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Abstract

The state-of-the-art for training on-device
language models for mobile keyboard ap-
plications combines federated learning (FL)
with differential privacy (DP) via the DP-
Follow-the-Regularized-Leader (DP-FTRL)
algorithm. Two variants of DP-FTRL are used
in practice, tree aggregation and matrix fac-
torization. However, tree aggregation suffers
from significantly suboptimal privacy/utility
tradeoffs, while matrix mechanisms require
expensive optimization parameterized by
hard-to-estimate-in-advance constants, and
high runtime memory costs. This paper
extends the recently introduced Buffered
Linear Toeplitz (BLT) mechanism to multi-
participation scenarios. Our BLT-DP-FTRL
maintains the ease-of-use advantages of
tree aggregation, while essentially matching
matrix factorization in terms of utility and
privacy. We evaluate BLT-DP-FTRL on
the StackOverflow dataset, serving as a
re-producible simulation benchmark, and
across four on-device language model tasks
in a production FL system. Our empirical
results highlight the advantages of the BLT
mechanism and elevate the practicality and
effectiveness of DP in real-world scenarios.

1 Introduction

Language models (LMs) that can predict the next
word for input text are a powerful tool for many ap-
plications. In mobile keyboard applications, LMs
are deployed on device to support various features
(e.g., auto correction, smart completion and sugges-
tion, and next word prediction) to improve users’
typing experience. On-device LMs are typically
small (less than ten million parameters) due to la-
tency requirement and limited on-device resources.
Their performance can be significantly improved
by training from user data (Hard et al., 2018; Xu
et al., 2023); recent work (Wang et al., 2023; Wu
et al., 2024) shows the necessity of training on

user data to achieve high utility even when we can
access large-scale web data and pre-trained large
LMs with billions of parameters.

As mobile-keyboard user data can be highly pri-
vacy sensitive, differential privacy (DP) (Dwork
et al., 2006, 2014) and federated learning
(FL) (McMahan et al., 2017a; Kairouz et al., 2019)
have emerged as best practices for such models.
DP provides a mathematical formulation to upper-
bound the memorization of an individual’s infor-
mation in model training. FL minimizes data expo-
sure by aggregating focused model updates from
decentralized data stored only on user devices. DP
and FL are combined when training on-device lan-
guage models in production mobile keyboard appli-
cations (Xu et al., 2023). Applying DP in a produc-
tion cross-device FL system is challenging as many
DP algorithms require specific pattern of sampling
training data to achieve strong privacy-utility trade-
off. However, a cross-device FL system has limited
control of sampling as clients can only participate
in training when local criteria (e.g., charging, idle,
and connected to an unmetered network) are sat-
isfied (Bonawitz et al., 2019; Huba et al., 2022).
Recently, DP-Follow-the-Regularized-Leader (DP-
FTRL) algorithms (Kairouz et al., 2021; Choquette-
Choo et al., 2023) have achieved superior privacy-
utility trade-off with simpler client participation
requirements, and are used in practice in FL sys-
tems (Xu et al., 2023; Zhang et al., 2023).

Instead of requiring uniform or Poisson sampling
of devices as in previous work (Abadi et al., 2016;
McMahan et al., 2017b), DP-FTRL uses minimum
separation (min-sep) to characterizes the partici-
pation pattern. Min-sep is the smallest number of
rounds between the consecutive participation of
a client, and smaller min-sep necessitates adding
more noise to achieve a desired DP guarantee. Min-
sep is enforced in the FL system by implementing
a timer on each device so that a device only be-
comes eligible for training if a certain period of
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time (e.g., three days) has passed since their last
participation. DP-FTRL algorithms leverage cor-
related noise mechanisms such as tree aggregation
(TREEAGG) (Kairouz et al., 2021) or matrix fac-
torization (MF) (Choquette-Choo et al., 2023) with
the client participation pattern in FL. The banded
MF (BANDMF) mechanism pre-computes matri-
ces to generate correlated noise from independent
noise to achieve stronger DP guarantees than the
TREEAGG mechanism. BANDMF is superior when
the number of rounds and min-sep can be (accu-
rately) estimated before training to optimize matri-
ces. However, min-sep is only known after training
with time-based separation as many system factors
may potentially affect training time 1. Furthermore,
BANDMF consumes more memory for noise gener-
ation, and hence is used less often than TREEAGG

in practice.
In this work, we focus on the challenges of

achieving strong DP guarantees in training pro-
duction LMs in a cross-device FL system. We
discuss how we extend the recent theoretical ad-
vancements of the Buffered Linear Toeplitz (BLT)
mechanism from single participation (Dvijotham
et al., 2024) to multi-participation scenarios, and
adapt BLT to DP-FTRL. We apply BLT-DP-FTRL
to FL in practice, demonstrating its advantages in
flexibility, ease of use, and privacy-utility trade-
offs. The BLT-DP-FTRL algorithm offers flexibil-
ity in handling varying numbers of training rounds,
and robustness to a wide range of min separation
between user participations. Furthermore, BLT-
DP-FTRL simplifies the correlated noise genera-
tion process and reduces memory by exploiting
the parameterization of the Toeplitz matrices. We
empirically evaluate BLT-DP-FTRL on the Stack-
Overflow benchmark dataset and across four on-
device LM training tasks in a production FL system.
Our BLT-DP-FTRL achieves better privacy-utility
trade-off compared to the widely used TREEAGG

mechanism, and comparable results compared to
the state-of-the-art BANDMF mechanism. BLT-
DP-FTRL exhibits desirable robustness properties
in practice, offering a practical and effective so-

1Despite being more complicated in FL systems, it is pos-
sible to enforce round-based separation so that a device only
becomes eligible for training if min-sep rounds has passed
since their last participation. However, it is still challenging
to pre-specify min-sep before training due to the dynamics of
client availability and population size. If the target min-sep
is too large, training might halt because of lacking eligible
devices. If the target min-sep is too small, the MF mechanism
is not optimal for the correlated noise generation.

lution for achieving strong DP in real-world FL
systems.

2 (BLT-)DP-FTRL for Private Learning

2.1 Background

We use (ε, δ)-DP (Dwork et al., 2006, 2014) and
ρ-zCDP (zero-Concentrated DP) (Bun and Steinke,
2016) to quantify the privacy protection: smaller ε
(ρ) correspond to stronger DP guarantees. A formal
definition and more discussion are in App. A.1.

FL with DP We apply the generalized Federated
Averaging (FedAvg) algorithm (McMahan et al.,
2017a; Wang et al., 2021), as shown in Alg. 1 of
App. A. FedAvg is the most common algorithm in
cross-device FL systems. In a training round t of
total n rounds, the server broadcasts a global model
yt to a subset of clients; each client i then updates
their local model yi by SGD, and sends back the
model delta; the model deltas are aggregated and
used as a pseudo gradient on the server to update
the global model. DP is achieved by clipping the l2
norm of the model delta to control the sensitivity
(contribution of each device), and then adding noise
to the aggregated deltas on the server.

While our primary focus is federated learning
with decentralized data in this paper, Alg. 1 can
also be applied in datacenter to achieve user-level
DP (Xu et al., 2022; Chua et al., 2024; Charles
et al., 2024). When using only one batch of a single
sample for gradient computation in the ClientUp-
date function and TREEAGG for correlated noise,
Alg. 1 coincides with the DP-FTRL algorithm de-
scribed in (Kairouz et al., 2021). The DP guaran-
tee is determined by noise calibrated to sensitiv-
ity, which depends on clip norm noise multiplier
σ, the correlated noise mechanism, total number
of rounds T , and client participation pattern (min-
sep b). Clip norm ζ and clip norm noise multi-
plier σ are used as algorithmic hyperparameters,
similar to independent noise mechanism (e.g., DP-
SGD/DP-FedAvg (Abadi et al., 2016; McMahan
et al., 2018)). However, instead of directly apply-
ing independent Gaussian noise of standard devia-
tion σζ, correlated noise are generated to privatize
model updates.

MF for DP-FTRL DP-FTRL (Kairouz et al.,
2021) adds correlated noise to achieve strong
privacy-utility trade-offs, observing that privatizing
the prefix sum of model updates are essential for
privatizing the training process. The intuition of
privatizing prefix sum is easier to understand when
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server optimizer is SGD, as the iterative process of
per-round updates is equivalent to updating with
prefix sum, i.e.,

yt = yt−1 − ηs∆t = y−1 − ηs
t∑

j=0

∆j .

We can write similar formulation for additional
linear operation in optimization, such as momen-
tum in SGD. In practice, it is often easier to get
privatized per-round update by (conceptually) sub-
tracting the privatized prefix sum from two consec-
utive rounds, and use the privatized update ∆̃t in
various server optimizers, guaranteed by the post-
processing property of DP.

We represent the model updates for n rounds as
a matrix X ∈ Rn×m, where each row is the sum of
clipped updates (i.e., Xt,: :=

∑
i∈Qt ∆t

i ∈ Rm
from Alg. 1), we aim to privatize AX , where
A ∈ Rn×n is a lower triangular matrix of ones,
i.e., Ai,j = 1,∀i ≤ j and Ai,j = 0,∀i > j.
Given the privatized prefix sum ÃX , the privatized
model update is ∆̃t ← ÃXt,: − ÃXt−1,:, and
Alg. 1 is privatized because of the post-processing
property of DP. Kairouz et al. (2021) adopts the
TREEAGG mechanism to privatize AX . Recent
work suggest a general matrix factorization frame-
work (Choquette-Choo et al., 2023) can be used
to achieve even stronger privacy-utility trade-offs,
and both TREEAGG-DP-FTRL and the popular DP-
SGD algorithm (Abadi et al., 2016) are special
cases in the MF-DP-FTRL framework. MF mech-
anism considers the factorization of A = BC
and privatizes CX by adding independent noise
Z ∈ Rn×m with standard deviation σζ. We can
use the (pseudo-)inverse of the C matrix to gen-
erate the correlated noise in the streaming set-
ting (Choquette-Choo et al., 2023),

ÃX = B(CX + ζZ) = AX + ζC−1Z

⇒ ∆̃t = ∆t + (ζC−1Z)t,: (1)

Eq. (1) also suggests the alternative interpretation
of correlated noise in DP-FTRL: at round t, the
noise added in previous rounds can be cancelled
when C−1

t,: is negative.
TREEAGG can be written in MF form, and the

stronger variance reduction variant (TREEAGG-
FULL) (Honaker, 2015) is equivalent to setting
B = AC−1 ∈ R2l−1×(2l−1) by computing the
Moore-Penrose pseudoinverse of C (Denisov et al.,
2022). However, the MF-basedTREEAGG-FULL

does not have a memory-efficient implementa-
tion, and consumes nm memory. In this paper,
we consider memory-efficient TREEAGG (Kairouz
et al., 2021) that is widely used in industry (Xu
et al., 2023), and TREEAGG-FULL (Denisov et al.,
2022) that achieves better privacy-utility trade-
off but less memory and computation efficient.
BANDMF (Choquette-Choo et al., 2023) is the
state-of-the-art for FL, which optimizes matrices
with estimated min-sep bands. More related work
with detailed discussion are in App. A.3.

2.2 BLT Mechanisms in DP-FTRL

We now consider lower-triangular Toeplitz matrix
in MF mechanism, i.e., C := LtToep(c) ∈ Rn×n
where Ci,j = ci−j , ∀i ≤ j otherwise Ci,j =
0. Buffered-linear Toeplitz (BLT) matrices (Dvi-
jotham et al., 2024) parameterize C by θ ∈ (0, 1]d

(the “buffer decay” parameters) and non-negative
ω ∈ Rd+ (the “output scale” parameters), where the
Toeplitz coefficients are given by

ci =

{
1 i = 0∑

j∈[d] ωjθ
i−1
j i > 0.

(2)

The BLT(ω, θ) matrices have many useful
properties, most importantly for our purposes:
(1) Streaming multiplication by C (Z = CẐ for
Z, Ẑ ∈ Rn×m) can be computed efficiently using
only O(dm) memory and O(dm) time per round
t, without fully materializing C, Z, or Ẑ. Hence
C is referred as a d-buffer BLT. (2) The inverse
of a d-buffer BLT (C = BLT(ω, θ)) is another
d-buffer BLT (C−1 = BLT(ω̂, θ̂)), and we can
efficiently compute Toeplitz coefficients of C−1

using Eq. (2) applied to (ω̂, θ̂). We now derive
the correlated noise generation schema for C−1Z
in Eq. (1) based on the BLT properties. We can
first derive the BLT parameters (θ̂, ω̂) of C−1 such
that C−1 = BLT(θ̂, ω̂), and then generate the cor-
related noise based on (θ̂, ω̂) in streaming setting.
However, we show a simpler alternative that di-
rectly uses the BLT parameters (θ, ω) to generate
streaming correlated noise Ẑ.

Applying the parameterization in Eq. (2) to
(Dvijotham et al., 2024, Alg 1), and initializing
buffers S−1 ← 0 ∈ Rd×m, we can efficiently
compute Zt,: from Ẑt,: in the streaming setting,
Zt,: = Ẑt,:+ω

TSt−1,St = diag(θ)St−1+1dẐt,:.
We rearrange the update equations to get Ẑ from
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Z and S,

Ẑt,: = Zt,: − ωTSt−1,

St = diag(θ)St−1 + 1dẐt,:. (3)

To efficiently generate correlated noise Ẑt,: at
round t, we only need to materialize the inde-
pendent noise Zt,: ∈ R1×m and use the buffers
St−1 ∈ Rd×m in Eq. (3). The efficient correlated
noise generation parameterized by BLT parameters
(θ, ω) for C−1 (instead of C) did not appear in Dvi-
jotham et al. (2024) and is new to this work. Eq. (3)
intuitively shows the noise cancellation view of cor-
related noise, where the previous noises are tracked
in the states decaying with θ ∈ (0, 1], and then
subtracted in the current round after scaling with
ω.

For completeness, we provide the streaming mul-
tiplication algorithm of Z = CẐ and Ẑ = C−1Z
for C = BLT(θ, ω) in Alg. 2 and Alg. 3, respec-
tively. Alg. 2 is a direct application of (Dvijotham
et al., 2024, Alg 1) and only used to derive Alg. 3,
which is our streaming algorithm for generating
correlated noise with BLTS using only dm mem-
ory. Finally, we apply the streaming correlated
noise Ẑ by BLT from Alg. 3 (using Eq. (3)) in
Alg. 1 for the BLT-DP-FTRL algorithm, i.e.,

∆̃t ←
∑

i∈Qt

∆t
i + Ẑt,:. (4)

3 Multi-participation BLTS

We study how to optimize for the BLT parameters
θ ∈ Rd and ω ∈ Rd in Eq. (3) for the BLT-DP-
FTRL algorithm, and account for DP guarantees.
Particularly, we generalize the BLT optimization
and DP accounting in (Dvijotham et al., 2024) from
single participation to multiple participations

3.1 Sensitivity Under Multiple Participations

We provide additional background about multi-
participation sensitivity definition, computation
and usage in DP in App. C.2, and only discussing
the main results in this section. We further derive
a lower bound for sensitivity in App. C.3 used for
TREEAGG in simulation experiments in Sec. 4.

Let C = LtToep(c) ∈ Rn×n be a lower-
triangular Toeplitz matrix defined by the sequence
of Toeplitz coefficients c = (c0, c1, . . . , cn−1) ∈
RN as in Sec. 2.2. We assume ci ≥ 0 and c is
non-increasing, and consider the sensitivity of C.

Let ci = C:,i be the ith column of C, so c0 = c
and generally

cj =
(

0, 0, . . . , 0︸ ︷︷ ︸
j zeros

, c0, c1, . . . cn−j−1

)
∈ Rn.

The sensitivity of general Toeplitz matrices
with decaying coefficients is recently discussed in
Kalinin and Lampert (2024, Thm. 2), which we
restate in Thm. 3.1 with our notation. The partici-
pation pattern π? simply puts the k participations
as early as possible, with each participation sepa-
rated by exactly b. This sensitivity computation is
important for both DP accounting and optimizing
for BLT parameters in Sec. 3.3.

Theorem 3.1. Given a Toeplitz strategy matrix
C = LtToep(c) ∈ Rn×n with c non-increasing
and non-negative. Then, sensΠb

(C) can be com-
puted in time O(kn) as

sensNΠ
(C) = ‖Cu(π?)‖2

where π? is given by

π? = (0, b, 2b, . . . , (k − 1)b). (5)

3.2 Analytical Utility as Objective
While our end goal is good learning performance
(as measured by held-out test set accuracy), we can
estimate the utility of a matrix mechanism for DP-
FTRL by quantifying the error it introduces into
prefix sum estimates. The total noise introduced
by the DP mechanism into prefix sum estimates in
Eq. (1) will be BZ = ÃX − AX where Z ∈
Rn×m is IID Gaussian noise with σ determined
according to the desired DP guarantee, and B =
AC−1. We consider two error metrics based on the
standard deviation of the total noise added to the
prefix sum estimates. The MaxError is the worst-
case standard deviation in the estimate of any prefix
sum, which can be computed as

MaxError(B) := max
i∈[n]

√∑

j∈[n]

B2
i,j ;

similarly the root-mean-squared error over all iter-
ations i ∈ [n] is

RmsError(B) :=

√∑

i∈[n]

∑

j∈[n]

B2
i,j/n.

The standard deviation σ of the noise Z must
scale linearly in the sensitivity of C to achieve a
target DP guarantee, so our final measures of noise
account for this:

MaxLoss(B,C) := MaxError(B) · sensΠ(C) (6)
RmsLoss(B,C) := RmsError(B) · sensΠ(C) (7)
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Eqs. (6) and (7) measure the distribution of noise
to approximate the privacy-utility trade-off as the
loss, which do not depend on the noise multi-
plier α = σ/ sensΠ(C) that is directly used in
accounting for the DP guarantees, as discussed
in (Dvijotham et al., 2024, Introduction). For
optimized C in matrix factorization mechanisms
(e.g., TREEAGG, BANDMF, and BLT), specific
DP guarantees are achieved by scaling α (and cor-
responding σ in Alg. 1). The total noise on the
prefix sum BZ also scales MaxLoss and RmsLoss
by α. Hence, without loss of generality, we use
RmsLoss and MaxLoss to compare the optimal-
ity of different matrix factorization mechanisms,
which is equivalent to assuming α = 1 that corre-
sponds to (ε = 5.3, δ = 10−7)-DP (for example).

Note we deviate from the definitions of (Dvi-
jotham et al., 2024, arXiv v3), in order to distin-
guish the error introduced by B from the total loss
(which is what we optimize and use to compare
mechanisms), which incorporates the sensitivity of
C.

3.3 Optimizing Multi-participation BLTS

For the typical scale of n < 105 in FL systems,
rather than deriving closed forms for sensitivity and
error as in Dvijotham et al. (2024), we use an alter-
native approach that is flexible and simple to im-
plement. Recall the properties of BLTs discussed
in Sec. 2.2, we parameterize the optimization of
the BLT by the pair (θ, θ̂). Dvijotham et al. (2024,
Lem. 5.2) implies given a pair (θ, θ̂), there exist
unique (ω, ω̂) such the BLT(θ, ω)−1 = BLT(θ̂, ω̂),
and we can compute ω and ω̂ in time O(d2); this
result is summarized below as Alg. 5. Thus, given
a (θ̂, θ), we can efficiently compute the Toeplitz
coefficients of C (using Eq. (2) applied to (θ, ω))
and C−1 (applying Eq. (2) to (θ̂, ω̂)). From the
Toeplitz coefficients of C we can then efficiently
compute sensitivity using Thm. 3.1. RmsError can
be computed efficiently from the Toepltiz coeffi-
cients of C−1 following the approach of McKenna
(2024, Prop. 3.1), and a simple generalization
of this approach applies to to MaxError as well.
For completeness we summarize in the following
proposition:

Proposition 3.2. Let C = LtToep(c) ∈ Rn×n
be a lower-triangular Toeplitz matrix defined by
Toeplitz coefficients c = (c0, c1, . . . , cn−1) ∈ RN.
Then C−1 is also a lower-triangular toeplitz ma-
trix; let C−1 = LtToep(ĉ). Then, B := AC−1 =

LtToep(b) where bi =
∑i−1

j=0 ĉi. Further, we can

compute

MaxError(B) =

√∑

i∈[n]

b2i

and
RmsError(B) =

√∑

i∈[n]

(n− i)b2i /n.

4 Simulation Experiments

Test Accuracy RMS Max
Mechanism ε = 2 ε = 8 Loss Loss

BANDMF (band=342) 23.21 24.86 10.21 8.60
TREEAGG-FULL 22.54 24.47 14.98 12.47
BLT (nbuf=2,k=1) 22.37 24.64 11.80 11.15
BLT (nbuf=5,k=1) 22.40 24.63 11.40 10.87
BLT *(nbuf=2,k=6) 23.09 24.83 10.81 9.34
BLT *(nbuf=3,k=6) 23.13 24.87 10.79 9.33
BLT *(nbuf=4,k=6) 23.13 24.83 10.79 9.33
BLT *(nbuf=5,k=6) 23.07 24.84 10.79 9.33

Table 1: Comparing mechanisms in terms of test-set accuracy
on the StackOverflow NWP task. All runs are based on n =
2052 rounds of training with k = 6 participations and min-
sep b = 342. BLTS are optimized for MaxLoss. Results are
visualized in Fig. 11 in App. G.

We run simulation experiments before applying
our BLT-DP-FTRL algorithm in Sec. 2.2 to train
production LMs. The BLT parameters (θ, ω) are
optimized with our multi-participation approach
in Sec. 3. We present private-utility trade-off on
StackOverflow benchmark dataset in Sec. 4.1, and
MaxLoss, RmsLoss across a range of scenarios
in Sec. 4.2. We compare BLTS to both flexi-
ble TREEAGG (Kairouz et al., 2021) and state-of-
the-art BANDMF (Choquette-Choo et al., 2023)
(see Sec. 2 for more discussion). In the simu-
lation experiments, we are maximally generous
in evaluating TREEAGG mechanisms, consider-
ing the memory cost to be dlog2 ne, while cal-
culating RmsError and MaxError using the opti-
mal TREEAGG-FULL (Denisov et al., 2022) with-
out memory-efficient implementation, and use the
lower bound of Remark C.1 to account for overly
optimistic privacy-utility trade-off. Thus, in all
cases we over-estimates the true performance of
the binary tree, but nevertheless we show BLTS

have superior performance in terms of both error
and memory.

4.1 StackOverflow NWP Benchmark

We follow Choquette-Choo et al. (2023) for Stack-
Overflow next word prediction (NWP) experiments,
including all hyperparameter tuning, and vary
only the DP mechanism to compare BANDMF,
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Figure 1: Comparison of mechanisms in terms of prefix-
sum root-mean-squared error at a fixed privacy level. BLTS
were optimized for either RmsLoss (“mean”) or MaxLoss
(“max”), and for either k = 2 or k = 5 participations at
min-separation b = 400. BandMF matrices were optimized
for b ∈ {200, 400, 800} (the BANDMF optimization does
not depend on k, and previous work optimizes for RmsLoss).
We also include TREEAGG-FULL using the optimal (“full
Honaker”) decoding (for which a memory-efficient noise gen-
eration algorithm is unknown). We observe that all the
BLTS perform competitively with BANDMF, and can out-
perform BANDMF when the min-separation differs signifi-
cantly from the number of bands. For example, with k = 2
participations (left panel) our BLT(k = 2,mean) (light blue)
BLT outperforms BandMF(b = 400) when min separation is
less than 390 or greater than 700.

TREEAGG-FULL, and BLTS. Results are sum-
marized in Tab. 1. BANDMF still achieves the
highest performance, as in this scenario we train
for a fixed known number of rounds, with an ex-
actly known max participations k = 6 and min-
separation b = 342. TREEAGG-FULL and BLTS

optimized for only k = 1 participation (Dvijotham
et al., 2024) are noticeably worse, but our multi-
participation-optimized BLTS are very competi-
tive with BANDMF with only 2 or 3 buffers (with
a 171× and 114× reduction in runtime memory
overhead). In the relatively large signal-to-noise
ratio regime (ε = 8), BLT? achieves comparable or
even better learning accuracy though the RmsLoss
(MaxLoss) is slightly worse.

4.2 RmsLoss and MaxLoss Experiments

Comparing BLT to TREEAGG-FULL and
BANDMF We further show that BLT is bet-
ter than TREEAGG-FULL, and more flexible than
BANDMF by computing RmsLoss (MaxLoss) in
a wide range of scenarios. Because the BANDMF
mechanisms are optimized for RmsLoss, we com-
pare on this metric in Fig. 1. However, in both our
StackOverflow and Gboard experiments described
subsequently, we deploy BLT mechanisms opti-
mized for MaxError following (Dvijotham et al.,
2024). For completeness, we provide Fig. 12
in App. G that compares the mechanisms on
MaxLoss. We observe that all the BLTS per-

form competitively with BANDMF, and can outper-
form BANDMF when the min-sep differs signifi-
cantly from the number of bands. For example, in
Fig. 1, with k = 2 participations (left panel) our
BLT(k = 2,mean) (light blue) BLT outperforms
BandMF(b = 400) when min separation is less
than 390 or greater than 700.

We provide more results on the robustness of
BLTS to min-sep b, number of rounds n, and com-
paring with BANDTOEP in App. E.

5 Production LMs for Mobile Keyboard

Production Setting Our BLT-DP-FTRL algo-
rithm is flexible in min-sep (shown in Sec. 4.2),
achieves competitive privacy-utility performance
for relatively large signal-to-noise ratio (shown in
Sec. 4.1), and saves computation and memory cost
(shown in Tab. 3), which motivates the usage in pro-
duction FL systems. We follow (Xu et al., 2023)
for the production setting, and provide additional
details including the configuration for baselines in
App. G.1.
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Figure 2: NWP evaluation accuracy and the dervied privacy-
utility trade-off curves for training the Portuguese LM in Portu-
gal (pt-PT) with DP-FTRL in a FL system. Additional curves
for es-ES, id-ID, and pt-BR are provided in Figs. 13 to 15.
BLTS achieve better privacy-utility trade-off.

Main Results We summarize the privacy and
utility results for es-ES, id-ID, pt-BR, and pt-PT
LMs in Tab. 2, and show the privacy-utility curves
for training pt-PT in Fig. 2. We provide additional
curves for other LMs in Figs. 13 to 15 inApp. G,
and discuss the observations here. (1) Most of the
models achieve DP guarantee of ε < 10 with ex-
ception of ε ∼ 10 for pt-PT due to the challenge
of small population; the pt-BR model trained with
BLT-16.1 achieves ε < 1 at round 2000. DP guar-
antees of ε < 10 is commonly used for machine
learning, and ε < 1 are considered strong guar-
antees (Ponomareva et al., 2023). To achieve sin-
gle-digit DP guarantees in practice without sacrific-
ing the utility, the production LMs are trained with
large number of clients per round (known as report
goal in FL systems). We use typical report goal
6.5K (Xu et al., 2023) for es-ES, id-ID and pt-BR,

847



LM Rnds Utility Privacy
NWP(%) WMR(-%) WPM(+%) Mech-σ/MinS/MaxP zCDP DP-ε

es-ES 1280 14.07 ± 0.06 - - BANDMF-1.411 / 296 / 4 0.29 4.82
13.98 ± 0.11 0.38 0.13 BLT-7.379 / 300 / 4 0.16 3.46

id-ID 2350 5.80 ± 0.10 - - TREEAGG-7 / 437 / 5 0.94 9.29
5.87 ± 0.04 0.09 0.07 BLT-7.379 / 447 / 5 0.20 3.93

pt-BR 2000
13.77 ± 0.36 - - BANDMF-4.523 / 2001 / 1 2.45e-2 1.32
13.86 ± 0.25 -0.04 0.04 BLT-8.681 / 2001 / 1 2.23e-2 1.25
13.96 ± 0.18 -0.13 0.18 BLT-16.1 / 1181 / 2 1.40e-2 0.98

pt-PT
430 13.58 ± 0.06 - - TREEAGG-7 / 91 / 4 1.33 11.27
430 13.76 ± 0.11 0.38 -0.24 BLT-3.12 / 92 / 4 1.11 10.19
320 13.66 ± 0.04 0.07 -0.12 BLT-5.5 / 49 / 6 0.75 8.19

Table 2: Privacy and utility of production LMs. Utility are measured by NWP accuracy averaged between r ± 50 rounds for
round r (r± 10 for pt-PT), and the relative WMR decrease and WPM increase in A/B test; privacy shows the key parameters and
corresponding DP guarantees, and smaller DP guarantees represent stronger protection; DP-ε is accounted for small δ = 10−10;
estimated population sizes are es-ES (4.21M), id-ID (8.9M), pt-BR (16.6M), and pt-PT (0.83M). We run additional experiments
on pt-BR and pt-PT with larger noise multipliers linearly scales with larger report goal for the BLT mechanism.

and use a smaller report goal 3K for pt-PT with a
smaller population. We additionally run BLT-D-
P-FTRL with larger report goal and linearly scale
up the noise multiplier to keep the signal-to-noise
ratio for utility: BLT-16.1 with report goal 12K
for pt-BR and BLT-5.5 with report goal 6K for
pt-PT. The resulting min-seps in pt-BR and pt-PT
almost halved when the report goals are increased.
We use noise multiplier 7 for TREEAGG, which is
determined by StackOverflow simulation experi-
ments (Xu et al., 2023). (2) BLT achieves better
privacy-utility trade-off compared to TREEAGG

and BANDMF. BLT achieves comparable and
slightly better NWP accuracy for the models in
Tab. 2 and Fig. 2, and stronger DP guarantees. The
model performance are further verified by A/B test
in the production application comparing BLT mod-
els to baseline models for WMR and WPM, where
we target on improved or neutral utilities. The
advantage of BLT in privacy-utility trade-off is
clearly demonstrated in Fig. 15, and BLT is better
than not only TREEAGG, but also BANDMF across
the production LM training. The practical min-sep
can be quite different from the estimated min-seps
for optimizing BANDMF and BLT matrices, e.g.,
∼300 compared to 400 for es-ES, and 2000+ com-
pared to 1000 for pt-BR. As BLT is more flexible
on min-sep estimation, the challenge of reliably es-
timating min-sep resulting in BLT achieving even
stronger privacy-utility trade-offs than BANDMF
in the production LMs training.

Extrapolation We extrapolate the results for
production setting by assuming linearly increase
report goal and noise multiplier, and changing min-
sep will not change the utility, and hence we can
study the effect on DP without actually training
the model. We provide results and detailed discus-

sion in App. G.2, which further demonstrate the
advantages of BLT-DP-FTRL.

6 Concluding Remarks
This work addresses the critical challenge of achiev-
ing strong DP in FL for on-device LMs. We have
successfully extended the BLT mechanism to multi-
participation scenarios and integrated it into the
DP-FTRL framework. Our BLT-DP-FTRL algo-
rithm demonstrates superior privacy-utility trade-
offs compared to the widely-used TREEAGG mech-
anism while maintaining its ease of use. Further-
more, it rivals the state-of-the-art BANDMF mech-
anism in performance, yet without the associated
complexities and high memory costs. Through
extensive empirical evaluations on both a bench-
mark dataset and real-world production tasks, we
have showcased the practicality and effectiveness
of BLT-DP-FTRL, paving the way for its broader
adoption.

The empirical results in this paper primarily
focus on the cross-device FL setting where pri-
vacy amplification by sampling is challenging in
practice. The discussions (e.g. Tab. 3) can also
be applied to centralized setting for user-level
DP or example-level DP. In centralized setting,
BANDMF (Choquette-Choo et al., 2023) with am-
plification can achieve better privacy-utility trade-
off measured by RmsLoss among the mentioned
mechanisms, when number of rounds n and model
dimension m is not too large for optimizing and
applying the mechanism. When n and m are large,
BLT and BANDTOEP (McKenna, 2024) (similarly,
BANDFHU (Kalinin and Lampert, 2024)) can both
be applied, where BLT has less optimization cost
for very large n (shown in Fig. 3), while BAND-
TOEP can apply existing amplification by sam-
pling.
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A Additional Background on Federated Learning (FL) with Differential Privacy (DP)

A.1 DP Formulation

We present the definition of (ε, δ)-DP (Dwork et al., 2006, 2014) to quantify the privacy protection.

Definition A.1 ((ε, δ)-Differential Privacy). A randomized algorithmM satisfies (ε, δ)-DP for D if for
any two neighboring datasets D, D′ and for all S ⊂ Range(M):

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Smaller (ε, δ) values suggest stronger DP guarantees, and we often measure ε at a fixed small δ = 10−10.
DP-FTRL also uses an alternative definition, ρ-zCDP (zero-Concentrated DP) (Bun and Steinke, 2016)
designed for Gaussian mechanism, and smaller ρ suggests stronger DP guarantees. We use PLD (privacy
Loss Distributions) accounting (Doroshenko et al., 2022; DP Team, 2022) to convert ρ-zCDP to (ε, δ) DP.
When applying DP in FL, the neighboring datasets D, D′ are defined by zeroing out the contribution of all
data on a user device. More discussions on neighboring dataset for the streaming setting in learning, and
connection to DP guarantees are provided in Sec. 3.1.

A.2 DP-FTRL for DP FL algorithm

Algorithm 1 FedAvg (McMahan et al., 2018) with DP-FTRL (Kairouz et al., 2021) for DP FL

input : clients per round m, learning rate on client ηc and on server ηs, momentum β = 0.9, total number
of rounds T , clip norm ζ, clip norm noise multiplier σ,

Initialize model y−1 with pretraining
Initialize server optimizer state P
Initialize correlated noise state S with σζ

for each round t = 0, 1, 2, . . . , n− 1 do
Qt ← (at least m users that did not participate
in the previous b rounds)
for each user i ∈ Qt in parallel do

∆t
i ← ClientUpdate(i, yt−1)

∆̃t,S ←AddCorrNoise(S,∑i∈Qt ∆t
i)

yt,P ←ServerOpt(yt−1, 1
m∆̃t, ηs, β,P)

function ClientUpdate(i, xi)
G ← (batches of user i’s local data)
for batch g ∈ G do
yi ← yi − ηc∇`(yi; g)

∆← yi − y(0)
i

∆′ ← ∆ ·min
(

1, ζ
||∆||

)

return ∆′

A.3 TREEAGG and BANDMF in DP-FTRL

TREEAGG can be written in MF form by recursively defining C l ∈ {0, 1}(2l−1)×2l−1
l = dlog2 ne,

as C1 = [1], C l = [[C l−1,0], [0,C l−1], [1,1]], where each row Ci,: represents a node in the binary
tree and the ones in Ci,: represent the leaf nodes for a subtree. After adding noise Z to every tree
node, vanilla TREEAGG uses matrix B to selects and aggregates tree nodes to privatize the prefix sum,
i.e., B ∈ {0, 1}2l−1×(2l−1) has Bi,j = 1,∀j = 2k+1 − 1, k ∈ κ, i =

∑
k∈κ 2k, otherwise Bi,j = 0.

Several schemes improve vanilla binary TREEAGG for prefix sums appear in the literature. Kairouz
et al. (2021) efficiently implemented TREEAGG with partial variance reduction (Honaker, 2015), which
leverages the recursive structure of C and only needs dlog2 nem memory to generate correlated noise.
The full variance reduction trick (Honaker, 2015) can further improve the performance and is equivalent
to setting B = AC−1 ∈ R2l−1×(2l−1) by computing the Moore-Penrose pseudoinverse of C (Denisov
et al., 2022) (we use an abuse of notation C−1 for pseudoinverse). However, the full variance reduction
TREEAGG (TREEAGG-FULL) does not have a memory-efficient implementation, and consumes nm
memory. Another variant (Andersson and Pagh, 2024) is more memory-efficient, but achieves suboptimal
performance compared to MF approaches (Fichtenberger et al., 2022). In this paper, we primarily consider
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TREEAGG (Kairouz et al., 2021) that is widely used in industry (Xu et al., 2023), and TREEAGG-
FULL (Denisov et al., 2022) that achieves better privacy-utility trade-off but less memory and computation
efficient, to represent the tree aggregation mechanisms.

BANDMF Choquette-Choo et al. (2023) exploits the banded structure, i.e., C ∈ Rn×n where Ci,j =

0,∀|i − j| ≥ b̂, to simplify the optimization and privacy accounting for MF mechanisms. BANDMF
successfully applied MF mechanisms to the FL system for the first time. When fixing all the other
configurations for training a production LM, BANDMF improved the DP guarantee from ρ = 0.52-zCDP
by TREEAGG to ρ = 0.24-zCDP. However, BANDMF has to estimate the band size b̂ and total rounds
n for optimizing matrices before training, and the performance quickly drops when the actual min-sep
b in FL training is smaller than b̂, or the training round is more than n. BANDMF improves memory
usage of MF from n×m to b̂×m for correlated noise, but the typical value of min-sep b in FL is still
hundreds to thousands for strong DP guarantees. More recently, BANDFHU (Kalinin and Lampert, 2024)
and BANDTOEP (McKenna, 2024) optimize banded Toeplitz matrices for larger n and exploit Toeplitz
structure for computation efficiency, but they have not been shown to outperform BANDMF in the FL
setting.

B Stream Multiplication by BLT matrices C and C−1

Algorithm 2 Stream Mult. by BLT(θ, ω) (Dvijotham et al.,
2024)

Input:
Input stream Ẑ ∈ Rn×m
θ ∈ Rd, ω ∈ Rd for C = BLT(θ, ω)

Output:
The rows Zt,: of Z = CẐ

Initialize buffers S−1 ← 0 ∈ Rd×m
for t = 0, . . . , n− 1 do
Zt,: = Ẑt,: + ωTSt−1

. Decay each buffer by θ and add Ẑt,: to each
St = diag(θ)St−1 + 1dẐt,:

Output Zt,:

Algorithm 3 Stream Mult. by BLT−1(θ, ω)

Input:
Input stream Z ∈ Rn×m
θ ∈ Rd, ω ∈ Rd for C = BLT(θ, ω)

Output:
The rows Ẑt,: of Ẑ = C−1Z

Initialize buffers S−1 ← 0 ∈ Rd×m
for t = 0, . . . , n− 1 do
Ẑt,: = Zt,: − ωTSt−1

. The buffer update is the same as Alg. 2
St = diag(θ)St−1 + 1dẐt,:

Output Ẑt,:

C More discussion on BLT-DP-FTRL

C.1 Comparing DP-FTRL Mechanisms

We summarize DP-FTRL mechanisms in Tab. 3 in App. C and show the advantages of BLT-DP-FTRL.
Our BLT mechanism can optimize either MaxLoss or RmsLoss for generating correlated noise (detailed in
Sec. 3.3 following (Dvijotham et al., 2024)), while previous MF mechanisms in practice primarily consider
RmsLoss (Choquette-Choo et al., 2023; McKenna, 2024). It is possible to extend the previous mechanisms
to use MaxLoss, while it is still an open problem which loss format corresponds better with learning
performance when running with the DP-FTRL algorithms. TREEAGG, especially TREEAGG-FULL, is
equivalent to considering RmsLoss though the mechanism is predefined without explicit optimization
cost; and we present the lower memory overhead (dlog2(n)e ×m) for TREEAGG while TREEAGG-FULL

without an efficient algorithm yet actually needs .
BLTs achieve better privacy-utility trade-offs than TREEAGG-FULL in simulation benchmark experi-

ments (see Sec. 4), and clearly outperforms TREEAGG in production cross-device FL experiments (see
Sec. 5), as lower noise is added in BLTs. While BANDMF (Choquette-Choo et al., 2023) can add lowest
noise (measured by RmsLoss in Fig. 1), BLTs have lower mechanism optimization cost and memory
overhead. Moreover, Secs. 4 and 5 show the learning performance of BLTs are often comparable with
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Mech Loss Mech. opt.
cost

Memory
overhead

Noise
Added

(n, b)-
fragility

BLT (ours) MaxLoss/
RmsLoss

Low
(O(n) )

Low
(∼ 4×m )

Low Low

BANDMF RmsLoss High
(O(n2))

High
(b̂×m )

Lowest Med

BANDTOEP RmsLoss Low
(O(n))

High
(b̂×m)

Low Med

TREEAGG RmsLoss* Lowest
(predefined)

Med
(dlog2(n)e ×m)

High Low

Table 3: Summary of mechanisms considered, evaluated in terms of: mechanism optimization cost, how expensive is it to
compute the mechanism C; O(·) gives the cost of a single gradient calculation. The next two columns relate to the deployment
of the mechanism in a ML training system: memory overhead is the additional state (as a multiple of the model dimension m)
that the server needs to maintain; the per-round runtime cost is also proportional to this value. The noise added is categorized
subjectively, for details see examples in Fig. 1. (n, b)-fragility reflects the degree to which the mechanisms performance
degrades when total number of rounds n and min-sep b are poorly estimated, see discussion on quantitative results in Figs. 4 to 7.
The conclusion: BLTS perform well on all aspects.

BANDMF under the same privacy guarantee in practical settings, though BLTs’ RmsLoss is slightly worse.
The memory overhead of BLTs is d×m where we empirically observe that buffer size d = 4 achieves
low losses and further increasing d does not further improve in our empirical settings of total rounds n
and min-sep b. The BLT memory overhead of d ∼ 4 is smaller than TREEAGG where dlog2(n)e ∼ 11,
and much smaller than typical b̂ ∼ X00 for BANDMF and BANDTOEP. BANDTOEP (McKenna, 2024)
suggested small b̂ is preferred when using amplification by sampling in the many participation settings;
however, sampling is generally not possible in practical cross-device FL systems.

As shown in Figs. 4 to 7, BLT is also more robust than banded MF mechanisms when number of
total rounds n and min-sep b are not accurately estimated. Specifically, it is unclear how to run Banded
MF mechanisms beyond the estimated n after optimizing the C ∈ Rn,n matrix for correlated noise.
Optimizing C ∈ Rn,n for a much larger n and truncating it to the actual number of training rounds can
achieve good privacy-utility trade-offs, but encounter non-trivial mechanism optimization cost. BandMF
performance degrades fast when the actual min-sep b is smaller than the estimated band b̂, but the stronger
DP guarantees are generally achieved when b̂ is large. Hence the tricky task of estimating min-sep b is
more important for BANDMF. In general, BLT-DP-FTRL is competitive for achieving state-of-the-art
privacy-utility trade-off (compared to BANDMF), while maintains ease to use in practice (compared to
TREEAGG).

C.2 Background on Multi-participation Sensitivity

Adjacent Data Streams and Privacy Accounting We assume users (FL clients) participate in training
according to a participation schema Π ⊂ Powerset([n]), where each participation pattern π ∈ Π (and
so π ⊆ [n]) indicates a set of indexes of steps in which a single user might participate. Each Π results
in a adjacency relation NΠ on data streams: two data streams x and x̃ are adjacent, that is (x, x̃) ∈N ,
if there exists a π ∈ Π such that xt = x̃t for t /∈ π, and ‖xt − x̃t‖2 ≤ ζ for t ∈ π. In FL for user-level
DP ( Alg. 1), xt :=

∑
i ∆t

i is a sum over per-user model gradients each subject to an L2-norm bound
ζ, and two streaming datasets are adjacent if one can be formed from the other by “zeroing out” all
the gradient contributions from any one user following Defn. 1.1 of Kairouz et al. (2021). Under this
adjacent relationship, the DP guarantees of MF mechanism in DP-FTRL can be accounted for the release
of CX + ζZ according Eq. (1), computing the sensitivity of CX to calibrate with the Gaussian noise Z
of zero mean and σ standard deviation (Choquette-Choo et al., 2023).

Multi-participation Sensitivity We consider b-min-sep-participation, where the distance between any
two participations is at least b and there are at most k total participations, formally

Πb,k = {π ⊆ [n] | |π| < k, {i, j} ⊆ π, i 6= j ⇒ |i− j| ≥ b} .
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This is motivated not only by the applicability to federated learning (as discussed by Choquette-Choo et al.
(2023), which also formalized this schema), but also because (implicitly) it is the participation schema
under which TREEAGG was extended to multiple participations by Kairouz et al. (2021).

Let D := {x− x̃ | (x, x̃) ∈N} represent the set of all possible differences between adjacent x, x̃.
Then, the L2 sensitivity of C under N is given by

sensN (C) = sup
(x,x̃)∈N

‖Cx−Cx̃‖F = sup
u∈D
‖Cu‖F . (8)

In this work, we only consider C ≥ 0 (elementwise), and so the supremum over u in Eq. (8) will
always be achieved by some u ≥ 0 (observe each non-zero entry ui ∈ Rm can be chosen arbitrarily from
the unit ball of radius ζ). The non-negativity also implies C>C ≥ 0, and hence following Corollary 2.1
of Choquette-Choo et al. (2023), we have

sensNΠ
(C) = ζ max

π∈Π
‖Cu(π)‖2 when C ≥ 0. (9)

where u(π) ∈ {0, 1}n is given by u(π)i = 1 if i ∈ π and 0 otherwise. Note that ζ simply introduces a
linear scaling, and so we can take ζ = 1 w.l.o.g. both when optimizing mechanisms and when computing
MaxLoss and RmsLoss.

C.3 A Sensitivity Lower Bound
A Sensitivity Lower Bound Inspired by Thm. 3.1, we state a sensitivity lower bound for general matrix
in Remark C.1. An overly optimistic (instead of commonly worst-case) DP guarantees can be computed
for MF mechanism with sensitivity in Remark C.1. We only use Remark C.1 for the privacy accounting
of baseline binary tree mechanisms in simulation experiments in Sec. 4 as the dynamic programming
accounting in (Kairouz et al., 2021) is computationally expensive. In practice we find the lower-bound of
Remark C.1 is tight for the binary tree matrices we consider; proving this is an interesting open problem.

Remark C.1. Letting π? ∈ Π as in Eq. (5), for any mechanism C,

sensΠ(C) ≥ ‖Cu(π?)‖2 (10)

is a lower-bound on sensitivity (the actual sensitivity might be higher). While Kairouz et al. (2021)
introduced a dynamic program for computing binary-tree sensitivity, it requires some work to extend it to
the tree completion trick, and in practice it is expensive to compute. Hence, when evaluating TREEAGG

approaches, for simplicity we use the lower bound of Eq. (10), which can be computed immediately for
the tree-completion matrices C used when n is not a power of 2.

D Optimizing for BLT Matrices

Combining these elements gives us an efficient and differentiable algorithm for computing MaxLoss
and RmsLoss. Complete pseudo-code for the differentiable loss calculation is given in Alg. 4. Following
Dvijotham et al. (2024), we use auto differentiation and L-BFGS optimizer in JAX (Bradbury et al., 2018)
to optimize (θ, θ̂) for the BLT-DP-FTRL algorithm, and then extract BLT(θ, ω) for noise generation.
Similar to (Dvijotham et al., 2024), we introduce log-barrier penalties w/ strength 10−7 to keep ω > 0,
θ > 0 and θ < 1 (which is necessary to ensure the Toeplitz coefficients of C are decreasing to satisfy
Thm. 3.1). For high precision optimization, we use double precision in JAX on CPUs and GPUs. We
observe that increasing buffer size d does not necessarily reduce the loss due to numerical stability and
optimization challenges, and different BLT parameter (θ, ω) may be achieved in different optimization runs.
We also highlight that the different BLT parameters (θ, ω) can generate similar Toeplitz coefficients for
C, which suggests a smaller d might help mitigate the optimization challenge from overparametrization.

The primary motivation for utilizing the (θ, θ̂) parameterization in Alg. 4 is computational efficiency.
Tab. 4 compares the time to compute n Toepltiz coefficients for C−1 given either BLT(θ, ω) or given
(θ, θ̂). In the first caes (“brute force”), we construct the Toeplitz coefficients of C using Eq. (2), and then
solve a linear system (using jax.lax.scan and the property that the inverse of a lower triangular Toeplitz
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Algorithm 4 Differentiable Loss for BLTs
Inputs:

Pair of buffer-decay parameters (θ, θ̂) with d buffers each (θ, θ̂ ∈ [0, 1]d).
num rounds n, min-separation b, max participations k
Penalty strength λ, set to zero for loss calculation, or λ = 10−7 to stabilize optimization

Outputs:
Either MaxLoss(AC−1,C) or RmsLoss(AC−1,C).

. Use Alg. 5 to calculate the unique ω and ω̂ such that C = BLT(θ, ω) and C−1 = BLT(θ̂, ω̂)
ω = calc_output_scale(θ, θ̂)
ω̂ = calc_output_scale(θ̂, θ)

. Compute sens = ‖Cπ?‖2 where C = LtToep(c)
Compute c ∈ Rn where c0 = 1 and ci =

∑
j∈[d] ωjθ

i−1
j for i ∈ {1, . . . , n}.

c̄ = 0 ∈ Rn . Holds the sum of columns of C
for i ∈ [k] do
c̄[b · i :] += c[0 : n− b · i] . numpy-like semantics

sens = ‖c̄‖2 . Because c̄ = Cπ?.

. Compute Errror(AC−1) where C−1 = LtToep(ĉ).
Compute ĉ ∈ Rn where ĉ0 = 1 and ĉi =

∑
j∈[d] ω̂j θ̂

i−1
j for i ∈ {1, . . . , n}.

Compute b ∈ Rn by bi =
∑i

j=0 ĉi . So B = AC−1 = LtToep(b).

err =





√∑
i∈[n] b

2
i for MaxError√∑

i∈[n](n− i)b2i /n for RmsError.

. Log-barrier penalties to keep θ > 0, θ < 1, and ω > 0 for numerical stability when optimizing
penalty = λ(− log(θ)− log(1− θ)− log(ω))

Return loss = err · sens + penalty

Algorithm 5 calc_output_scale (Lemma 5.2 of Dvijotham et al. (2024))

Input:
Pair of buffer-decay parameters (θ, θ̂) with d buffers each (θ, θ̂ ∈ [0, 1]d).

Output:
The unique ω s.t. C = BLT(θ, ω) has a BLT inverse with buffer-decay θ̂ (C−1 = BLT(θ̂, ·)).

p(x) =
∏
i∈[d](1− θix)

q(x) =
∏
i∈[d](1− θ̂ix)

f(x) = (p(x)− q(x))/x . Polynomial division gives f , a polynomial of degree d− 1
z =

∏
i∈[d]−θi

wi =
(∏

j 6=i(θ
−1
i − θ−1

j )
)−1

for i ∈ [d]

Define ω by ωi = f(θ−1
i )−θiwi

z for i ∈ [d]
Return ω
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n brute force via Alg. 5 speedup

2000 0.021 3.8e-5 550×
20000 0.258 3.6e-5 7176×

200000 4.772 4.5e-5 104884×

Table 4: Seconds to compute n Toeplitz coefficients of C−1.
JAX just-in-time (JIT) compilation is not included for either
approach.
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Figure 3: Total wall clock optimization time in-
cluding JIT compilation on a V100 GPU for
BANDMF and BLTS, fixing b = 400 and varying
n. The average over 3 runs is reported.

matrix is also lower triangular Toeplitz) to compute the coefficients of C−1). In the second case, we use
Alg. 5 to compute (ω, ω̂), and then compute the Toeplitz coefficients by applying Eq. (2) to BLT(θ̂, ω̂).
The comparison uses a V100 GPU and a compiled jax implementation, and is repeated many times with
an average is given. The second approach can be fully vectorized, and is orders of magnitude faster. This is
critical because this is the primary computational step in computing the RmsLoss or MaxLoss and occurs
in the inner loop of the mechanism optimization procedure: the net result is mechanism optimization is
substantially faster than for BANDMF, and scales to much larger n, see Fig. 3. Alg. 4 does incur more
jax just-in-time (JIT) compilation overhead compared to BANDMF optimization, which accounts BLT
optimization being slightly slower for small n.

E More RmsLoss and MaxLoss Experiments
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Figure 4: Comparison of BANDMF and BLTS with n = 2000 and k = 3 participations, varying the min-separation
b. The BLTS were optimized for RmsLoss. The x-axis is shown on a log-scale. The left panel gives loss relative
to the BLT(b = 400) mechanism, while the right panel gives the same data on an unnormalized y-axis scale.
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Figure 5: Comparison of BANDMF and BLTS with n = 2000, varying b such that k = n/b is an integer. The
BLTS were optimized for RmsLoss. The x-axis is shown on a log-scale. The left panel gives loss relative to the
BLT(b = 400) mechanism, while the right panel gives the same data on an unnormalized y-axis scale.

Robustness to Min-sep b Fig. 4 compares BLT to the strong baseline BANDMF, fixing n = 2000 and
k = 3 participations and varying the min-separation b. We make three primary observations: (1) The
optimization of the BANDMF mechanisms implicitly assumes b ∼ b̂, and as expected, near this regime
BANDMF in fact (slightly) outperforms the BLTS. (2) However, when b � n/k, the BLTS perform
better. (3) Interestingly, BANDMF performs significantly worse than the BLTS at b = 999. In this case,
the only participation patterns that actually have 3 participations are e.g. {0, 999, 1998}, {0, 1000, 1999}
— importantly, only the columns {0, 1, 999, 1000, 1998, 1999} can ever occur in a 3-participation pattern.
Because the columns of C for BANDMF all have the same column norm, this fact cannot be exploited.
However, because of their Toeplitz structure, columns 1998 and 1999 have smaller norms than other
columns, and that is beneficial in this situation.

The setting where k is fixed and we vary b includes situations that should generally be avoided in
practice. For example, if we had k = 3, b = 10, and n = 2000, this indicates we had enough data we
should have been able to achieve b = n/k ≈ 667, and so b = 10 indicates a highly suboptimal data
ordering. Similarly, if we had k = 3, b = 999, and n = 2000, then we would have been better off stopping
at n = 1998, which would have ensured only k = 2 participations and significantly decreased sensitivity
(at presumably a small cost in learning performance compared to training for n = 2000 iterations).

Fig. 5 shows the contrasting scenario (indicating an essentially optimal data ordering, general not
possible in federated learning) that occurs when we fix n = 2000, and choose b that exactly divide n so
that we can take k = n/b exactly. Fig. 5 considers the worst-case max participation k for given min-sep b
and total rounds n, and achieves generally larger RmsLoss. When b ≤ b̂, BANDMF slightly outperforms
BLTS, but BANDMF degrade more rapidly for b ≤ b̂. In general, the curves of BLTS are more smoother
across different min-sep b in both Fig. 4 and Fig. 5.

Robustness to Total Rounds n Fig. 6 considers varying the number of steps of the mechanism actually
executed for mechanisms optimzied for different n. BANDMF mechanisms can only be used up to the n
they are optimized for, but BLTS naturally extend to any n. This figure demonstrates that again BLTS are
not particularly sensitive to the n for which they are optimized. For this figure, the maximum number
of participations is chosen to be the largest allowed given n and b = 400 (i.e., k = n/d), leading to
the stairstep behavior of the unnormalized RmsLoss in Fig. 6 (Right). BANDMF optimizing for large n
performs well when the actual number of iterations executed is small, but optimizing for large n encounters
nontrivial as discussed in Tab. 3 and Fig. 3. Finally, these results show that only d = 2 buffers is sufficient
for good performance, or a 200× memory savings compared to BANDMF with b = 400 bands.

Comparing BLT to BANDTOEP and BANDFHU Finally, we compare BLT-DP-FTRL to several other
more recent mechanisms:
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Figure 6: Comparison of BANDMF and BLTS optimized for n = 800 and n = 2000, and evaluated for n up
to the optimization target (for BANDMF) and over [0, 2000] for the BLTS. All mechanisms were optimized for
min-separation (bands) b = 400. BLTS with d = 2 and d = 5 perform almost equivalently; d = 1 (not shown),is
not sufficient with relative RmsLoss > 1.07.
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Figure 7: Comparison of mechanisms for n = 2000 and k = 5 participations, optimized for min-separation
b = 400 and compared for different actual values of min-separation. The setting is comparable to that of Fig. 1, so
only relative lines are given.

• BANDTOEP (McKenna, 2024), which optimizes banded Toeplitz matrices C for b-min-sep-
participation under RmsLoss. The primary advantage of this mechanism compared to BANDMF is
that BANDTOEP matrices can be optimized for much larger n. However, the runtime is the same as
BANDMF, and the optimization is still slower than the optimization of BLTS.

• BANDFHU (Kalinin and Lampert, 2024), which uses prefixes of the optimal-for-single-participation
MaxLoss coefficients of Fichtenberger et al. (2022) to form banded Toeplitz matrices. These will
likely be worse than BANDTOEP (which is specifically optimized for multiple participations), but
require no mechanism optimization.

Fig. 7 shows that BLTS are comparable or better to both of these approaches.

F BLT Parameters for Production Training

We provide the BLT? parameters we generated and used in training production LMs with DP FL in
Sec. 5. The BLT? matrices are optimized for three min-sep settings b = (100, 400, 1000) and each BLT
is parameterized by 8 values for buffer size d = 4, i.e., buffer decay θ ∈ Rd and output scale ω ∈ Rd.
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• min-sep b = 100, total rounds n = 2000, max participation k = 10 ⇒,
θ = (0.989739971007307, 0.7352001759538236, 0.16776199983448145, 0.1677619998016191),
ω = (0.20502892852480875, 0.23357939425278557, 0.03479503245420878, 0.03479509876050538).

• min-sep b = 400, total rounds n = 4000, max participation k = 5 ⇒,
θ = (0.9999999999921251, 0.9944453083640997, 0.8985923474607591, 0.4912001418098778),
ω = (0.0070314825502323835, 0.10613806907600574, 0.1898159060327625, 0.1966594748073734).

• min-sep b = 1000, total rounds n = 4000, max participation k = 2 ⇒,
θ = (0.9999999999983397, 0.9973412136664378, 0.9584629472313878, 0.6581796870749317),
ω = (0.008657392263671862, 0.05890891298180163, 0.14548176930698697, 0.2770117005326523).

Fig. 8 visualizes the corresponding Toeplitz coefficients for C to compute sensitivity and C−1 for
generating correlated noise. The coefficients of BLT(θ, ω) for b = 100 decaying faster than b = 400 and
b = 1000.
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Figure 8: Toeplitz coefficients {c0, . . . , cn} for C = LtToep(c) and {ĉ0, . . . , ĉn} for C−1 = LtToep(ĉ); For BLT(θ, ω), c
can be computed by Eq. (2), and there are many ways to derive corresponding ĉ (e.g., set Z = I in Alg. 3).

G Additional Simulation and Production Results

G.1 Production Setting for Mobile Keyboard LMs

Following Hard et al. (2018); Xu et al. (2023), we train one-layer LSTM LMs of ∼ 6.4M parameters for
mobile keyboard applications. These LMs are deployed on device to predict words during decoding time
to facilitate user typing. We use next word prediction (NWP) accuracy on a hold-out set of devices to track
the training progress, and also conduct A/B test in production, where following two metrics are reported:
(1) Word Modified Ratio (WMR), the ratio of words being modified during typing or after committed;
improvement is shown by reduction; (2) Word Per Minute (WPM): the number of committed words per
minute. LMs are trained for different language-locale combination in different populations. We study
Spanish in Spain (es-ES), Indonesian in Indonesia (id-ID), Portuguese in Brazil (pt-BR) and Portuguese in
Portugal (pt-PT). LMs are pre-trained on public multilingual C4 dataset (Xue et al., 2020) before private
training with FL and DP.

Algorithm Setting We compare our BLT-DP-FTRL algorithm with TREEAGG (Kairouz et al., 2021;
Xu et al., 2023) and BANDMF (Choquette-Choo et al., 2023) discussed in Sec. 2. As far as we know,
these two are the only DP algorithms actively used to train LMs in a production FL system. We follow
the system and parameter configurations in (Xu et al., 2023; Choquette-Choo et al., 2023; Xu and Zhang,
2024) for baselines, and compare to TREEAGG for pt-PT and id-ID, and BANDMF for es-ES and pt-BR.
However, we highlight it is challenging to exactly reproduce the settings, especially for the min-sep
parameter. The BANDMF algorithm are optimized for total round n = 2000, band b̂ = 400 for es-ES, and
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b̂ = 1000 for pt-BR. We optimize BLT for total round n = 40002, estimated min-sep b = 100 for pt-PT,
b = 400 for es-ES and id-ID, and b = 1000 for pt-BR. We use BLT? for multi-participation and estimate
the max-par based on n/b. For these n, b settings, only d = 4 buffers can achieve near-optimal loss in
optimization, and BLT? matrices are parameterized by only 8 numbers (these parameters are provided in
App. F). Though different configures are used for populations with different sizes, the BLT parameters
(θ, ω) ∈ R8 optimized for b = 400 can achieve competitive results for a wide range of min-seps, which
can be a reasonable default for BLT-DP-FTRL. As discussed in Tab. 3, BLT is more memory-efficient
than both TREEAGG and BANDMF. In the simulation results Tab. 1, BLT is also better than TREEAGG

for privacy-utility trade-off, and comparable with BANDMF. The results in production further show that
the flexibility of BLT makes it easier to use in practice, and achieve better results than both TREEAGG

and BANDMF.

G.2 Extrapolation Results for Production Setting
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Figure 9: The effect of population size, number of rounds, report goals, and min-seps on DP-FTRL privacy guarantees. The
results are extrapolate from the setting for es-ES and id-ID (BANDMF and BLT matrices are optimized for min-sep=400) based
on the hypothesis that linearly scale noise multiplier and report goal, or only change min-sep will not affect the model utility.
The For a fixed number of rounds to achieve utility target, increasing report goal and min-sep can achieve stronger guarantees
measured by smaller zCDP. The optimal min-sep is capped by population size for a fixed report goal, and BLT provides better
guarantees, and smoother transition across different min-seps.

Extrapolation We extrapolate the results for production setting by using a common hypothesis: linearly
increase report goal and noise multiplier will not change the utility of the model as the signal-to-noise
ratio is maintained. In addition, we assume only changing min-sep will not change the utility because of

2As the target round is usually less than 2000, n = 4000 for BLT is less favorable compared to n = 2000 used for BANDMF.
BLT is robust to the target round n, and achieves stronger results with an inferior n.
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the signal-to-noise ratio. The hypothesis has been verified in previous work (Kairouz et al., 2021) and the
large report goal experiments for pt-BR and pt-PT in Tab. 2 and Fig. 13. Hence we can study the effect on
DP without actually training the model, similar to Sec. 4.2 for simulation.

We vary the report goal, and the min-sep is optimistically estimated by min-sep=bpopulation-size/report-
goalc, and max-par=dtotal-rounds/min-sepe is used unless otherwise specified. We discuss the extrapo-
lation results in Fig. 9, where utility is the same based on the hypothesis. (1) BLT achieves better DP
guarantees because of its robustness to min-seps and total rounds. (2) We observe that using larger report
goal and optimizing for the largest possible min-sep achieves better results than using smaller report goals
and larger corresponding min-sep, similar to observation for TREEAGG in (Xu et al., 2023). (3) Fig. 9b
shows training more rounds does not necessarily increasing DP guarantees when min-sep is large. (4) The
gap of BLT and BANDMF is small when min-sep is accurately estimated. In the regime of relatively high
signal-to-noise ratio (large noise multiplier for limited computation resources), BLT is competitive in a
wide range of different configurations. Hence BLT is easier to use in production FL systems compared to
BANDMF, and also saves memory during training.

Finally, in Fig. 10, we extrapolate the DP guarantee results by varying the number of total rounds n
with the noise multiplier for the fixed report goal 6500, fixed min separation b = 100, 400, 1000, and
corresponding max participation k = n/b. The TREEAGG, BLT and BANDMF mechanisms used in
production are compared. Instead of using RmsLoss or MaxLoss to measure privacy-utility trade-offs in
Figs. 1 and 6, here we fix utility based on empirical utility of the production training and the signal-to-
noise-ratio hypothesis, and compare the DP guarantees. As mentioned before, using BANDMF beyond the
optimized matrices for n = 2000 has not been studied before, and hence we only extrapolate BANDMF
up to n = 2000 rounds. TREEAGG and BLT can run arbitrary number of rounds, and BLTS achieve
stronger DP guarantees than TREEAGG. In practice, we can use one of the BLTs as a default mechanism
across different settings, and perform on-the-fly optimization for given customized setting.
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Figure 10: Extrapolate by varying number of rounds n for the TREEAGG, BLT and BANDMF mechanisms used in production.
Use the noise multiplier for the fixed report goal 6500; fix min separation b = 100, 400, 1000, respectively; worst-case max
participation is varied assuming fixed population size, i.e., k = n/b. The utility of different mechanisms at a specific round
(x-axis value) are assumed to be similar due to the signal-to-noise ratio hypothesis, and we can compare the corresponding zCDP
guarantees (y-axis value).

G.3 Additional Plots
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Figure 11: Visualizing the results in Tab. 1.
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Figure 12: The same mechanisms from Fig. 1, but compared on MaxLoss instead of RmsLoss.
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Figure 13: The NWP evaluation accuracy curves for training LMs with DP-FTRL in FL. BLT achieves comparable NWP
accuracy and slightly better privacy guarantees (at the last round) compared to BANDMF for es-ES and pt-BR; much better DP
guarantees, and/or better utility compared to TREEAGG for id-ID and pt-BR.
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Figure 14: The NWP evaluation accuracy curves for training LMs with DP-FTRL in FL. Zoom in the latter stage of training for
the curves in Fig. 13. The NWP accuracy increases fast in the first 200 rounds in DP FL training, and the accuracy changes
within the range of 0.01 when zooming in the later stage. The oscillation is because of the stochasticity in forming subsets of
devices in both training and evaluation per round. The average NWP accuracy from nearby rounds is reported in Tab. 2 to reduce
the variance.
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Figure 15: The privacy-utility trade-off curves derived from Fig. 13. For each selected round r, we compute the mean and
standard deviation (shown as vertical bars) for accuracy from the rounds in the range of r ± 50 (r ± 10 for pt-PT), and also
accounting the DP guarantees. BLTS show better privacy-utility trade-off as their curves are closer to the top left (small DP
guarantees and large NWP accuracy).
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