17.47 0.96 10.83 0.94
DeBERTa_Aggregated 25.15 1.20 12.87 1.07
Mistral_Bottleneck 21.27 1.15 15.08 1.49
Mistral_Aggregated 25.38 1.12 18.30 1.26
Llama_Bottleneck 27.00 1.32 20.46 1.49
Llama_Aggregated 18.86 1.00 14.29 1.30
35 DeBERTa, Long-Only Portfolio (1) 35 Mistral, Long-Only Portfolio (1) 35 Llama, Long-Only Portfolio (1)
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Figure 4: Cumulative Return Charts of the Portfolios based on Bottleneck and Aggregated Representation Models
in the North American Universe (best viewed in color). Top Row: Long-only Portfolios. Bottom Row: Long-short

Portfolios.

cision, and returns. Each column of Fig. 3 corre-
sponds to a LLM. Meanwhile, Fig. 4 shows the
cumulative return charts of portfolios and Table 1
reports the detailed performance stats of portfolios.
In the bottom row of Fig. 3, the returns from the
Oth decile to the 9th decile generally present an up-
ward trend, implying that the return predictions are
generally aligned with actual future performance.
We are particularly interested in the top 9th and bot-
tom Oth deciles as they are the main constituents
of portfolios. For the top 9th decile, the aggregated
representation model generates a higher return and
benefits the long portfolio, except for Llama. For
the EU and EM universe, as presented in the Ap-
pendix, the aggregated representation model con-
sistently outperforms the bottleneck one.
Interestingly, the higher returns do not necessar-
ily imply low RMSE in the 9th decile. For instance,
in Fig. 3, the aggregated representation model has
a higher decile return, but a higher RMSE, in the

9th decile corresponding to the long-only portfolio
for DeBERTa and Mistral. An explanation is that
the 9th decile is regarding predicting high-value re-
turns and less accurate predictions of these returns
might have high RMSE. But, if the return predic-
tion still falls into the 9th decile as the true return,
the corresponding decile return is retained. In this
case, the decile precision is more indicative of the
decile return, for instance, in Fig. 3 the outperform-
ing representations mostly have a higher precision
in the 9th decile.

As for the bottom Oth decile, a lower return is
preferred as the short side of a long-short portfolio
benefits from stocks with underperforming forward
returns. In Fig. 3, the aggregated representation
model falls short of lowering the Oth decile’s re-
turn for DeBERta and Mistral, however, Table 1
shows that the return and Sharpe ratios of long-
short portfolios are mostly improved with aggre-
gated representations compared to the bottleneck
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Figure 5: Comparison with Sentiment-based Portfolios in the North American Universe (best viewed in color).

representations.

Fig. 4 visualizes the cumulative return of the
portfolios using the bottleneck and aggregated rep-
resentation models. The performance of long-only
and long-short portfolios correspond to the top and
bottom deciles in Fig. 3. The return curves of the
aggregated representation model are notably higher
except for Llama. In the Appendix, the aggregated
representation constantly outperforms the bottle-
neck representation for the EU and EM universes.

Encoder-only vs. Decoder-only LLMs: Fig. 5
shows the comparison of encoder-only and decoder-
only LLMs with the suitable representations for the
NA universe, i.e., the aggregated representation for
DeBERTa and Mistral, and the bottleneck represen-
tation for Llama. For the EU and EM universes
in the Appendix, the aggregated representation is
favored for all three LLMs.

The decile return in Fig. 5 exhibits that decoder-
only Mistral and LLama generate high returns in
the top 9th decile and lower returns in the bottom
Oth decile, thereby leading to the outperforming
long-only and long-short portfolios as shown in
the cumulative return charts. The performances
of long-only portfolios are comparable among en-
coder and decoder LLMs, however, in long-short
portfolios, the short side drags down the perfor-
mance of the long side, especially for the encoder-
only DeBERTa. This highlights the importance of
effective stock selection on both sides of the portfo-
lio. Meanwhile, all the prediction-based portfolios
yield higher returns than the universe average.

Prediction-based vs. Sentiment-based Portfolios:
In this part, we compare the prediction-based
portfolios with conventional sentiment-based
portfolios. Fig. 5 shows the decile returns and the
return charts of portfolios, and the performance
statistics are in Table 1.

In Table 1, the prediction-based long-only and
long-short portfolios outperform the sentiment-
based portfolios in returns and Sharp ratios. In
Fig. 5, the return charts of prediction-based port-

folios are above the sentiment-based portfolios. In
particular, for the long-short portfolios, as shown
in the return chart, the short side of the sentiment-
based method negatively offsets the long side, lead-
ing to underperformance w.r.t. the universe. In
contrast, the prediction-based long-short portfo-
lios have smoother return curves than the long-only
portfolios, because the short side mitigates the over-
all portfolio’s volatility. The outperformance of
prediction-based portfolios suggests that the return
prediction models capture more relevant informa-
tion from text representations for future stock per-
formance, leading to effective stock picking.

5 Conclusion

This paper focuses on return forecasting with finan-
cial newsflow for quantitative portfolio construc-
tion. Unlike the conventional feature extraction-
and-validation workflow, this paper explores fine-
tuning LLMs to directly model the relationship
between news text and stock forward return.

The experiment results reveal the key findings:
(1) aggregated representations from LLMs’ token-
level embeddings generally produce the return pre-
dictions that enhance the portfolio performance;
(2) in the relatively large investment universe, the
decoder LLMs-based prediction model leads to
stronger portfolios, whereas in the small universes,
there are no consistent winners. (3) return predic-
tions derived from LLMs’ text representations are
a strong signal for portfolio construction, outper-
forming conventional sentiment scores.

Several open questions remain for future re-
search. For instance, it is unclear whether the un-
derperformance of encoder-only DeBERTa in the
large universe is due to the model size or other fac-
tors, and why DeBERTa has varying performance
in different small universes. Evaluating recently
proposed large encoder-only LLMs (Wang et al.,
2023b; BehnamGhader et al., 2024) would be an
interesting follow-up.
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A Appendix

A.1 Experiment Details

Implementations. The text representation module and the forecasting module are respectively initial-
ized by a pre-trained LLM and a dense layer. Then, the training process jointly fine-tunes the LLM and
learns the forecasting module to minimize the mean squared error (MSE) between the forecasts and true
values. We applied Low-Rank Adaptation (LoRA) to fine-tune LLMs (Hu et al., 2021). Other techniques
including gradient checkpointing, mixed precision training, and DeepSpeed are used to reduce GPU
memory (Rasley et al., 2020).

We experiment with one encoder-only LLM, i.e., DeBERTa (He et al., 2021), and two different
decoder-only LLMs, i.e., Mistral-7B and Llama3-8B base models (Jiang et al., 2023; Dubey et al., 2024).
DeBERTza is a recent encoder-only LLM that improves upon the BERT model with disentangled content
and position embeddings. Mistral-7B is a 7-billion-parameter decoder-only LLM that uses grouped query
and sliding window attention to improve performance. Llama3-8B is an 8-billion-parameter decoder-only
LLM pre-trained on data mixed from different sources, e.g., multilingual, codes, etc., to improve the
generalization ability.

Data. We use company-level financial newsflow data from 2003 to 2019 provided by a financial data
vendor. Each piece of news has an attribute including the company identifier(s) the news is primarily
about. Meanwhile, we have three investment universe datasets of the North American (NA), European
(EU), and Emerging (EM) markets, which consist of dates, stock identifiers, and the true monthly forward
returns of corresponding stocks and dates. The training and validation data is from 2003 to 2014 for each
universe, while the rest is for the out-of-sample testing data. Each instance is built by linking an entry
in the universe data to related news through the stock identifier and a look-back time window (e.g., one
week). Table 2 shows the data stats.

Table 2: Statistics of Datasets.

Universe # of Stocks | Average # of News per Instance | # of Training Instances | # of Validating Instances | # of Testing Instances
North America 630 2.5 366011 10167 241367
Europe 350 1.9 100403 10041 121705
Emerging Markets 370 2.6 71610 10231 183608

Note that our news data is predominantly about company-specific events, e.g., earnings reports, analyst
revisions, analyst ratings, earnings outlooks, management changes, etc, and is less directly about macro
economy. In this case, our prediction model is primarily designed to capture the impact of these company
events on stock returns, rather than to learn broader economic processes.

Preprocessing. Our data preprocessing follows standard procedures and primarily involves tasks like
cleaning (e.g., removal of special spaces, newlines, and empty content) and joining the news articles with
their corresponding target variables.

In our dataset, the longest token length is approximately 2,100, while the average token length is around
108. For the three LLMs used in the paper, we set a consistent maximum token length of 4096 during
fine-tuning. This length is selected because it accommodates the longest token length in our dataset,
ensuring that no truncation was required for the LLMs in our experiments.

Setup. We train the model only once and then apply the model to obtain the return predictions in
the testing period. We conduct the model training using a batch size of 32, a learning rate of 1le-5, and
a warmup phase of 100 steps followed by a linear decay. To fine-tune LLMs, we applied Low-Rank
Adaptation (LoRA) with rank 4 to all linear layers. We employ a maximum context length of 4k for all
LLMs used in experiments. All models are trained for 10 epochs on 2 A100 GPUs.

The long-only portfolio is built by taking the stocks with the return predictions falling in the top (9th)
decile of prediction rankings. The long-short portfolios take the stocks in the top (9th) and bottom (Oth)
deciles. The stocks in all portfolios are equally weighted.

We perform backtesting to evaluate the portfolios in monthly rebalancing. It stimulates the trading
of monthly constructed portfolios and reports the cumulative return chart and performance statistics
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like annualized returns and Sharpe ratios in the testing period. When backtesting the long-only and
long-short portfolios, besides comparing the portfolios built on return predictions by different LLMs, we
also compare them with the sentiment-based portfolio construction. Specifically, FinBERT is a fine-tuned
BERT (Bidirectional Encoder Representations from Transformers) for financial sentiment analysis (Araci,
2019). FinVader is a dictionary-based method with a financial sentiment lexicon (Hutto and Gilbert, 2014;
Korab, 2023). The sentiment-based portfolios are built using the same method but with sentiment values
as the ranking criteria.

Metrics. As mentioned in the problem statement of Sec. 3.1, the downstream stock picking for building
portfolios is based on the deciles of forecasts; thus we report three decile-wise metrics to align with
downstream scenarios, i.e., decile RMSE, decile precision, and decile return. The decile return is the
actual return of stocks allocated to the decile based on predictions and is directly related to the portfolio
performance. Analyzing the decile return along with the decile RMSE and precision provides insights
into the relation between portfolio performance and prediction accuracy.

Specifically, at each date in the testing data, we group the predictions with the true returns into deciles
based on the ranking of forecasts (i.e., the highest predictions are in the top 9th decile and the lowest ones
are in the bottom Oth decile). Then, with the true and predicted returns in each decile across dates, we
calculate the decile RMSE, decile precision, and decile return. The decile precision is the percentage of
the true returns whose decile based on the ranking of true values is equal to the current decile. It is related
to the portfolio performance, because, for instance, a high precision of the top decile implies that a high
proportion of stocks in this decile has a high true forward return, thereby benefiting the portfolio including
stocks from the top decile.

For portfolio backtesting, we report the cumulative return charts and performance statistics like
annualized returns and Sharpe ratios in the testing period.

A.2 Additional Results of the North American Universe
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Figure 6: Qualitative Interpretation of the News Related to the Return Predictions of Bottom and Top Deciles for
the North American Universe. The red and green bar charts correspond to the bottom (Oth) and top (9th) deciles
respectively. For each date chosen from the testing period, it shows the top 5 frequent phrases from the news leading
to the prediction in the bottom/top decile. Phrases are ranked based on (Mihalcea and Tarau, 2004) as shown by the
y-axis.
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Fig. 6 provides an interpretative analysis of news driving the return predictions in the top and bottom
deciles. It reports the prominent phrases across sampled portfolio rebalancing dates to capture key topics
from the news.

A comparison between high and low return phrases (green vs. red bars) reveals that earnings-related
events (e.g., EPS, Adjusted EPS) are commonly relevant for both. However, topics contributing to low
return predictions are more varied, including issues such as clinical trials and antitrust matters.

Meanwhile, LLMs exhibit different focuses when generating predictions. For instance, on 2016-07-21,
both DeBERTa and Mistral were more influenced by EPS-related news for high return predictions. In
contrast, Llama’s predictions on the same date were driven by other events such as guidance and revised
offers. This highlights the different ways LLMs prioritize and process financial events when making
predictions. The observation suggests potential avenues for future research on the underlying mechanism
of the focus difference as well as aligning LLMs’ focuses, aiming for more consistent and structured
predictions across different LL.Ms.

A.3 Results of the European Universe
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Figure 7: Decile Performance of Bottleneck and Aggregated Representations in the European Universe (best viewed
in color). Top Row: Decile RMSE. Middle Row: Decile Precision. Bottom Row: Decile Return. The up (or down)
arrow indicates the higher (or lower) values are desirable.
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Table 3: Statistics of Portfolios in the European Universe. The Universe Equally-Weighted represents the universe
performance reported under the Long-only Portfolio column.

Long-only Portfolio Long-short Portfolio
Ann. Return % (1) | Sharpe Ratio (1) | Ann. Return % (1) | Sharpe Ratio (1)
Universe Equally-Weighted 9.75 0.74 — —

Sentiment_FinVader 10.25 0.70 3.40 0.45
Sentiment_FinBert 8.17 0.57 -0.36 0.00
DeBERTa_Bottleneck 11.04 0.81 2.11 0.31
DeBERTa_Aggregated 11.11 0.81 3.84 0.52
Mistral_Bottleneck 6.40 0.48 1.94 0.26
Mistral_Aggregated 15.12 1.02 9.07 1.04
Llama_Bottleneck 8.20 0.62 1.25 0.17
Llama_Aggregated 12.76 0.90 11.47 1.27
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Figure 8: Cumulative Return Charts of the Portfolios based on Bottleneck and Aggregated Representation Models in
the European Universe (best viewed in color). Top Row: Long-only Portfolios. Bottom Row: Long-short Portfolios.
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Figure 9: Comparison of Encoder-only and Decoder-only LLMs with the Suited Representations in the European
Universe (best viewed in color).
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Figure 10: Comparison with Sentiment-based Portfolios in the European Universe (best viewed in color).
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Qualitative Interpretat
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Figure 12: Decile Performance of Bottleneck and Aggregated Representations in the Emerging Markets Universe
(best viewed in color). Top Row: Decile RMSE. Middle Row: Decile Precision. Bottom Row: Decile Return. The
up (or down) arrow indicates the higher (or lower) values are desirable.

Table 4: Statistics of Portfolios in the Emerging Markets Universe. The Universe Equally-Weighted represents the
universe performance reported under the Long-only Portfolio column.

Long-only Portfolio Long-short Portfolio
Ann. Return % (1) | Sharpe Ratio (1) | Ann. Return % (1) | Sharpe Ratio (1)
Universe Equally-Weighted 3.91 0.32 — -

Sentiment_FinVader 6.18 043 -0.08 0.04
Sentiment_FinBert 9.76 0.70 1.69 0.21
DeBERTa_Bottleneck 7.32 0.50 -5.00 -0.36
DeBERTa_Aggregated 9.88 0.64 10.96 0.97
Mistral_Bottleneck 10.12 0.63 4.94 0.47
Mistral_Aggregated 10.11 0.64 9.16 0.68
Llama_Bottleneck 4.94 0.36 -3.99 -0.28
Llama_Aggregated 8.82 0.58 1.83 0.19
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Figure 13: Cumulative Return Charts of the Portfolios based on Bottleneck and Aggregated Representation Models
in the Emerging Markets Universe (best viewed in color). Top Row: Long-only Portfolios. Bottom Row: Long-short
Portfolios.
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Figure 14: Comparison of Encoder-only and Decoder-only LLMs with the Suited Representations in the Emerging
Markets Universe (best viewed in color).
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Figure 15: Comparison with Sentiment-based Portfolios in the Emerging Markets Universe (best viewed in color).
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Qualitative Interpretat

Figure 16
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1ction 1n t

to the pred

y-axis.

1045



