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Abstract
The high capability of recent Large Language
Models (LLMs) has led to concerns about possi-
ble misuse as cheating assistants in open-ended
writing tasks in assessments. Although var-
ious detecting methods have been proposed,
most of them have not been evaluated on or
optimized for real-world samples from LLM-
assisted cheating, where the generated text is
often copy-typed imperfectly by the test-taker.
In this paper, we present a framework for train-
ing LLM-generated text detectors that can ef-
fectively detect LLM-generated samples after
being copy-typed. We enhance the existing
transformer-based classifier training process
with contrastive learning on constructed pair-
wise data and self-training on unlabeled data,
and evaluate the improvements on a real-world
dataset from the Duolingo English Test (DET),
a high-stakes online English proficiency test.
Our experiments demonstrate that the improved
model outperforms the original transformer-
based classifier and other baselines.

1 Introduction

Language proficiency tests are crucial in many
high-stakes decisions, such as immigration, school
admissions, and employment. To ensure valid re-
sults, testing agencies have developed security tech-
nologies to prevent and detect cheating. With the
rise of Large Language Models (LLMs), concerns
about LLM-assisted cheating have emerged, espe-
cially for open-ended writing questions. For ex-
ample, multimodal LLMs like GPT-4 Vision (Ope-
nAI, 2023) can provide high-quality answers from
a screenshot of the question (Wu et al., 2023b).

To counteract LLM misuse, researchers have
proposed methods to distinguish LLM-generated
text from human-written text, which have shown
good performance on domain-specific datasets (He
et al., 2023; Macko et al., 2023). However, due
to the difficulty of collecting real-world LLM-
generated samples in malicious use cases, most

research on LLM-generated text detection is con-
ducted on datasets where positive samples are gen-
erated by researchers using LLMs (sometimes with
paraphrasers). Consequently, it is unclear whether
detection methods have the same performance on
real-world samples where manual modifications
are common. For instance, in an online test with
screen recording and key tracking enabled, test-
takers have to copy-type the LLM-generated text
within a tight time limit, introducing typos and
other modifications that rarely exist in researcher-
generated samples.

In this paper, we address the detection of LLM-
assisted cheating on open-ended writing tasks on
English proficiency tests by bridging the gap be-
tween researcher-constructed and real-world LLM-
generated samples. First, we create a dataset with
human-written responses and GPT-4-generated re-
sponses, augmented with an approximated copy-
typing error insertion and correction process (Sec-
tion 3.2). We then fine-tune a RoBERTa-base
model (Liu et al., 2019) on this dataset with the
SimCLR (Chen et al., 2020) contrastive learning
framework (Section 3.3). To incorporate real-world
positive samples, we perform self-training (Zou
et al., 2018) on pseudo-labeled samples using the
initial classifier (Section 3.4). Finally, we evaluate
the model on both constructed and real-world data
(Section 4 and 5), which shows that the detection
rate1 is improved by 1.7x over the initial fine-tuned
RoBERTa-base model at a low false positive rate
of 0.1%.

2 Related Works

Our work is an application of generated text de-
tection, enhanced with contrastive learning and
self-training. We briefly review related works as
follows:

1Detection rate: the predicted positive rate in tests with
violations during the first half of the year 2024. See PPR0.1%

in Table 2.
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Generated Text Detection (GTD) is a text clas-
sification task of whether a text sample is gener-
ated by machine (or LLM specifically), or written
by human. Methods of GTD fall into two cate-
gories: (1) metric-based methods that do not re-
quire model training and are usually based on the
LLM-generated text distribution, such as Detect-
GPT (Mitchell et al., 2023), or DNA-GPT (Yang
et al., 2024), and (2) model-based methods that in-
volve training classifiers, either transformer-based
(Chen et al., 2023; Hu et al., 2023) or feature-based
(Wu et al., 2023a). Specifically, Yan et al. (2023)
apply both transformer-based and feature-based
models in detecting GPT-3-generated essays in En-
glish proficiency tests. Among these methods, fine-
tuned transformer-based classifiers show high per-
formance on benchmarks (He et al., 2023; Macko
et al., 2023). However, most existing research re-
lies on positive samples generated by researchers
prompting LLMs, instead of those from malicious
users. To fill this gap, our work provides an ap-
proach to evaluate and improve the classifier on
real-world samples from LLM-assisted cheating.

Contrastive Learning (Hadsell et al., 2006) is
a technique of learning representations by contrast-
ing positive and negative pairs. Following Sim-
CLR (Chen et al., 2020), a contrastive learning
framework in computer vision, Pan et al. (2022)
apply SimCLR to text classification to improve ro-
bustness towards adversarial samples. Bhattachar-
jee et al. (2023) combine SimCLR with domain-
adaption to detect LLM-generated text from unseen
LLMs. Inspired by these prior works, we adopt the
SimCLR framework for robustness towards modifi-
cations in copy-typed LLM-generated samples.

Self-Training (Scudder, 1965) is a semi-
supervised learning method where a model is ini-
tially trained on a labeled dataset, and then applied
to an unlabeled dataset to obtain pseudo-labeled
samples for the next round of training. It has been
applied in text classification to leverage unlabeled
data in low-resource settings (Sosea and Caragea,
2022; Mukherjee and Awadallah, 2020) and to use
unlabeled non-English samples for cross-lingual
transfer (Dong and De Melo, 2019). Similarly,
we apply self-training to utilize copy-typed LLM-
generated samples in unlabeled real-world data.

3 Methodology

In this section, we frame the problem of detecting
copy-typed LLM-generated responses by defining

probabilistic distributions for different response
processes (Section 3.1). Then, we construct our
main dataset by approximating the copy-typing
process (Section 3.2) which enables contrastive
learning (Section 3.3). We further improve the
model with self-training in Section 3.4.

3.1 Problem Framing
Context. The dataset is collected from the
Duolingo English Test (DET) (Cardwell et al.,
2024), a high-stakes online English proficiency test.
The DET employs various security measures, in-
cluding video recording, screen sharing, and input
monitoring. After each test session is completed
and uploaded, an asynchronous proctoring process
is conducted, which combines AI algorithms and
human proctors to detect rule violations. In this
research, we focus on an open-ended writing task
in the DET, where test takers have 30 seconds to
read a question given by text (see Appendix A.1
for examples), and 5 minutes to type their response
on a computer. Since copy-pasting is disabled for
security reasons, cheating with LLMs requires man-
ually typing the generated responses (also known
as copy-typing).

Definitions. In this context, we define the fol-
lowing 3 distributions to frame this problem. For
notations: Let S be the set of all possible text se-
quences, s ∈ S be an observed response in the
given context, and s∗ ∈ S be an unobserved text
sequence potentially related to an s. Assume that
all the following distributions are supported on S.

1. LLM-generated text: Let PG∗(s∗) be the
probability of an LLM generating s∗ as a re-
sponse to an input prompt asking it to com-
plete to a writing task.

2. Human-written text: Let PH(s) be the prob-
ability of s written by human test takers.

3. Copy-typing process: Let PCT(s|s∗) be the
probability that s is the result of copy-typing
the given s∗, in the context of cheating by
copy-typing an LLM-generated response dur-
ing the test. Intuitively, highly probable val-
ues of s include s∗ and s∗ with various errors,
such as typos, misspellings, omissions, word
replacements, and/or being cut off due to time
limit. As most cheaters have limited English
proficiency, we expect PCT(s|s∗) in this con-
text to be less concentrated at PCT(s = s∗|s∗),
compared with copy-typing by native English
speakers in a less stressful environment.
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Then, based on the 3 distributions, we define the
derived distributions:

1. Copy-typed LLM-generated text:
PG(s) :=

∑
s∗∈S PCT(s|s∗)PG∗(s∗).

2. Reversed copy-typing process:
PCT−1(s∗|s) := PCT(s|s∗)PG∗(s∗)/PG(s).

3. Reverse-copy-typed human-written text:
PH∗(s∗) :=

∑
s∈S PCT−1(s∗|s)PH(s).

Intuitively, this means that s ∼ PH can be
viewed as a copy-typed version of s∗ ∼ PH∗ .
Note that this is a hypothetical distribution
mainly for data construction, and its practical
meaning is less important.

4. Joint distributions:
PG,G∗(s, s∗) := PCT(s|s∗)PG∗(s∗),
PH,H∗(s, s∗) := PCT−1(s∗|s)PH(s).

Goal. With this notation, the goal of detecting
LLM-assisted cheating is to determine whether a
sample s ∈ S is more likely to be a human-written
response or a copy-typed LLM-generated one. That
is, whether PH(s) > PG(s).

Challenge. A straightforward method to achieve
the goal is to train a binary text classifier with la-
beled data from PH and PG. However, in this case,
researchers only have access to PH (from honest
test takers) and PG∗ (from LLMs). Neither PG nor
PCT is available to researchers, as cheaters would
rarely reveal whether their reference source was
LLM after being caught. When the difference be-
tween PG∗ and PG is large, a classifier trained on
positive samples from PG∗ can be less effective in
detecting samples from PG.

3.2 Pairwise Data Construction

To bridge the gap between PG∗ and PG, we con-
struct pairwise samples (s, s∗) by approximating
the joint distributions PG,G∗ and PH,H∗ , then apply
contrastive learning with the pairwise samples.

Negative Samples: (s, s∗) ∼ PH,H∗ . We col-
lect human-written samples s ∼ PH from certi-
fied2 tests before the release of ChatGPT (OpenAI,
2022) on November 30, 2022, to ensure minimal
LLM-produced responses. To approximate the re-
verse copy-typing process PCT−1 , we use GPT-4
to correct errors and incompleteness in the human-
written sample (see Appendix A.4 for the prompt),
which produces samples s∗ ∼ P̂CT−1(·|s) from the

2A test is certified if no violation is found during the proc-
toring process mentioned in Section 3.1.

approximate conditional distribution. In this way,
we approximate the joint distribution PH,H∗ with
P̂CT−1(s∗|s)PH(s).

Positive Samples: (s, s∗) ∼ PG,G∗ . We prompt
GPT-4 to generate samples s∗ ∼ PG∗ , with a pool
of 200 prompt templates to ensure diversity of gen-
erated samples. To approximate the copy-typing
process PCT, we use TextAttack (Morris et al.,
2020) to insert errors into sample s∗, denoted as
s ∼ P̂CT(s|s∗). In this way, we approximate the
joint distribution PG,G∗ with P̂CT(s|s∗)PG∗(s∗).
See Appendix A for more details and examples.

Dataset Splitting. To split the dataset into train-
ing/validation/test sets, we first split 912 writing
questions and 200 prompt templates by 60/20/20
for training/validation/test, ensuring no overlap in
writing questions or prompt templates between
splits. Then, for negative samples, we randomly
select at most 10 human-written samples (s ∼ PH )
per question and use text correction to generate
s∗ ∼ P̂CT−1(·|s); for positive samples, we use
GPT-4 to generate the same number of samples
(s∗ ∼ PG∗) per question with randomly selected
prompt templates within the set, and apply error
insertion to generate s ∼ P̂CT(·|s∗). To accurately
evaluate performance at a low FPR, such as 0.1%
(see Section 5), we increase the number of nega-
tive samples in the test split from 1,786 to 100,000
by collecting additional human-written responses
from certified tests for the corresponding 183 writ-
ing questions. Table 1 shows the size of each split.
The average number of tokens per sample is 103
for negatives and 166 for positives.3

Split # Q # Tpl # G # H

Training 547 120 5,338 5,338
Validation 182 40 1,776 1,776
Test 183 40 1,786 100,000

Table 1: Size of each split of the main dataset. # Q:
number of unique writing questions. # Tpl: number
of unique prompt templates used for generation. # G:
number of positive samples. # H: number of negative
samples.
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RoBERTa-base

MLPClassifier

RoBERTa-base

MLP Classifier

Figure 1: Network architecture for a pair of samples
(xi, xj) in a mini-batch. There are three trainable
components: (1) RoBERTa-base, the pre-trained trans-
former; (2) Classifier, a two-layer dense network; (3)
MLP, the nonlinear projection in Section 3.3.

3.3 Contrastive Learning

Intuitively, we use contrastive learning in the fine-
tuning process to guide the text embeddings to be
similar for samples before and after the copy-typing
process, so that the classifier can make accurate pre-
dictions regardless of copy-typing. Following the
architecture used by Pan et al. (2022) and Bhat-
tacharjee et al. (2023), we apply SimCLR (Chen
et al., 2020) with RoBETRa-base (Liu et al., 2019),
and train the model with pairwise data (s, s∗). Fig-
ure 1 shows the model architecture.

Notations. For a mini-batch of N pairs of
samples {(sk, s∗k, ck)}Nk=1, where ck ∈ {0, 1}
is a binary label of whether (sk, s

∗
k) are

positive samples in Section 3.2. For ease
of later reference, following Chen et al.’s
(2020) annotations, we reindex the mini-batch
as {(s1, c1), (s∗1, c1), (s2, c2), (s∗2, c2), . . . } =
{(xi, yi)}2Ni=1. That is, x2k−1 = sk, x2k = s∗k,
y2k−1 = y2k = ck. With this indexing, (xi, xj) is
a pairwise sample (s, s∗) if and only if (i, j) can be
written as (2k − 1, 2k). This is useful for defining
the contrastive loss.

Contrastive Loss. For the i-th sample, let hi ∈
Rdh be the final hidden state of the [CLS] token
of xi in RoBERTa, and let ŷi ∈ (0, 1) be the final
output of the classifier. Following SimCLR, we
use a nonlinear projection to map hi to zi ∈ Rdz ,

3The difference in length is expected, as real-world LLM-
assisted responses are likely to be longer than human-written
ones on average. A classifier based solely on the number of
tokens is not effective in practice. See Appendix A.5.

by zi = W2ReLU(W1hi). W1 ∈ Rdh×dh and
W2 ∈ Rdz×dh are trainable parameters. This non-
linear projection is used only for training, which
has been shown to improve representation quality
in SimCLR. The contrastive loss Lctr is given by

Lctr =
1

2N

N∑

k=1

[
ℓctr(2k − 1, 2k)

+ ℓctr(2k, 2k − 1)
]
,

ℓctr(i, j) = − log
exp (si,j/τ)∑2N

r=1 1[r ̸=i] exp (si,r/τ)
,

Where si,j =
zTi zj

∥zi∥∥zj∥ is the cosine similarity be-
tween the projected embedding vectors and τ is a
temperature hyperparameter.

Training Objective. The training loss is a
weighted sum of binary cross-entropy loss LCE

and contrastive loss Lctr, given by

L = (1− λ)LCE + λLctr

Where the binary cross-entropy loss LCE is

LCE =
1

2N

∑2N
i=1 ℓCE(i),

ℓCE(i) = −[yi log ŷi + (1− yi) log(1− ŷi)].

See Appendix B for more details on training set-
tings and hyperparameters.

3.4 Self-Training

In Section 3.2, positive pairwise data is constructed
by prompting GPT-4 and inserting errors to solve
the challenge of lacking real-world positive sam-
ples. To further close this gap, we apply self-
training to utilize real-world positive samples from
unlabeled data.

Specifically, we collect 150,000 responses from
test sessions during the second half of the year
20234 as an unlabeled development set, assuming
some of them used LLM-generated responses as
external reference.

After training the model with contrastive learn-
ing, we use the model to assign pseudo-labels on
the unlabeled dataset. That is, adding some unla-
beled samples to the training set with an assigned

4The samples used for evaluation in Section 4.1 are ex-
cluded from this development set. This period is selected
because (1) there are likely to be more copy-typed LLM-
generated responses than before this time, and (2) samples in
2024 are reserved for evaluation in Table 2.
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label ỹ ∈ {0, 1}, based on the output probabil-
ity ŷ ∈ (0, 1). Due to class imbalance, we set
pseudo-labeling thresholds for positives and nega-
tives separately, using class-balanced self-training
(Zou et al., 2018).

For the t-th iteration of self-training, the pseudo-
label ỹ is given by

ỹ =





1, if ŷ ≥ θ+t ,

0, if ŷ ≤ θ−t ,

undecided, otherwise,

Where θ+t is the (100−pt)-th percentile of positive
predictions (i.e., {ŷ|ŷ ≥ 0.5}) in the development
set, and θ−t is the pt-th percentile of negative ones
(i.e., {ŷ|ŷ < 0.5}). We set pt = 15+5t and iterate
for t = 1, . . . , 4 as the self-paced learning policy
(Zou et al., 2018). Since most of the samples are
pseudo-labeled as negative, we randomly down-
sample negatives to the same number as positives.
Pseudo-labeled samples are paired with corrected
versions as in Section 3.2, and then added to train-
ing and validation sets for the next iteration.

4 Experiment Setup

4.1 Datasets and Metrics
Test Set with GPT-4-Generated Responses. We
use the test split of the main dataset, as defined
in Section 3.2, to evaluate the performance in de-
tecting unmodified LLM-generated samples from
human-written ones. Since practical applications of
LLM-generated text detection typically require ex-
tremely low false positive rates (FPR), in addition
to Area Under the ROC Curve (denoted as AUC),
we also report standardized Partial Area Under the
ROC Curve (pAUC) (McClish, 1989) where the
FPR is in the range [0, 10%], [0, 1%], and [0, 0.1%]
(denoted as pAUC10%, pAUC1%, and pAUC0.1%).

Unlabeled Responses from Tests with Violations.
We evaluate performance on real-world positive
samples using a dataset of responses from test
sessions where human proctors determined that
the test-taker violated the rules or cheated, such
as by using external devices during the test ses-
sion. The dataset is unlabeled as it is unknown
whether cheaters used LLM-generated responses
as their external reference. We randomly select
5,000 such samples per quarter , and calculate the
Predicted Positive Rate (PPR, the proportion of pos-
itive predictions) at FPRs of 10%, 1%, and 0.1%,
denoted as PPR10%, PPR1%, and PPR0.1%. Given

the growing popularity and usability of LLMs, we
expect increased involvement of LLMs as cheat-
ing tools over time since the release of ChatGPT,
and therefore a higher PPR on recent responses in
this dataset indicates a higher recall for real-world
positive samples.

4.2 Baselines

We use the following representative baselines (see
Appendix C for results on more baselines):

• OpenAI Detector (Solaiman et al., 2019), a
RoBERTa-large model fine-tuned to detect
text generated by GPT-2 (1.5B parameters).

• GPTZero (Tian and Cui, 2023), a commercial
AI-generated text detector that predicts prob-
abilities of a given text sample being human
written, AI generated, or mixed of the two. We
experimented with version 2024-07-12-base
and output class_probabilities["AI"].

As an ablation study, we compare the following
versions of the fine-tuned model:

• RoBERTanaive: RoBERTa-base model fine-
tuned on human-written samples (PH ) and
unmodified GPT-4-generated samples (PG∗).
This is a straightforward fine-tuning method
used in LLM-generated text detection.

• RoBERTaerr: RoBERTa-base model fine-
tuned on human-written samples (PH ) and
error-inserted GPT-4-generated samples (P̂G).
This means using error insertion as data aug-
mentation on LLM-generated samples.

• RoBERTactr: RoBERTa-base model fine-
tuned with contrastive learning on pairwise
data constructed in Section 3.2.

• RoBERTactr+st: RoBERTactr improved with
self-training as described in Section 3.4.

5 Results and Discussions

We present evaluation results to verify:

1. For unmodified LLM-generated samples
(PG∗): whether the fine-tuned model de-
tects them accurately with low FPR on
human-written samples (PH ) and outperforms
general-purpose detectors.

2. For copy-typed LLM-generated samples (PG)
from real-world tests: whether contrastive
learning and self-training improve detection
performance over naive fine-tuning.
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Dataset Test Set with GPT-4-Generated Responses Responses from Tests with Violations

Composition Positives: 1,786 GPT-4-generated samples (unmodified) Mixed: 10,000 samples in 2024H1
Negatives (for both datasets): 100,000 samples from certified tests prior to ChatGPT

Metrics AUC pAUC10% pAUC1% pAUC0.1% PPR10% PPR1% PPR0.1%

OpenAI Detector 82.52 68.03 58.14 52.27 11.20 1.25 0.14
GPTZero∗ 98.74 96.87 91.64 78.83 19.45 6.95 2.65

RoBERTanaive 100.00±0.00 100.00±0.00 99.99±0.00 99.86±0.03 19.71±1.00 7.67±0.32 3.67±0.29

RoBERTaerr 100.00±0.00 99.98±0.02 99.84±0.14 98.88±0.86 20.43±0.51 8.28±0.44 4.75±0.27

RoBERTactr 99.99±0.01 99.96±0.01 99.83±0.05 98.68±0.50 18.00±0.77 8.36±0.39 5.34±0.09

RoBERTactr+st 99.98±0.01 99.92±0.04 99.36±0.31 94.32±2.95 19.50±0.82 9.63±0.40 6.08±0.20

Table 2: Left part: results on the test set with unmodified GPT-4-generated responses; right part: results on responses
from tests with violations during the first half of the year 2024 (2024H1), as defined in Section 4.1. All values are
shown as percentages, and higher values are better. The highest values are in bold. All fine-tuned RoBERTa models
are repeated with 5 seeds with the mean and standard deviation reported.
∗: we down-sample negative and mixed samples to 20% for GPTZero due to the cost.

5.1 Performance on Detecting Unmodified
LLM-Generated Samples

The left part of Table 2 shows the performance
on the test set, where positive samples are gener-
ated by GPT-4 without modification. It shows that
fine-tuned RoBERTa-base models, regardless of
whether using contrastive learning and self-training,
perform better than general-purpose detectors for
generated text. This is especially true with low FPR
like 1% and 0.1%.

Note that compared with the naively fine-tuned
RoBERTa-base model, contrastive learning and
self-training have neutral or negative effects. This
is expected since the test set is composed of pos-
itive samples generated directly by GPT-4, while
contrastive learning and self-training are designed
to improve performance in copy-typed versions.

We have similar observations with positive sam-
ples generated by various versions of GPT and
Claude (Anthropic, 2023). See Appendix C.

5.2 Performance on Detecting Copy-Typed
LLM-Generated Samples

The right part of Table 2 shows the PPR on samples
from tests with violations in 2024H1. Under the
assumption that there are an unknown number of
copy-typed LLM-generated responses among these
samples, a higher PPR at the same FPR indicates
a higher recall in detecting LLM-assisted cheating.
We have the following observations:

1. In-domain fine-tuning is useful, especially
when a low FPR is required: When compar-
ing GPTZero with fine-tuned RoBERTa mod-
els, we observe that although the PPR10% and

2022Q1 2022Q2 2022Q3 2022Q4 2023Q1 2023Q2 2023Q3 2023Q4 2024Q1 2024Q2
Quarter

0

2

4

6
PP

R
0.

1%
 (%

)

ChatGPT
GPT-4

GPT-4V GPT Store

PPR0.1% on Samples from Tests with Violations by Quarter

Model
OpenAI Detector
GPTZero *

RoBERTanaive
RoBERTaerr
RoBERTactr
RoBERTactr+st

Figure 2: Predicted Positive Rate (PPR) on samples
from tests with violations, with 5,000 samples per
quarter. The threshold for each model is selected at
FPR=0.1% on the test set. When comparing models on
the same quarter, a higher PPR indicates a higher recall.

PPR1% of GPTZero are comparable to the best
results, the PPR0.1% is much lower.

2. Contrastive learning (RoBERTactr) is effec-
tive, outperforming both naive fine-tuning
(RoBERTanaive) and error insertion as data
augmentation (RoBERTaerr).

3. Self-training can further improve performance
when combined with contrastive learning.

Figure 2 shows the PPR0.1% on samples from
tests with violations in each quarter. As support-
ive evidence of the increasing prevalence of LLM-
assisted cheating, all fine-tuned RoBERTa models
and GPTZero show a consistent upward trend in
PPR0.1% over time. The benefit of using contrastive
learning and self-training is also consistent over
time, further verifying the observation in Table 2.

Figure 3 shows how the proposed techniques
change the hidden states for (predicted) copy-typed
LLM-generated responses. In RoBERTanaive, a
large portion of real-world predicted positives are
mapped to a separate cluster other than human-
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RoBERTanaive RoBERTaerr RoBERTactr RoBERTactr+st

GPT-4 Generated Human Written Predicted Positives by RoBERTactr+st

Figure 3: t-SNE (Van der Maaten and Hinton, 2008) of hidden states (hi in Section 3.3) by the 4 versions of models,
using 3 groups of samples: (1) unmodified GPT-4-generated samples in the test set, (2) human-written samples in
the test set, and (3) predicted positives by RoBERTactr+st in responses from tests with violations in 2024H1.

written and GPT-generated samples. With error
insertion, contrastive learning, and self-training,
more predicted positive responses are mapped to
the same cluster as GPT-4-generated samples, indi-
cating better ability in detecting copy-typed LLM-
generated responses.

6 Conclusion

In this work, we present a framework for training an
LLM-generated text detector to effectively detect
generated samples with human modification dur-
ing copy-typing. We enhance the existing method
of fine-tuning transformer-based classifiers by in-
corporating contrastive learning and self-training,
and verify these improvements in detecting LLM-
assisted cheating on open-ended writing tasks in
an English proficiency test. This research provides
new possibilities for detecting LLM misuse with
post-generation modifications, such as errors intro-
duced during copy-typing.

For future directions, we plan to further investi-
gate characteristics of LLM-assisted cheating, such
as modeling the copy-typing process. We also plan
to apply the framework to other domains, such
as open-ended speaking questions, where the pro-
cess of reading aloud followed by automatic speech
recognition can be viewed as a more complex post-
generation modification than copy-typing.

Ethical Considerations

Assumption of False Positive Rate (FPR). Our
analysis computes false positive rates among test-
taker responses on data prior to November 30, 2022,
the release of ChatGPT. Some of our analyses as-
sume that this FPR is constant over time. However,
it is possible that FPR will change over time due
to linguistic drift, especially if LLMs begin to in-

fluence how test takers write and speak. While
this requires further study, we think that it is un-
likely that there has been enough drift to impact
the results of this study in a significant way.

Inferring Cheating When LLM Responses Are
Detected. Relatedly, even when a response is cor-
rectly predicted to be LLM-generated, it does not
always imply cheating, depending on the rules of
the language test. For example, test takers might
prepare for a language test by memorizing phrases
or templates from LLM-generated responses that
they then use during their test. These issues should
be considered when constructing policies around
how these types of models should be used in a
proctoring process.

Potential Applications in Test Proctoring. As a
predicted positive does not always imply cheating,
we caution against invalidating test sessions solely
on the basis of a positive prediction of these models.
Instead, other signals need to be considered by
human proctors in order to minimize the risk of
falsely accusing test takers of cheating. If proctors
apply additional scrutiny to tests flagged by LLM-
generated text detectors, confirmation bias should
be evaluated and minimized as well.
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A Dataset Details

A.1 Examples of Writing Questions
1. What is an important life lesson you

have learned in the last few years?

Explain why it was such an important
lesson to learn.

2. If you could go back and redo one
day in your life, what day would you
choose? Explain the reasons for your
choice.

A.2 Examples of Prompt templates
As mentioned in 3.2, we use GPT-4 to generate
a pool of 200 prompt templates, with 100 simple
templates and 100 complex ones. Below are exam-
ples of prompt templates, where {topic} will be
replaced by the writing question.

Simple prompt template example: Write an
essay of the topic below. Ensure your
response does not exceed 120 words:
{topic}.

Complex prompt template example: In the
upcoming English test, you are tasked
with writing an insightful essay on the
given topic:
{topic}
Please ensure that your essay meets the
following requirements:
1. It should be concise and manageable
within a five-minute timeframe. A maximum
word count of 120 words is recommended.
2. Aim to secure a high score
by satisfying the following guidelines
provided by the test conductors:
- Maintain linguistic accuracy by adhering
to correct grammatical norms, punctuation
rules, and capitalization. Both American
and British spellings are acceptable.
- Enhance the readability of your essay
by varying sentence structures and word
choices.
A diverse and sophisticated use of
vocabulary and grammar could help you
fetch a higher score. Please incorporate
your personal experiences, observations,
and relevant examples to support your
views on the topic. Be succinct, yet
informative.

A.3 Example of GPT-4-Generated Samples
Before error insertion: The past few years,
amidst my fervent pursuits in Molecular
Biology and tuneful mindsets on piano
keys, I’ve learned a significant life
lesson: balance. While engrossing myself
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in the scientific mysteries of life, I
discovered that total focus can lead
to burnout - hampering my performance
and detaching me from my much-cherished
piano sessions. Realizing that my love
for music provided vital relaxation,
promoting my scientific understandings
like calm counterpoint amidst intricate
fugue. This lesson changed my perspective
on success, shifting it from all-out
dedication to harmonious equilibrium,
reemphasizing the importance of personal
well-being in any worthwhile endeavor.

After error insertion: (Note: insertions and re-
placements are underlined like this, and deletions
are crossed like this. See Appendix A.6 for set-
tings of error insertion.) BThe past few years,
amidst ny fervent pursuits in Molecular
Biology and tuneful mindsets on piano
keys, I’ve learned a significant life
lesson: balance. While engrossing myself
in the scientific mysteries of life, I
discovered that total focus can lead
to burnout - hampering my performance
and detaching me from my much-cherished
piano sessions. Realizing that my love
for music provided vital relaxation,
promoting my scieqntific understandings
like calm counterpoint amidst intricate
fugue. This lesson changed my perspective
on success, shifting it from all-out
dedication jto harmonious equilibrium,
reemphasizing the importance of personal
well-being in any worthwhile endeavor.

A.4 Prompt Template for Text Correction

Here is the prompt template for GPT-4 to correct
human-written responses in Section 3.2. {essay}
below will be replaced by the human-written re-
sponse.
Correct these mistakes in the following

essay:
1. Typos and misspelling.
2. Missing or extra punctuation or
spaces.
3. Unfinished sentences.
4. Grammar mistakes.
Do not make other changes to the essay.

Return the corrected essay only, without
any extra words before or after it.

The essay:

{essay}

A.5 Effects of Response Length

As mentioned in Section 3.2, in the main dataset,
the average number of tokens per sample is 103
for human-written samples and 166 for GPT-4-
generated samples. While we expect LLM-assisted
responses to be longer than human-written ones in
practice, this may raise concerns about how this
affects the evaluation results. Here we evaluate a
naive logistic regression on the number of tokens
in the same way as in Table 2. On the test set
with GPT-4-generated samples, although the AUC
is non-trivial, the pAUCs at FPR as 1% and 0.1%
are close to random guess, due to the existence of
long human-written samples. In terms of unlabeled
responses from tests with violations, all three PPRs
are close to random guess.

• Test Set with GPT-4-Generated Responses
(the left part in Table 2):

– AUC: 86.59%
– pAUC10%: 63.32%
– pAUC1%: 53.89%
– pAUC0.1%: 51.34%

• Response from Tests with Violations in
2024H1 (the right part in Table 2):

– PPR10%: 11.67%
– PPR1%: 1.14%
– PPR0.1%: 0.11%

A.6 Settings of Error Insertion

We use the following settings in TextAttack (Morris
et al., 2020) for error insertion in Section 3.2.

• Each sample has an 80% of chance to be
modified with TextAttack, using the following
methods in textattack.transformations,
with a random number of modifications:

– WordSwapRandomCharacterInsertion
– WordSwapRandomCharacterDeletion
– WordSwapQWERTY

• Independent from whether TextAttack is ap-
plied, each sample has a 20% chance of drop-
ping the last n words, where n is randomly
selected from {1, . . . , 10}.
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B Model Training Details

We use the following settings for model training:

• Pre-trained weights for RoBERTa-base:
FacebookAI/roberta-base (Liu et al., 2019).

• Max number of tokens: 256 .
• Size of hidden state: dh = 768 (the size of

hidden state in RoBERTa-base).
• Size of projected hidden state: dz = 300 (fol-

lowing Pan et al. (2022)).
• Temperature in contrastive loss: τ = 0.5 .
• Weight of contrastive loss in the training loss

function: λ = 0.5 .
• Optimizer: AdamW (Loshchilov and Hutter,

2019).
• Mini-batch size: N = 16 .
• Learning rate: initial value is 1e-5, with
ReduceLROnPlateau using loss on validation
set.

• Max epochs: 35, with early stopping using
loss on validation set.

The model is trained with 4 NVIDIA T4 GPU
cards with 4-way data parallelism (i.e., each batch
contains 4 mini-batches).

C Additional Results on Detecting
Unmodified LLM-Generated Samples

Since the focus of this work is mainly on detect-
ing copy-typed LLM-generated responses, rather
than unmodified generated responses from various
LLMs, we only include the best two baselines on
the test set in Table 2, OpenAI Detector (Solaiman
et al., 2019) and GPTZero (Tian and Cui, 2023).
We report the results for the rest of them in this
section.

C.1 Additional Baselines
We report results from the following additional
baselines.

• RADAR (Hu et al., 2023) is a fine-tuned
RoBERTa-large model with adversarial learn-
ing, for robust AI-generated text detec-
tion. We used the model checkpoint
TrustSafeAI/RADAR-Vicuna-7B, which was
trained with samples generated by Vicuna-7B-
v1.1 (Zheng et al., 2023).

• ChatGPT Detector (Guo et al., 2023) is
a fine-tuned RoBERTa-base model on HC3
dataset, where positive samples were gener-
ated by GPT-3.5. We used the checkpoint
Hello-SimpleAI/chatgpt-detector-roberta.

• Binocular (Hans et al., 2024) is a zero-shot
detector, based on contrasting two related lan-
guage models with cross-perplexity. Follow-
ing the original paper, we used Falcon7B and
Falcon-7B-Instruct (Almazrouei et al., 2023)
models to compute the Binocular score.

C.2 Evaluation Results on Generated Samples
by Various LLMs

In this section we share the result on test sets, with
the same 100,000 samples from certified tests as
negative samples, and 1,800 positive samples gener-
ated by different versions of ChatGPT and Claude.
Note that all fine-tuned RoBERTa models are the
same trained instances used in Table 2. GPTZero
is evaluated only on GPT-4-generated samples in
Table 2 due to cost.

Table 3 to Table 9 show the results on positive
samples generated by 3 versions of ChatGPT and
4 versions of Claude.

Observations:

1. The performance of baseline detectors is sen-
sitive to the LLM used to generate positive
samples. For instance, Binocular is the best
performing baseline in all the experiments
here, except for a worse performance than
OpenAI Detector on GPT-4. This aligns with
the results in the original paper for Binocular
(Hans et al., 2024), where the recall on GPT-
4-generated samples is lower than those from
GPT-3.5-turbo. However, a comprehensive
evaluation and analysis on this observation is
not the focus of this work.

2. Compared to RoBERTanaive, error insertion,
contrastive learning, and self-training all have
neutral or negative effects on unmodified
LLM-generated samples, aligning with the
observation in Table 2.

950

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/TrustSafeAI/RADAR-Vicuna-7B
https://huggingface.co/Hello-SimpleAI/chatgpt-detector-roberta


Models AUC pAUC10% pAUC1% pAUC0.1%

OpenAI Detector 41.23 49.16 49.96 49.97
RADAR 31.85 47.37 49.75 49.97
ChatGPT Detector 89.31 71.19 56.59 51.23
Binocular 98.83 95.97 87.94 76.15
RoBERTanaive 99.99±0.00 99.92±0.01 99.34±0.10 97.48±0.14

RoBERTaerr 99.94±0.04 99.67±0.19 97.86±1.02 93.28±2.83

RoBERTactr 99.19±0.41 98.77±0.43 97.63±0.16 93.13±0.89

RoBERTactr+st 99.40±0.12 98.86±0.10 97.50±0.37 89.23±3.18

Table 3: Result on the test set with positive samples generated by GPT-3.5-turbo

Models AUC pAUC10% pAUC1% pAUC0.1%

OpenAI Detector 82.25 67.87 57.97 52.20
RADAR 68.35 49.21 49.76 49.97
ChatGPT Detector 52.14 48.74 49.81 49.97
Binocular 74.10 59.55 52.30 50.34
RoBERTanaive 100.00±0.00 100.00±0.00 99.99±0.00 99.85±0.03

RoBERTaerr 100.00±0.00 99.98±0.02 99.84±0.15 98.89±0.88

RoBERTactr 99.99±0.01 99.96±0.01 99.83±0.05 98.68±0.51

RoBERTactr+st 99.98±0.01 99.92±0.04 99.36±0.31 94.31±2.95

Table 4: Result on the test set with positive samples generated by GPT-4.

Models AUC pAUC10% pAUC1% pAUC0.1%

OpenAI Detector 66.58 54.89 51.41 50.19
RADAR 49.43 47.44 49.75 49.97
ChatGPT Detector 74.25 55.17 50.68 49.99
Binocular 94.63 85.17 69.55 57.84
RoBERTanaive 100.00±0.00 100.00±0.00 99.95±0.02 99.74±0.07

RoBERTaerr 99.99±0.00 99.97±0.02 99.80±0.16 98.96±0.90

RoBERTactr 99.99±0.00 99.97±0.01 99.78±0.06 98.44±0.62

RoBERTactr+st 99.98±0.00 99.92±0.03 99.29±0.32 93.78±3.07

Table 5: Result on the test set with positive samples generated by GPT-4o.
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Models AUC pAUC10% pAUC1% pAUC0.1%

OpenAI Detector 35.47 48.43 49.93 49.99
RADAR 31.70 47.37 49.75 49.97
ChatGPT Detector 90.92 74.04 58.45 52.17
Binocular 99.73 98.95 95.12 85.36
RoBERTanaive 100.00±0.00 99.98±0.00 99.79±0.03 98.85±0.11

RoBERTaerr 99.97±0.03 99.82±0.16 98.75±1.06 95.02±2.96

RoBERTactr 99.83±0.09 99.54±0.22 98.72±0.20 94.56±0.89

RoBERTactr+st 99.87±0.03 99.64±0.06 98.31±0.38 89.90±3.35

Table 6: Result on the test set with positive samples generated by Claude-3 Haiku.

Models AUC pAUC10% pAUC1% pAUC0.1%

OpenAI Detector 44.83 49.54 49.84 49.97
RADAR 40.52 47.45 49.76 49.97
ChatGPT Detector 93.06 77.09 59.96 52.66
Binocular 99.14 97.28 91.46 80.95
RoBERTanaive 99.99±0.00 99.96±0.01 99.76±0.04 98.69±0.11

RoBERTaerr 99.96±0.03 99.80±0.18 98.69±1.12 94.53±3.49

RoBERTactr 99.79±0.08 99.53±0.15 98.51±0.20 93.72±0.99

RoBERTactr+st 99.81±0.05 99.53±0.07 97.86±0.47 87.68±3.75

Table 7: Result on the test set with positive samples generated by Claude-3 Opus.

Models AUC pAUC10% pAUC1% pAUC0.1%

OpenAI Detector 60.02 51.49 50.17 50.06
RADAR 38.88 47.41 49.75 49.97
ChatGPT Detector 78.54 60.08 52.50 50.38
Binocular 92.62 85.89 74.37 64.00
RoBERTanaive 100.00±0.00 99.99±0.00 99.95±0.01 99.61±0.08

RoBERTaerr 99.99±0.01 99.96±0.05 99.73±0.23 98.56±0.94

RoBERTactr 99.96±0.04 99.88±0.06 99.59±0.03 98.03±0.54

RoBERTactr+st 99.97±0.01 99.87±0.04 99.21±0.31 93.63±2.90

Table 8: Result on the test set with positive samples generated by Claude-3 Sonnet.

Models AUC pAUC10% pAUC1% pAUC0.1%

OpenAI Detector 60.28 52.27 50.29 50.03
RADAR 49.70 47.47 49.75 49.97
ChatGPT Detector 85.88 64.68 53.27 50.50
Binocular 99.11 97.00 88.52 73.22
RoBERTanaive 100.00±0.00 100.00±0.00 99.96±0.01 99.74±0.05

RoBERTaerr 99.99±0.01 99.97±0.03 99.77±0.22 98.80±1.10

RoBERTactr 99.96±0.01 99.92±0.01 99.74±0.07 98.33±0.59

RoBERTactr+st 99.96±0.02 99.86±0.04 99.21±0.33 93.56±3.05

Table 9: Result on the test set with positive samples generated by Claude-3.5 Sonnet.
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D Additional Results on Detecting
Copy-Typed LLM-Generated Samples

D.1 Predicted Positive Rates at Different FPR
Figure 4 shows the predicted positive rates (PPR,
the proportion of positive predictions) at the thresh-
old that the false positive rate (FPR) on the test set
is 0.1%, 1%, and 10%. Similar to the observations
in Table 2 and Figure 2 in Section 5, the benefit
of in-domain fine-tuning (compared to GPTZero),
contrastive learning, and self-training (compared
to RoBERTanaive) is more observable when a low
FPR such as 0.1% is selected, and the increase in
PPR is mostly consistent over time.
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Figure 4: Predicted Positive Rate (PPR) on samples
from tests with violations, with 5,000 samples per quar-
ter. Similar to Figure 2, the threshold for each model is
selected at a fixed FPR on the test set.
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