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Abstract

Process plants are complex large-scale indus-
trial facilities that convert raw materials or in-
termediate products into final products, requir-
ing continuous processes with high safety and
efficiency standards. In particular, in nuclear
process plants, Predictive Maintenance Sys-
tem (PMS) plays a critical role in predicting
equipment anomalies and performing preven-
tive maintenance. However, current PMS re-
lies heavily on the experience of a few experts,
leading to knowledge loss upon their retire-
ment and difficulty in swift response. Existing
off-premise Question-Answering (QA) systems
based on Large Language Models (LLM) face
issues such as data leakage and challenges in
domain-specific tuning. To address these prob-
lems, this study proposes an on-premise intelli-
gent PMS framework utilizing a new chunking
method, StyleDFS, which effectively reflects
the structural information of documents. Addi-
tionally, we demonstrate that Instruction tuning
using relevant domain-specific data improves
LLM performance even under limited data con-
ditions.

1 Introduction

Process plant refers to a large-scale industrial fa-
cility that transforms raw materials or intermediate
products into finished products through chemical,
physical, or biological methods (Jung, 2015; Baj-
pai, 2018; Miyake et al., 2009). These plants span
various industries, including nuclear power plants,
each with its unique processes and equipment. Pro-
cess plant operates on a large scale using continu-
ous or batch processes and requires sophisticated
management to enhance safety and efficiency. In
nuclear process plants, predictive maintenance sys-
tems (PMS) are intelligent technology systems de-
signed to predict and prevent equipment failures by
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performing preventive maintenance (INGEDULD,
2006; Girotto et al., 2024). These systems analyze
operational data and sensor measurements to detect
anomalies and plan maintenance activities, thereby
improving equipment reliability. Efficient deploy-
ment of PMS and prompt execution of appropriate
actions ensure the stability of plant operations.

However, the current PMS in nuclear process
plants heavily relies on the empirical analysis of a
few experts (Gohel et al., 2020; Cinar et al., 2020).
The nuclear industry’s limited number of experts
poses a problem when these experts retire, lead-
ing to a loss of valuable knowledge. This reliance
on experts negatively impacts the reliability and
sustainability of early warning systems. Further-
more, since most tasks in these systems involve
repetitive handling of previously occurred issues,
expert-dependent methods delay access and anal-
ysis of relevant documents, making it difficult to
communicate quick responses and adversely affect-
ing the system’s overall efficiency.

To address these industrial challenges, existing
research has proposed an LLM-based Question-
Answering (QA) intelligent system using instruc-
tion tuning (Wei et al., 2022; Zhang et al., 2024).
Document-based QA systems leveraging large lan-
guage models (LLMs) have been implemented
using off-premise APIs, which reduce depen-
dence on expert knowledge and automate repet-
itive tasks (Jeong, 2023; Ge et al., 2023; Melz,
2023). However, off-premise solutions include data
leakage concerns from the use of external mod-
els (Udayakumar and Siddappa, 2010; Chen and
Zhao, 2012). Consequently, an on-premise solution
utilizing LLM tuning is necessary. Nonetheless, the
high-security requirements of the nuclear sector
and reliance on expert experience make document-
ing related knowledge difficult. Additionally, pub-
licly available data is scarce for effective domain-
specific tuning (Luo et al., 2023; Jeong, 2023).

In order to resolve the issue of insufficient avail-
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Figure 1: The framework for intelligent PMS using RAG. Documents are converted to HTML and chunked using
StyleDFS, then stored in a database. The instruction-tuned robust model utilizes the retrieved chunks to generate final
answers to user queries. The translated text is as follows: Query: "Please explain the responsibilities of the power
plant operator." Answer: "The power plant operator is responsible for the following: 1. Determining appropriate
grades for each device in the power plant 2. Performing systematic maintenance for devices based on their grades..."

able data, previous research have utilized Retrieval-
Augmented Generation (RAG) (Lewis et al., 2021;
Jeong, 2023; Ge et al., 2023; Melz, 2023). However,
traditional RAG approaches often assume ideal doc-
ument formats (e.g., JSON or XML), which is not
the case for process plant and corporate or govern-
ment documents stored as electronic documents
(e.g., DOC or HWP) (Kim et al., 2014; K. et al.,
2018). Existing chunking methods, such as length
and semantic chunking, used when inputting raw
electronic documents into a database, fail to ade-
quately consider the structural context of the docu-
ments. Moreover, with insufficient domain-specific
data, LLMs’ comprehension ability is limited, de-
grading the performance of the PMS.

We propose an intelligent predictive mainte-
nance RAG framework using a new chunking
method, StyleDF'S, which considers the structural
information of documents. We enhance LLMs’ per-
formance under limited conditions through instruc-
tion tuning using publicly available data from rele-
vant scientific and technical domains.

Our main contributions are concluded as follows:

* We propose an automated data processing and
efficient retrieval method by a chunking sys-
tem based on the raw data structure.

* We improve LLMs performance in scenarios
with limited domain-specific data by using

instruction tuning with relevant domain data.

* We ensure data security and operational relia-
bility by developing an on-premise alert and
action framework.

2 Proposed Method

Figure 1 shows the overall structure of the intelli-
gent predictive maintenance RAG framework. This
section elaborates on the StyleDFS for document
chunking and the overall framework.

2.1 StyleDFS for Document Chunking

Electronic documents typically come in formats
such as HWP and DOCX, especially in industrial
contexts, where these structured formats are preva-
lent (Lewis et al., 2021; Gao et al., 2024), as shown
in Figure 2. Understanding the structural informa-
tion of documents is crucial for grasping their logi-
cal flow and semantic relationships. Existing chunk-
ing methods based on length or semantics fail to
fully capture the overall structure and elements of
documents. To address this issue, we propose the
StyleDFS chunking method. This approach first
converts HWP and DOCX documents into HTML
format while preserving their structural informa-
tion using the Data to HTML conversion module'.
Subsequently, it performs structure-based chunking
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according to Algorithm 1. The algorithm follows
these steps:

Tree Structure Transformation Using Style
Classes The parsed HTML file separates text us-
ing various HTML element tags (e.g., <div>, <p>,
<span>). Each tag is automatically assigned a style
class in a predefined format by the library, allow-
ing the identification of specific document sections.
These style classes enable the transformation of the
document into a tree structure. In this tree, each
node represents a style class, and branches form
connections between parent and child nodes, con-
taining the text for each section. This transforma-
tion process clearly defines the hierarchical struc-
ture and relationships between elements, preserv-
ing structural information. For example, titles, body
text, subsections, and lists are distinctly separated
within the tree structure. Consequently, the con-
verted HTML tree maintains the overall structure
and style of the document, providing a foundation
for efficient subsequent traversal.

Chunking with Depth-First Search To traverse
the HTML tree and segment the text, we use a pre-
order Depth First Search (DFS) algorithm. Starting
from the root node, DFS visits each node sequen-
tially, accumulating text from leaf nodes and their
parents. If the accumulated text exceeds a prede-
fined length (1en), we add the text up to that point
to a chunk list (chunks) and start a new chunk. To
manage this, we place a flag at the point of ex-
ceeding the limit and temporarily pause traversal
to begin accumulating a new chunk. The traversal
then continues to the right sibling nodes from the
current node. The new chunk does not include the
contents of the left sibling nodes but retains the
parent node’s text to maintain consistent context.
By recursively visiting child nodes, we continue
this accumulation and segment process whenever
the text length exceeds the maximum limit. This
method ensures consistent maintenance of the hier-
archical and semantic context across the document,
allowing efficient management of text across mul-
tiple sections while preserving structural informa-
tion.

2.2 RAG Framework

Embedding Model Selection To maximize the
performance of the generation model in the
RAG, it is essential to effectively retrieve doc-
uments highly relevant to the input query. For
this purpose, we evaluate retrieval models based

Algorithm 1 StyleDFS Process: c_text: Current
text, p_text: Parent text, accum: Accumulated text

Input: html, len
Qutput: chunks
1: procedure STYLEDFS(html, len)
2: content < read_file(html)
3: tree <— parse_html_to_tree(content)
4: chunks <« []
5: DFS(tree.root, "", len, chunks, "")
6: return chunks
7: end procedure

8: function DFS(N, accum, len, chunks, p_text)

9: if p_text =="" then c_text <— node.text
10: else c_text <— p_text + " " + node.text
11: end if
12: if accum == "" then accum < node.text
13: else accum < accum + " " + node.text
14: end if
15: if length(accum) > len then > flag
16: append(chunks, accum - node.text)
17: accum <— current_text
18: end if
19: for child in node.children do
20: accum <— DFS(N, accum, len, chunks, p_text)
21: end for
22: if accum # "" and node.isLastChild then
23: append(chunks, accum)
24 accum <+ ""
25: end if
26: return accum

27: end function

Model ‘Ko-StratengA ‘ Ko-mrtydi| Ko-miracl| Average
multilingual-e5-large 0.764 0.527 0.623 0.638
multilingual-e5-base 0.718 0.498 0.585 0.600
multilingual-e5-small 0.698 0.496 0.574 0.589
ko-sroberta-multitask 0.583 0.226 0.297 0.369
UAE-Large-V1 0.061 0.050 0.057 0.056
bge-large-en-v1.5 0.054 0.038 0.047 0.046

Table 1: Performance evaluation results of embedding
models on three benchmark tasks using nDCG@3 as
the metric.

on the MTEB leaderboard to select a high-
performance Korean embedding model. Table 1
presents the evaluation results, showing that the
multilingual-e5-1large (Wang et al., 2024) out-
performed other models, achieving the best per-
formance across three tasks: Ko-StrategyQA, Ko-
mrtydi, and Ko-miracl. Detailed information on
datasets and metric can be found in Appendix B.

Embedding Storage and Serving Effective im-
plementation of the RAG requires efficient embed-
ding, storage, and rapid retrieval of text data. We ex-
tract embedding vectors from chunked documents
using the selected model and store them in a Post-
greSQL database? to support real-time search, and

2https ://www.postgresql.org/
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additionally, we automate the deployment and serv-
ing of the embedding model using the Text Em-
bedding Inference (TEI)? toolkit, which includes
functionalities such as a web server, load balancer,
and worker pool, allowing it to handle multiple
users even on a single GPU.

Insturction Tuning In domains like nuclear pro-
cess plants, where security and safety are critical, a
reliable QA system is essential. To generate accu-
rate answers for domain-specific queries, we per-
form Instruction Tuning using rewritten data per-
taining to the science and technology domain. We
utilized MRC data from various industrial docu-
ments within this domain, converting it into de-
scriptive answers via GPT-4 (OpenAl, 2024). By
tuning the model in this way, we enhance the spe-
cialized knowledge and expertise within the nu-
clear, enabling the model to respond accurately to
a wide range of potential scenarios. The templates
used for Instruction Tuning are presented in Table
6, and detailed explanations of the datasets and
conversion tasks are described in §3.

3 Experimental Settings

Dataset To address the need for a QA train-
ing dataset in the scientific and technical domain,
we utilize the AI-Hub Technical and Scientific
Document Reading Comprehension dataset*. This
dataset comprises short-answer, extractive, and
true/false formats. To generate descriptive answers,
we use the prompts in Table 6 and employ GPT-4
to rewrite answers for a total of 2,086 samples. The
test dataset is composed of the nuclear domain and
includes 71 samples with human-created questions,
answers, and reference chunks. The documents
used for retrieval are approximately 20 pages long
and written in HWP format related to the nuclear
domain.

Models Our experiments use the pre-trained
large language models Llama3-8B (Al@Meta,
2024) and gemma-7B (Team et al., 2024). Addi-
tionally, we utilize Llama3-Open-Ko-8B (L, 2024)
and gemma-Ko-7B (Junbum Lee, Tackyoon Choi,
2024), which are further pre-trained on a Ko-
rean corpus based on the former two models.
For retrieving and semantic chunking, we employ

3https://huggingface.co/docs/text—embeddings—inference/
index

4https://www.aihub.or.kr/aihubdata/data/vieWAdo?currMenu:
&topMenu=&aihubDataSe=data&dataSetSn=71533

multilingual-E5-large (Wang et al., 2024), as dis-
cussed in §C

Evaluation Metric To evaluate the model’s gen-
erated answers to questions using the RAG system,
we quantitatively evaluate the quality and accuracy
of the answers produced by the models based on
each chunking methodology using BLEU (Papineni
et al., 2002) and ROUGE-L (Lin, 2004) scores. In
our task of generating appropriate responses for
PMS, it is essential to capture elements such as
contextual appropriateness, fluency, and the ability
to generate detailed and extended responses when
necessary, which are critical for reliable outputs. To
comprehensively evaluate how well the proposed
chunking method and other methodologies capture
relevant information, we adopt n-gram based over-
lap recall to assess information coverage. This met-
ric indicates how effectively the chunking method
organizes relevant information by evaluating how
well the retrieved documents include the necessary
gold context.

4 Experimental Results

Domain Specific Instruction Tuning Table 2
presents a performance comparison of QA task us-
ing various chunking methods. The tuned models
exhibit higher performance than the base models
in most cases. The models that conduct additional
instruction tuning with relevant domain datasets
show even greater improvements. This indicates
that leveraging a scientific and technical domain
dataset to fine-tune the model enhances its perfor-
mance on the nuclear domain test set.

Effectiveness of Using StyleDFS for RAG Sys-
tem When examining the performance of differ-
ent chunking methods, semantic-based chunking
outperforms length-based chunking in top-1 re-
trieval scenarios. StyleDFS demonstrates the best
performance compared to other methods, showing
up to a 71% improvement in average category per-
formance. This improvement is based on its ability
to segment documents into structurally and con-
textually meaningful chunks, allowing the retrieval
model to find more relevant chunks and the genera-
tion model to better utilize them.

As the number of reference chunks increases
from top-1 to top-3, there is consistent performance
improvement across all methods. Interestingly, in
these scenarios, the performance of length-based
chunking approaches that of semantic-based chunk-
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Meta- Llama-3- gemma- gemma-
Methods Top  Metric Llama-3-8B Open-Ko-8B 7b ko-7b Average
base tune  base tune base tune base tune

1 BLEU 4.080 10999 2.242 15203 5905 10.689 1.792 13.796  8.088

Length ROUGE-L 8433 6.700 3.332 12.065 6.118 7.886 2.177 10370  7.259
3 BLEU 5.665 16235 3.598 18.973 4942 10.330 3.263 20.449 10.556

ROUGE-L 9345 12417 7015 17966 7.669 6393 5.041 14.124  9.746

1 BLEU 6.219 11.704 3.038 16993 4.005 10.077 1.409 15239  8.085

Semantic ROUGE-L 7.551 7305 4356 13.710 7.841 7.672 2.074 8.821 7.041
3 BLEU 5913 17.703 4425 20.646 4.075 10.954 3.000 19.976 10.961

ROUGE-L 8.049 9423 5940 13.806 7.587 9.694 4.026 13.245 8.971
1 BLEU 3356 13.671 3.120 19.072 5924 16.514 5397 17.510 10.070
StyleDFS ROUGE-L 6235 13.746 6.012 13.046 11.005 14.773 7.102 13.818 10.216
3 BLEU 3479 19.579 2.705 23.138 6.626 17.595 8.401 20.486 12.500
ROUGE-L 5.098 18245 5.405 16949 8.547 13.084 9.242 16.447 11.377
Gold BLEU 10.049 24.103 4.267 31.612 11.798 21479 8.030 29.486 17.478
o B ROUGE-L 9939 21200 7.947 22930 16.409 13.676 10.027 15.436 14.945

Table 2: This table compares performance across various models and methods, measured by BLEU and ROUGE-
L metrics. It presents results for both base and tuned configurations of four models. The analysis categorizes
performance into segments such as Length, Semantic, and StyleDF'S, offering clear benchmarks for comparison
in both Top 1 and Top 3 retrieval settings. The "Gold" section displays the generation results when provided with
chunks containing the correct answers. In each column, the highest BLEU score is is indicated by bold and the

ROUGE-L score by italics.

ing. This result shows that the reference chunks in-
clude more tokens, providing the generation model
with sufficient context. However, our proposed
method still outperforms others significantly. Even
with more reference documents, the top-3 perfor-
mance of length and semantic-based chunking does
not surpass the top-1 performance of StyleDFS.
This indicates that our method segments docu-
ments not merely by individual elements (tags) but
by considering the entire document structure and
context. These findings emphasize that the gener-
ation performance of QA systems in RAG frame-
work depends on accurate and context-rich input
chunks. StyleDFS effectively divides these chunks
to achieve performance close to that of gold refer-
ence chunks, highlighting its superior capability in
structuring and contextualizing documents.

Methods Top ‘ 1-gram ‘ 2-gram ‘ 3-gram
Lensth 1 0.2023 | 0.1358 | 0.1066
g 3 0.3668 | 0.2404 | 0.1862
Semantic 1 0.2464 | 0.1642 | 0.1281
3 0.4363 | 0.2935 | 0.2294

1 0.3595 | 0.2975 | 0.2727

StyleDFS 3 0.5710 | 0.4716 | 0.4326

Table 3: Recall rates for various chunking methods
across different n-gram lengths, presented at top-1 and
top-3 settings. Bold indicate the highest performance
achieved by any method for the respective Top setting

Information Coverage Analysis Table 3
presents the information coverage for the chunking
methods, measured by how well the retrieved
documents from test set queries capture the context
relevant to the correct chunks. A higher overlap
recall score indicates that the retrieved document
contains more relevant context compared to the
original document. Across all n-gram and top-k
settings, the semantic-based chunking method
exceeds the length-based method. Notably, the
StyleDFS outperforms all other chunking methods
in the same settings. For instance, in the 1-gram
chunks, it achieves a recall of 0.3595 in the top-1
setting and 0.5710 in the top-3 setting, significantly
higher than other methods. Similarly, the results
demonstrate higher coverage in the 2-gram and
3-gram chunks. This consistent superiority across
various n-gram settings highlights the robustness
and reliability of our proposed method in different
scenarios. Moreover, as shown in Table 4, although
our approach segments the highest number of
chunks, the retrieval model skillfully selects the
relevant chunks. These results suggest that our
method more effectively includes the correct
chunks within the extracted chunks.

4.1 Ablation Study

To clarify the individual contributions of the pro-
posed StyleDF'S chunking method and instruction
tuning, we conducted ablation studies focusing on
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these components. As shown in Table 2, StyleDFS
consistently outperformed both length-based and
semantic-based chunking methods when using the
base models without instruction tuning. This signif-
icant improvement demonstrates that our proposed
method is capable of producing chunks that are
more contextually relevant and structurally con-
sistent, both of which are crucial elements for ef-
fective information retrieval and generation within
RAG systems. Additionally, StyleDFS maintained
its superiority even when the number of reference
chunks was increased, achieving the highest scores
without the need to increase the top-k settings. This
indicates that the chunks generated by StyleDF'S are
highly relevant, allowing the retrieval model to ef-
fectively exploit them and reducing the necessity to
retrieve multiple chunks for optimal performance.

Furthermore, we evaluated the impact of instruc-
tion tuning by comparing tuned models with their
respective base counterparts. Instruction tuning led
to significant performance improvements across
all chunking methods, highlighting its crucial role
in adapting the model to specific linguistic and
domain-related nuances. This enhancement enables
the model to generate more accurate and contex-
tually appropriate responses. Moreover, when in-
struction tuning was combined with the StyleDFS
chunking method, its effects were further ampli-
fied, resulting in the highest performance metrics
among all tested configurations. This synergy be-
tween effective chunking and tailored instruction
tuning emphasizes the importance of both compo-
nents in building robust and high-performing QA
systems within the RAG framework.

5 Related Work

Predictive Maintainance System PMS is essen-
tial in various industries, particularly in high-risk
sectors like nuclear process plants, where they play
a crucial role in ensuring reliability and safety. Tra-
ditional research has primarily relied on expert
empirical analysis and conventional data analysis
methods, which come with limitations such as the
scarcity of experts and the risk of information loss.
Gohel et al. (2020) and Cinar et al. (2020) warn that
the retirement or absence of experts can degrade
the system’s reliability and efficiency. Recent stud-
ies have focused on developing intelligent systems
using LLMs. LLM-based QA systems can leverage
large datasets to model expert knowledge and auto-
mate problem-solving. Research by Jeong (2023),

Ge et al. (2023), and Melz (2023) demonstrates
that document-based QA systems using LLMs are
effective in reducing dependency on experts and
automating repetitive tasks. However, these sys-
tems, implemented as off-premise solutions using
external models, pose data leakage risks (Udayaku-
mar and Siddappa, 2010; Chen and Zhao, 2012).
To address this, on-premise solutions have been
proposed, but securing sufficient domain-specific
training data remains a significant challenge. Lewis
et al. (2021) and Gao et al. (2024) have shown
that the RAG approach, which combines document
retrieval and generation processes, can enhance
LLM performance. Nonetheless, the high-security
requirements in the nuclear field and the difficulty
in documenting expert knowledge pose challenges
for adoption (Luo et al., 2023; Jeong, 2023). Addi-
tionally, there are limitations in handling the estab-
lished document formats used in actual industrial
settings (Kim et al., 2014; K. et al., 2018).

Chunking Method The performance of retrieval
models is influenced by the chunking strategy used
to segment documents (Duarte et al., 2024). Length-
based chunking, which divides documents into
fixed lengths, is simple and fast to implement but
often disregards the document’s inherent structure,
disrupting its logical flow. This method does not
consider the semantic connections between data,
which can cause problems in practical applica-
tions (Gong et al., 2020). Other approaches involve
splitting documents based on specific criteria such
as line breaks, spaces, or punctuation (Langchain,
2023). Alternatively, semantic-based chunking uses
encoder models like BERT (Devlin et al., 2018) to
segment documents based on their meaning. While
this method can capture semantic information, it is
dependent on the model’s performance and can be
time-consuming and costly. It identifies split points
based on semantic understanding but still struggles
to fully reflect the document’s overall structure (De-
varajan and Subramanian, 2022). Recently, a new
method called LumberChunker (Duarte et al., 2024)
has been proposed, which directly uses LLMs to
determine dynamic segmentation points in a docu-
ment, focusing on maintaining semantic coherence.
This method aims to retain the semantic consis-
tency of the document but also falls short in per-
fectly capturing both semantic and structural infor-
mation. Traditional chunking methods often result
in a loss of context and a decrease in information
consistency due to their inability to fully integrate
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the document’s semantic and structural elements.

6 Conclusion

In this paper, we propose a practical intelligent
PMS to address the major issues present in exist-
ing systems for process plants. Traditional systems
heavily rely on experts, leading to reliability and
sustainability problems. The manual processes in-
volve also reduce responsiveness and efficiency.
Unstructured and complex document formats in
the nuclear industry make it difficult to use existing
chunking and retrieval methods effectively, reveal-
ing limitations in the current RAG frameworks.
We introduce the StyleDFS, which converts doc-
uments into a structured format and parses them
efficiently. This approach segments documents into
structurally and semantically related chunks, sig-
nificantly improving information recall and gen-
eration performance. In the future work, we will
focus on applying this framework across various in-
dustries to validate its performance and continually
enhance the capabilities of state-of-the-art LLM
models to increase the effectiveness of intelligent
predictive maintenance systems.

Limitations

This study presents several limitations. First, se-
curing datasets for the nuclear industry is exceed-
ingly difficult due to its closed nature, restricted
access, and stringent security requirements. The
limited number of experts with clearance to handle
the data significantly hinders both the collection
of sufficient data necessary for optimizing model
performance and the human validation of the gen-
erated results. Second, our experiment was con-
strained by the typical computing resource limita-
tions of an on-premises execution environment, par-
ticularly the use of a single GPU. Consequently, in
the current study, we focused on models with back-
bones smaller than 10B parameters. Third, we did
not extensively address various document formats.
Many documents are digitized in non-standard for-
mats, complicating the processing. Additionally,
these documents contain numerous specialized ter-
minologies, further increasing reliance on experts.
These limitations may restrict the generalizability
of the research findings. Future research should fo-
cus on securing more comprehensive datasets and
validating the approach across various document
formats to overcome these challenges and enhance
the applicability of the study’s results.

Ethical considerations

Our research addresses the development of an in-
telligent predictive maintenance system for the nu-
clear domain, prioritizing security. Due to the na-
ture of the nuclear domain, we cannot directly use
the entire dataset for training. Only a subset of data
samples and documents is made available within
the permitted scope for evaluation. The study ad-
heres to relevant laws and data protection standards
rigorously. LLMs underwent extensive validation
to ensure reliability and safety. We particularly
emphasize the importance of on-premise environ-
ments, and this research aims to enhance data secu-
rity and operational reliability.
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A Chunking Results Statistics

Statistic Type ~ Length | Semantic | StyleDFS
Total | 30,493 30,493 30,483
Avg | 417.71 586.40 247.82
Character StFl 18.64 128.33 170
Mid 419 624 184
Max 443 670 679
Min 278 32 47
Total | 21,290 21,259 20,839
Avg | 291.64 408.82 169.422
Token Std 20.01 91.93 118.81
Mid 289 433 126
Max 366 490 449
Min 181 23 28
Chunk Total | 73 | 52 | 123

Table 4: Statistical results for the three chunking meth-
ods (Length, Semantic, and StyleDFS) categorized by
Character, Token, and Chunk.

Table 4 shows the statistical results for the
three chunking methods: Length, Semantic, and
StyleDFS. Length-based chunking generates a total
of 73 chunks, with an average of 417.71 characters
and 291.64 tokens per chunk, showing a uniform
tendency. The low standard deviations of 18.64 for
characters and 20.01 for tokens indicate relatively
little variability in chunk length, which results from
splitting the text based on a fixed length.

In contrast, semantic-based chunking, using an
encoder model, produces a total of 52 chunks. This
method groups chunks based on the semantic sim-
ilarity of the text, resulting in the highest average
character count of 586.40 and average token count
of 408.82. However, the standard deviations of
128.33 for characters and 91.93 for tokens indi-
cate greater variability in chunk length, showing
the larger sections based on semantic similarity.

Lastly, our proposed StyleDFS generates a to-
tal of 123 chunks, the highest number among the
methods. It has the lowest average character count
of 247.82 and token count of 169.42, with standard
deviations of 170 and 118.81, respectively, indi-
cating significant variability in chunk length. The
large difference between the maximum length (679
characters) and minimum length (47 characters)
shows that StyleDF'S finely captures the hierarchi-
cal structural elements of HTML documents in its
chunking process.
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B Embedding Model Selection Details

MTEB (Muennighoff et al., 2022) is a comprehen-
sive text embedding benchmark designed to eval-
uate embedding models. However, since it does
not support retrieval evaluation in Korean, we ex-
tended MTEB by including three Korean retriever
performance evaluation datasets to assess the per-
formance of Korean embedding models.

Datasets To evaluate the embedding models, we
used three datasets: Ko-StrategyQA?>, Ko-mrtydi®,
and Ko-miracl’. To create these datasets, we
first converted the Korean (Ko) sections of the
Mr. TyDI (Zhang et al., 2021) and Miracl (Zhang
et al., 2023) datasets into the BelR (Thakur et al.,
2021) format. The Ko-StrategyQA dataset, de-
signed for multi-hop QA, was also converted into
the BelR format. This process included grouping
evidence documents and excluding sub-questions
containing no_evidence or operation to refine the
dataset further.

Models The multilingual-e5 (Wang et al., 2024),
initialized from xIm-roberta (Conneau et al., 2019),
was continually trained on a mixture of multilin-
gual datasets, supporting 100 languages originally
covered by xlm-roberta and featuring a hidden
size of 1024. This model’s broad language support
makes it highly versatile. ko-sroberta®, a sentence-
transformers model that maps sentences and para-
graphs to a 768-dimensional dense vector space.
This model extends klue/roberta-base (Park et al.,
2021) through multi-task learning using the Ko-
rSTS and KorNLI datasets in Ham et al. (2020),
making it particularly effective for tasks involving
Korean semantic representation. Additionally, we
leveraged the UAE-Large-V1 (Li and Li, 2023),
which is based on the BERT architecture and has
a hidden size of 1024. This model introduces the
AnglE method, a novel angle-optimized text em-
bedding approach that mitigates the adverse ef-
fects of the cosine function’s saturation zone by
applying angle optimization in a complex space,
thereby enhancing the quality of its semantic em-
beddings. Furthermore, we included the bge-large-

Shttps://huggingface.co/datasets/taeminlee/
Ko-StrategyQA

6https://huggingface.co/datasets/taeminlee/
Ko-mrtydi

"https://huggingface.co/datasets/taeminlee/
Ko-miracl

8https://huggingface.co/jhgan/
ko-sroberta-multitask

en-v1.5 (Xiao et al., 2023) in our experiments. This
model also follows the BERT architecture with a
hidden size of 1024 and is pre-trained using retro-
mae (Shitao Xiao and Cao, 2022). It undergoes
further training on large-scale paired data through
contrastive learning, refining its ability to generate
high-quality embeddings for retrieval and matching
tasks.

Metrics To select and evaluate the retrieval mod-
els, we use the nDCG (Normalized Discounted
Cumulative Gain) (Wang et al., 2013) score. The
nDCG metric assesses the relevance of retrieved
documents by considering their rank, measuring
the quality and order of the search results. Specif-
ically, we focus on the top 3 retrieved documents
to determine how effectively the model ranks the
most relevant documents for a query. This approach
provides a detailed evaluation of the precision and
ranking efficiency of the retrieval models, offering
the necessary metric to choose the most suitable
model for our application.

Latency We evaluate the encoding throughput
using the Ko-mrtydi dataset (1,496,126 para-
graphs). The time required for this task using the
Multilingual-e5 encoding model is detailed below.

Model Time (sec) Throughput (it/s)
Multilingual-e5-small ~ 1093.18 1368
Multilingual-e5-base 2564.65 583
Multilingual-e5-large 8069.48 185

Table 5: Evaluation of encoding throughput for the top
3 high-performing models in 1 using the Ko-mrtydi
dataset. The table presents the total time taken to encode
all samples (in seconds) and the throughput (iterations
per second).

Hardware We conducted our experiments us-
ing an Intel Xeon Gold 6230R @2.10GHz CPU,
376GB RAM, and an NVIDIA RTX A6000 48GB
GPU. The software environment included nvidia-
driver, CUDA, and PyTorch, running on Ubuntu
20.04.6 LTS.

C Experimental Details

Models We utilized several state-of-the-art lan-
guage models in our experiments. The LLaMA-
8B model, comprises 8 billion parameters and is
trained on over 15 trillion tokens of data from pub-
licly available sources, incorporating non-English
data in approximately 30 languages. Additionally,
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we employed the LLaMA Open Ko 8, a Korean-
adapted version of LLaMA-3-8B, which contin-
ued training to over 60GB of publicly available,
deduplicated texts. The Gemma 7B model, trained
on a diverse dataset of 6 trillion tokens encom-
passing web documents, code, and mathematical
texts, offers a broad exposure to various linguistic
styles and vocabulary. Furthermore, we included
the Gemma-Ko 7B, a Korean-language adaptation
of the Gemma 7B model.

Hyperparameters The model is trained using
the Adam optimizer with a learning rate (LR)
of 2e-5. The learning rate scheduler employed is
WarmupDecayL.R. Maximum sequence length for
the model is set to 2048 tokens, and bfloat16 pre-
cision is used for the computations. The training
utilizes a batch size of 16 and is conducted over
3 epochs. Additionally, a warmup phase is imple-
mented for the initial 10% of the training steps.

Hardware We utilized 8 NVIDIA A6000 GPU
with 48GB memory capacity and AMD EPYC
7513 32-core Processor CPUs to training the LLMs.
For inference we use a singlie accelerator.

D Prompt Template

Answer rewriting prompt Table 6 provides an
example of the prompt template used for answer
rewriting. This template is designed to elicit de-
tailed and descriptive-form responses, converting
the original yes/no and extractive formats into more
comprehensive and descriptive answers.

QA prompt In the RAG pipeline, the input to
the LLM consists of context chunks followed by
the query. For the top-1 scenario, a single chunk
is used, whereas for the top-3 scenario, chunks
are concatenated in order of their relevance with
newline separators. An actual example can be seen
in Table 7, which illustrates the format utilized for
the LLMS input.

E Examples

Results of Document Chunking Using Different
Methods Table 8 displays the results of apply-
ing each chunking methodology to the document
shown in Figure 2. The length based approach di-
vides the word "2F 2 4 into separate chunks. The
semantic based method, while considering mean-
ing, fails to form a complete chunk in the given

You need to create a set of Q&As that train linguistic intelli-
gence.

It includes four basic skills
C=given context

Q=given questions
A=create answers
J=formatting to json

The context must meet the following requirements
Question creation must meet the following requirements

1. Questions are built with a good understanding of context.
2. Don’t be edited.

Answer generation must meet the following requirements
1. provide a rationale.

2. be formatted in markdown.

3. Must be written in Korean and descriptive form.

Formatting to json must meet the following requirements
1. have three keys: context, question and answer.

Perform tasks C, Q, A, and J for the following documents.
Imporant: always use the response tool to respond to the user.
Context: $% EA17}F0] uj J 4 &4 o] (MAC: Medium Ac-
cess Control) X2 E-F A A A| HIEA] 18] 5] o]ofgh Algh-2
28] el £5 2 Q1% 7] Hnt A9, 7|3} oj 8l g,
293 45 Ao A HiE g S o]z o= Qe AP
4:H] 72 Folth. & =&l A= TDMA 7]7Fo] o4 3 &
Aol 2R EZo] 7HA] = 5718 24, Ad a8 2A1E
Asta, A7 2 EZo] /A= FEEE AT S
BE Aol 2AE Heot= wiAHS Al

ottt &8 BRES =YUste] G829 1Y
oz 4HIE EHL AE 58 TV E FEE HLE
of AE aeS S7HAZH

Question: ©] =12 of| 4] A2t T2 EF-2 of

A& Aol ZEEZoJoR?

Table 6: Example of a prompt template used for rewrit-

ing answers in the dataset. Text highlighted in rep-

resents instructions, represents the context, and
represents the question.

example. This issue arises because the method con-
catenates chunks based on the generation probabil-
ity of the model in a one-way manner. In contrast,
our methodology successfully generates a docu-
ment that is structurally and semantically complete.

Comparison of Generation Results Table 9
shows the results generated by augmenting top-1
documents chunk using different methods. Length-
based chunking tends to truncate important parts
of documents, omitting crucial information needed
to answer queries. This leads to incomplete or in-
consistent responses. For instance, queries about
"the responsibilities of the power project operator”
resulted in partial or abruptly cut-off information.
Semantic-based chunking considers the meaning of
the document but still struggles to form complete
chunks. Because the chunking is linked based on
the model’s generation probability, even though im-
portant information is included, it fails to function
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Table 7: Example of a prompt commonly used for both
training and inference in the RAG pipeline. The text
above the newline represents the chunk(s) and below
represents the question.

as a fully independent document. While this ap-
proach adequately answers queries, some responses
lack consistency. StyleDF'S effectively reflects both
the structural and semantic context of documents,
generating more complete and coherent chunks.
For example, in response to questions about "the
responsibilities of the power project operator," it
organizes and presents information from multiple
parts of the document in a clear and structured man-
ner. This method significantly improves the quality
and consistency of responses by efficiently incor-
porating overall document content. The document
retrieval is accurate, and the necessary information
is well-captured, leading to successful generation.
Table 10 provides the English translations.
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E A7 A A7) A - - 3 - 2 9 WA S - AR WA E - A4 - AR R - 715 RE axle
ol Z-ggeh (1) AR AR, FAFAGE 7 i AD AT 2hste] o7 5-& SysHr] e B
W (2) 47 MOA 1100 (1) F] 4] 744] 5 sk} o] QH7]%5-& sk AB(QAR B AN BEshe
SFRREEA (3) 471 MOA 1100 (1) 2] A] 744 5 sk o] 4] el 7) 52 SashALt 92 W) el A
A& BASHE AT AT 7] (AU E) MOA 1200 218 37 /M5 5418 7147158 AAua 7129 mE
221 WESH 7} 71715 thste] ol B glo] AT 72 axlo] WEEL AHRE A AFolt Uz

Chunk 1

20 RIL A2 T2 Aol §48E Aol A o] ghmEl 7] 7)ot A-§-5Fo]oF et MOA 1300 4-§ MOA 1310 A&
717 7HESA R 71e7| A AEHY R YA | B, Wl E, 7] 52 7HeS A @ Al ol ZFA| AR gt

MOA 1320 53 &5 A& 384 el ol 71718 AAAGA HET 52 5302 AT F o= AlF] Avta] 5gl
QgL n]x] 7] gFotof shrt. Fx7|E B 1A A LU=/ A% PTC 25 APIRP-527 199413 31 19911 MOA 1400 3%

71% 2 A 7He A 71er1Ee) FER V12T 1A A YA E TP U EE F MOA 1400 7t Z ot 3 MOA 1400 32
71 2 712 MOA 1500 'FAAAAF0] A Q] ALY 2= ok AFgbel] thiste] AQlo] Qlet. (1) W4 72t 71719 H4 g

TH 2R Q) THEE AE B FAH A7 AlFAA 478 3) AR 2 HA WA 717 A @) A8 2 HEA

o] A T2}t 3 FHOIEE 7|75 AA 9 vix] REB ¢

Length-based

Chunk 2

MOA 1000 ¥FARR MOA 1100 281 9] 75541 71871E2 94t T34 717159 Hd7]s e Es 715t f15tod
sk 71, 7HES Al E Aol tiet 8338 Ao, of2 Aol digh 2adte] e e AR - Al BE A4

7171 - A - - 771 - 54 D WL R - A WOPIE - AA e - AR XA - 715 BE a2 ol 283t

(1) L2z PAA A, AR SH 2] e ARRLA T &3te] QP 7] 5-& st Wath HI, MH (2) 47] MOA 1100 (1) 39
Al 7HA] & st o3 9] P71 52 dshe AT (LR Be A& Boste IS A (3) 4371 MOA 1100 (1) 2] Al 7121 &
St o] 4o] 7152 S AsHAU YAt E WA g A o] AA3E BAStE AlEel AR R 7I(2 1 H) MOA 1200 2
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Table 8: Qualitative comparison of chunking methods applied to the document in Figure 2. The table allows a direct
observation of the chunking results for each methodology: length-based, semantic-based, and StyleDFS.
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Figure 2: An example of a document illustrating the content structure and formatting used for guidelines and
requirements in nuclear power plant operations. The content is categorized into different sections, including general
information, application scope, and specific criteria.
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Table 9: Comparison of Generated Answers for Queries. “Chunk” indicates the source content, and “generation”
denotes the generated results. Instruction tuned Llama-3-Open-Ko-8B model was used for generation.
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Query

Please provide information on the responsibilities of the power plant operator

All measuring instruments and testing equipment used for the calibration inspection and test plan must be calibrated and managed according
to the administrative procedures of the power plant operator or the quality assurance plan approved by the power plant operator. MOA 5000
(reserve) MOA 6000 (reserve) MOA 7000 (reserve) MOA 8000 (reserve) MOA 9000 records and reports MOA 9100 scope The record retention
requirements must apply to records generated from pre-operational and operational tests and inspections required by the in-service testing
technical standards. MOA 9200 requirements MOA 9210 responsibilities of the power plant operator (1) The power plant operator must prepare
a pre-operational and operational test and inspection plan and schedule that satisfies the requirements of the in-service testing technical standards.
(2) The power plant operator must prepare and maintain records of pre-operational and operational tests and inspections. MOA 9220 preparation
(1) Test records must be prepared according to the requirements for tests and inspections. (2) The plan must state the following on the cover
- preparation date - name and location of the power plant operator - name and location of the power plant - name of each unit - commercial
operation start date MOA 9230 pre-operational tests and inspection results of tests and

The responsibility of the power plant operator is to prepare and carry out a pre-operational and operational test and inspection plan and schedule
that satisfies the requirements of the in-service testing technical standards. Additionally, it is responsible for preparing and maintaining records
of these tests and inspections. These records play an important role in ensuring the safety and efficiency of the power plant.

RP-527 1994 3rd edition, 1991 MOA 1400 reference standards and specifications The revision dates and publication years of the reference
standards and specifications in the in-service testing technical standards are as follows Table MOA 1400. Table MOA 1400 reference standards and
specifications MOA 1500 responsibilities of the power plant operator The power plant operator is responsible for the following: (1) determining
the appropriate grade of each device in the power plant, (2) selecting the system boundaries of test or inspection target devices by grade, (3)
selecting devices exempted from test or inspection, (4) designing and arranging devices to ensure appropriate access and space for carrying out
tests and inspections, (5) preparation of test plans and procedures, (6) preparing test and inspection schedules and procedures, (7) recognizing the
qualifications of those who perform tests and inspections according to the power plant operator’s quality assurance plan, (8) conducting tests and
inspections, (9) preparing evaluation grounds and recording results to compare with future tests or inspections, (10) evaluating test and inspection
results (11) maintaining appropriate test and inspection records (describing test and inspection results and procedures), (12) preserving test and
inspection results for the lifetime of the devices or systems, (13) documenting quality assurance plans according to KEPIC-QAP MOA 1600
accessibility Ensuring the accessibility of inspectors and equipment needed for conducting tests and inspections Note (1) The grade classification
is according to Nuclear Safety and Security Commission Notice No. 2014-15 (Safety grades and specifications for reactor facilities). MOA 2000
definitions Pre-operational Test (PST): A test conducted during the period from the installation of a device until the first power production by
core heat or during the pre-operational period in an operational nuclear power plant Pre-operational test period: Period from device installation

The responsibilities of the power plant operator are as follows: 1. Determining the appropriate grade of each device in the power plant, 2. Selecting
the system boundaries of test or inspection target devices by grade, 3. Selecting devices exempted from tests or inspections, 4. Designing and
arranging devices to ensure appropriate access and space for carrying out tests and inspections, 5. Preparation of test plans and procedures, 6.
Preparing test and inspection schedules and procedures, 7. Recognizing the qualifications of those who perform tests and inspections according
to the power plant operator’s quality assurance plan, 8. Conducting tests and inspections, 9. Preparing evaluation grounds and recording results to
compare with future tests or inspections, 10. Evaluating the test and inspection results 11. Maintaining appropriate test and inspection records
(describing test and inspection results and procedures), 12. Preserving test and inspection results for the lifetime of the devices or systems, 13.
Documenting quality assurance plans according to KEPIC-QAP These responsibilities are essential to ensure the safety and efficient operation of
power plant devices.

chunk
Length

generation

chunk
Semantic

generation

chunk
StyleDFS

generation

## MOA 1000 General Requirements ### MOA 1500 Responsibilities of the Power Plant Operator The power plant operator is responsible for
the following: (1) determining the appropriate grade of each device in the power plant, (2) selecting the system boundaries of test or inspection
target devices by grade, (3) selecting devices exempted from test or inspection, (4) designing and arranging devices to ensure appropriate access
and space for carrying out tests and inspections, Appendix B reference of optional requirements (5) preparation of test plans and procedures, (6)
preparing test and inspection schedules and procedures, (7) recognizing the qualifications of those who perform tests and inspections according
to the power plant operator’s quality assurance plan, (8) conducting tests and inspections (9) preparing evaluation grounds and recording results
to compare with future tests or inspections (10) evaluating test and inspection results (11) maintaining appropriate test and inspection records
(describing test and inspection results and procedures), (12) preserving test and inspection results for the lifetime of the devices or systems (13)
documenting quality assurance plans according to KEPIC-QAP

The responsibilities of the power plant operator are as follows: 1. Determining the appropriate grade of each device in the power plant, 2. Selecting
the system boundaries of test or inspection target devices by grade, 3. Selecting devices exempted from tests or inspections, 4. Designing and
arranging devices to ensure appropriate access and space for carrying out tests and inspections, 5. Preparation of test plans and procedures, 6.
Preparing test and inspection schedules and procedures, 7. Recognizing the qualifications of those who perform tests and inspections according
to the power plant operator’s quality assurance plan, 8. Conducting tests and inspections, 9. Preparing evaluation grounds and recording results to
compare with future tests or inspections, 10. Evaluating the test and inspection results 11. Maintaining appropriate test and inspection records
(describing test and inspection results and procedures), 12. Preserving test and inspection results for the lifetime of the devices or systems, 13.
Documenting quality assurance plans according to KEPIC-QAP

Table 10: Comparison of Generated Responses for Queries. Translated in English using GPT-4 (OpenAl, 2024).
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