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Abstract

Geocoding, the conversion of unstructured ge-
ographic text into structured spatial data, is
essential for logistics, urban planning, and
location-based services. Indian addresses with
their diverse languages, scripts, and formats
present significant challenges that existing
geocoding methods often fail to address, partic-
ularly at fine-grained resolutions. In this paper,
we propose GeoIndia, a novel geocoding sys-
tem designed specifically for Indian addresses
using hierarchical H31-cell prediction within
a Seq2Seq framework. Our methodology in-
cludes a comprehensive analysis of Indian ad-
dressing systems, leading to the development
of a data correction strategy that enhances pre-
diction accuracy. We investigate two model
architectures, Flan-T5-base (T5) (Chung et al.,
2024) and Llama-3-8b (QLF-Llama-3) (Meta),
due to their strong sequence generation capa-
bilities. We trained around 29 models with one
dedicated to each state, and results show that
our approach provides superior accuracy and
reliability across multiple Indian states, outper-
forming the well-renowned geocoding platform
Google Maps2. In multiple states, we achieved
more than an 50% reduction in mean distance
error and more than a 85% reduction in 99th
percentile distance error compared to Google
Maps. This advancement can help in optimiz-
ing logistics in the e-commerce sector, reduc-
ing delivery failures and improving customer
satisfaction.

1 Introduction

The rise of e-commerce has transformed the way
we shop, offering unmatched convenience and a
vast array of products at our fingertips. However,
the smooth online shopping experience relies on
a complex logistics network that ensures timely,
efficient, and reliable delivery. Geocoding plays a

1https://www.uber.com/en-IN/blog/h3/
2https://www.google.com/maps

crucial role in this process. It helps in planning the
logistics network, from selecting facility locations
and assigning hubs or distribution centers to plan-
ning delivery routes. By ensuring timely deliveries,
geocoding not only enhances the customer experi-
ence but also reduces failed deliveries and RTO3, a
financial threat to the e-commerce industry.

Building a geocoder for Indian addresses
presents unique challenges not typically encoun-
tered in other countries. Unlike western coun-
tries with standardized addressing systems, Indian
addresses are highly diverse and lack uniformity.
For example: In contrast to the simplicity of ad-
dresses like “10 Downing Street” in the UK, In-
dian addresses can be significantly more complex.
Consider the example: “XX4, palasi mohania vil-
lage madarsa chowk rto jama masjid Araria Bihar,
854333, purnia”. Here, it is challenging to dis-
cern that “palasi mohania” is intended as a local-
ity, “madarsa chowk” and “rto jama masjid” as
potential landmarks, “araria” as the municipal-
ity within the city of “purnia”, and “854333” as
the postal code. This complexity is compounded
by the use of various regional terms like street,
main/cross, colony, and more, which vary signif-
icantly among states and regions. The traditional
use of addresses in India was relatively informal
until the advent of e-commerce in the early 2000s.
Previously, addresses were shared verbally or hand-
written for postal deliveries, often including land-
marks to guide the recipient. However, entering
these addresses into digital systems for online shop-
ping has highlighted the inconsistencies inherent
in Indian addresses.

Several factors contribute to the difficulty of
geocoding in India:

3Return to Origin (RTO) refers to the non deliverability of
a package to the buyer and its return to the sellers address

4Due to business confidentiality, some exact values are not
revealed, and finer address details are masked (XX) to ensure
the privacy of customers.
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Lack of Standardization: There is no stan-
dardized format for addresses across India. Each
state and even different regions within states use
varied terminologies and structures, making it
challenging to develop a one-size-fits-all geocod-
ing solution. For example, an address in Mumbai
might be written as "Flat No. XX, Building No. 5,
XX Society, Andheri West, Mumbai, Maharashtra,
400053" which includes specific details about the
building and locality. In contrast, an address in a
rural area of Tamil Nadu might be "House No. XX,
Near Big Temple, Thanjavur District" which relies
more on prominent local landmarks.
Inconsistent Address Formatting: Addresses
may be written in various orders, with elements
like the state, pincode, or house number appearing
in different sequences. For example, an address in
Chennai might be written as "No. XX, 2nd Cross
Street, Besant Nagar, Chennai - 600090, Tamil
Nadu" while another in the same city could be
"Besant Nagar, XX, 2nd Cross Street, Chennai -
600090, Tamil Nadu".
Incomplete and Erratic Data: Addresses often
lack key components or contain errors, such as
misspellings and incorrect locality or street names.
For example, the locality "daharahara chawk" can
be misspelled as "dharhara chowk".
Reliance on Landmarks: Many addresses in
India use informal descriptions and landmarks,
like "near the big banyan tree" or "behind the
supermarket" which are not standardized and can
be ambiguous. This is especially prevalent in rural
areas, making them difficult to incorporate into a
geocoding model.
Traditionally, geocoding has been addressed using
rule-based and heuristic strategies. However,
recently, Kothari et al. (Kothari and Sohoney,
2022) and Reddy et al. (Reddy et al., 2022)
formulated geocoding as a Seq2Seq task, where
coordinates are converted into grids and predicted
in an autoregressive manner. Building on this
research, we have conducted empirical evaluations,
incorporating the nuances of Indian addresses and
scaling the solution across all 29 Indian states
using low-latency and high-throughput model
serving infrastructure. The major contributions of
this work are:

1. We explored different language model back-
bones, specifically Flan-T5 and Llama-3, in
the context of Indian address geocoding.

2. We demonstrated the benefits of transfer learn-
ing and domain specific tokenization in scal-
ing the model to multiple regions with im-
provement in accuracy and convergence time.

3. We examined the effect of varying batch sizes
and gradient accumulation steps in data-scarce
settings, optimizing for both accuracy and ef-
ficiency.

4. We showcased the practical effectiveness of
our pipeline across each Indian states and com-
paring our performance with Google Maps.

2 Related Work

The evolution of geocoding techniques has tran-
sitioned from traditional rule-based and heuristic
strategies to sophisticated deep learning models.

Initial geocoding research used rule-based and
traditional machine learning methods that mapped
text to geographic locations by extracting and rank-
ing entries from address databases (Zhang and
Gelernter, 2014; Karimzadeh et al., 2019; Viegas,
2021; Karimzadeh et al., 2013; Lieberman and
Samet, 2012). Although these methods worked
well, they faced challenges in regions without ex-
tensive, high-quality databases, limiting their effec-
tiveness in areas with sparse or non-standardized
address data (Goldberg et al., 2007; DeLozier et al.,
2015; Kulkarni et al., 2020).

To overcome the limitations of traditional meth-
ods, researchers began using deep learning models
for geocoding. These models predict geographic
locations directly from text, reducing the need for
external databases and improving generalization
(Yao, 2020; Fornaciari and Hovy, 2019; Huang
et al., 2022). Early approaches treated geocoding
as either a coordinate prediction task. For example,
Liu et al. (Liu and Inkpen, 2015) used deep learn-
ing to estimate Twitter user locations from text,
achieving good results. Radford et al. (Radford,
2021) developed a model to predict geographic co-
ordinates directly from event text. However, these
regression-based methods often struggled with the
continuity and infinite nature of geographic coor-
dinates, leading to learning difficulties and perfor-
mance degradation due to data quality issues.

In response to the challenges faced by regression-
based models, researchers explored grid-based clas-
sification approaches, where the Earth’s surface
is divided into discrete grids, and models predict
the corresponding grid category based on input ad-
dresses (Kulkarni et al., 2020; Viegas, 2021; Gritta
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et al., 2018; Fornaciari and Hovy, 2019; Cardoso
et al., 2019; Serdyukov et al., 2009; DeLozier et al.,
2015). For example, Cardoso et al. (Cardoso et al.,
2019) combined grid classification with coordinate
regression, using context-aware word embeddings
and bidirectional LSTM networks to transform text
and predict grid categories. This hybrid approach
addressed some limitations of pure classification
models but still faced challenges related to the high
dimensionality of the output space, particularly in
fine-grained geocoding tasks.

Recently, researchers have begun addressing this
problem using a Seq2Seq formulation (Kothari and
Sohoney, 2022; Reddy et al., 2022; Liang et al.,
2024), employing an encoder-decoder architecture.
The input is an address, and the target is an alphanu-
meric string generated by hierarchical grid systems
like H3, and S25. This approach has proven to be
more effective than others.

3 Methodology

We formulated geocoding as a hexagonal grid
prediction problem from raw addresses using a
Seq2Seq framework. It includes training Senten-
cePiece tokenizer from scratch on a large corpus
of data that represents the vocabulary of addresses
from different Indian states and fine-tuning of lan-
guage models to generate alphanumeric H3 cells.

3.1 H3 grid system

We selected the H3 grid system for efficient spa-
tial representation and robust hierarchical indexing.
It enhances the model’s ability to understand rela-
tionships among neighbouring addresses as nearby
hexagons share most bits, thereby enforcing em-
beddings of neighboring addresses to be closely
related. A detailed comparison of H3 with other
grid systems is provided in the Appendix A.
Encoding H3 Indices for Model Learning: We
designed our tokenizer to treat each bit of the H3 in-
dex as a separate token, helping the model learn the
hierarchical structure of these indices. We achieved
this by using unique delimiters, ‘ˆ$’ and ‘$ˆ’6, and
incorporating all possible combinations into the to-
kenizer. This encoding approach enables the model
to comprehend every single bit of index effectively.

5https://s2geometry.io/
6For example, an H3 index of ‘893db620b13ffff’ is en-

coded as: ˆ$8$ˆˆ$9$ˆˆ$3$ˆˆ$d$ˆˆ$b$ˆˆ$6$ˆˆ$2$ˆˆ$0$ˆ
ˆ$b$ˆˆ$1$ˆˆ$3$ˆˆ$f$ˆˆ$f$ˆˆ$f$ˆˆ$f$ˆ

3.2 Training Strategy

Training a single model for India is inefficient due
to data imbalance, diverse address formats (refer
appendix E), leading to bias towards states with
more data. To address this, we created individual
models for each state. We began with a city-based
model for Nagpur, then expanded to other states
using Flan-T5-base and Llama-3-8b models.

3.2.1 Training Tokenizer from scratch

We trained a SentencePiece tokenizer (Kudo, 2018)
from scratch on 67 million Indian addresses to han-
dle regional variations. This improves the model’s
ability to accurately parse and process diverse ad-
dress formats. Refer Appendix D.1 for the de-
tailed comparison between our custom tokenizer
and Vanila T5 tokenizer.

The impact of the trained tokenizer is shown in
Table 1 which clearly demonstrates that the address
is tokenized into coherent units such as “nagsen”,

“nagar”, “bhim”, and “chowk”, improving model’s
understanding of the address. We also explored
treating pin codes as special tokens to ensure the
tokenizer would not split them, but this resulted in
drop in accuracy. For more detailed explanation
please refer Appendix D.2.

3.2.2 T5 Training

For the T5 model, we fine-tuned the Flan-T5-base7

variant, which has 220 million parameters, specifi-
cally for the task of hierarchical H3-cell prediction.
The core of our training involved optimizing the
T5 model to predict hierarchical H3-cell accurately.
We employed the CrossEntropy loss function (refer
appendix F) to enhance the model’s predictive capa-
bilities. During evaluation, we used accuracy and
haversine distance as metric to assess model perfor-
mance, reflecting the correctness and geographical
relevance of the predictions.

3.2.3 Llama-3 Fine-tuning

For the Llama-3 model, we selected the Llama3-8b
variant, which has ∼8 billion parameters. We fine-
tuned Llama3-8b model using QLoRA (Dettmers
et al., 2023), with detailed information provided in
Appendix H.1. We refer to this QLoRA fine-tuned
version of Llama3-8b as QLF-Llama-3 (QLoRA
Fine-tuned Llama-3). Our training strategy focused

7We initially tested all five variants of the Flan-T5 model
to identify the most suitable one for our task. Performance
comparison among these is provided in appendix B.
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Original Address Vanila T5 tokenizer Our tokenizer
XX, nagsen nagar, bhim chowk, jari-
patka, nagpur, maharashtra, 440014

[‘_XX’, ‘,’, ‘_, ‘nag’, ‘s’, ‘en’, ‘_, ‘n’,
‘a’, ‘gar’, ‘,’, ‘_’, ‘b’, ‘him’, ‘_’, ‘c’,
‘how’, ‘k’, ‘,’, ‘_ja’, ‘rip’, ‘at’, ‘ka’, ‘,’,
‘_’, ‘nag’, ‘pur’, ‘,’, ‘_ma’, ‘har’, ‘ash’,
‘tra’, ‘,’, ‘_4’, ‘400’, ‘14’]

[‘_XX’, ‘,’, ‘_nagsen’, ‘_nagar’, ‘,’,
‘_bhim’, ‘_chowk’, ‘,’, ‘_’, ‘jaripatka’,
‘,’, ‘_nagpur’, ‘,’, ‘_maharashtra’, ‘,’,
‘_4400’, ‘14’]

Table 1: Impact of training tokenizer on Indian addresses

on optimizing QLF-Llama-3’s ability to predict
accurate H3-cell indices.

4 Data Creation

We extracted data for each state from database8

of a large Ecommerce platform where delivered
latitudes and longitudes were stored against the
addresses. We then converted co-ordinates to h3
indices after pre-processing. Since our use case
was to build a geocoder at the building or house
level, we chose resolution 9, which covers radius of
roughly 200 meters9 of each cell. To maintain con-
sistency and ensure representative location data, we
selected the most frequently occurring H3 index for
each address. This process involves calculating the
frequency of each H3 index associated with an ad-
dress and selecting the index with the highest count.
We prefixed each address with a specific prompt to
enhance the model’s understanding. The prompts
used for each model are provided in appendix C.

4.1 Data Preprocessing Pipeline

To ensure the quality and consistency of the data,
our preprocessing pipeline plays a crucial role. For
the context of the readers, an e-commerce deliv-
ery database typically includes fields such as AL1
(Address Line 1), AL2 (Address Line 2), landmark,
city, state, and pin (Pincode), all provided by the
customer. Our preprocessing pipeline addresses
the inconsistencies in gathered co-ordinates and
address fields using 2 steps: coordinate validation
and extensive address cleaning.

4.1.1 Coordinate Validation

Accurate address-to-coordinate mapping is cru-
cial for our model to learn correct geospatial re-
lationships. It ensures delivered coordinates fall
within/nearby respective state’s polygon. We used
the point-in-polygon method combined with the
Haversine formula10 as given below:

8Data statistics for each state are provided in Table 10.
9https://h3geo.org/docs/core-library/restable

10https://en.wikipedia.org/wiki/Haversine_formula

distance(p, P ) =




0 if p ∈ P

min
q∈∂P

Haversine(p, q) if p /∈ P

(1)
where p represents the point coordinates, P repre-
sents the polygon, and ∂P denotes the boundary of
the polygon.

4.1.2 Address Cleaning
Address lines were cleaned through several steps
to ensure consistency and quality:
Address Line Cleaning: Address lines were
cleaned by removing extra whitespaces, new lines,
tabs, and unnecessary characters. This included
lowercasing text, trimming punctuation, and elim-
inating repeating words. We merged ordinal indi-
cators with numbers and removed sequences over
six digits to avoid confusion with pincodes. For
instance, converting " 12, Main Road„ " to "12
main road" and "1 st Avenue" to "1st Avenue".
Probabilistic Camel Case Splitting: We applied
a probabilistic model to split camel case words
based on observed frequencies in the dataset. For
instance, "NewDelhi" is split into "New Delhi" if
the transition from lowercase to uppercase occurs
frequently. The probability of a split is determined
by how often each character pair appears, ensuring
accurate reflection of common patterns.
Redundant Phrase Reduction: We eliminated
duplicate phrases by keeping the first occurrence
of the phrase. For example, converting "JP Na-
gar, Bangalore, JP Nagar" to "JP Nagar, Banga-
lore" and "Near Gandhi Market Gandhi Market"
to "Near Gandhi Market".
Combining Address Components: At last, we
finally combined the cleaned components of vari-
ous address components in following order: AL1,
AL2, landmarks, city, state, pin into a complete
standardized address.

5 Empirical Study
As it is not efficient to conduct extensive experi-
ments on each state simultaneously, we decided
to start with a model for a single city and then ex-
pand the best set of experiments to various states.
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This approach allowed us to focus our efforts and
resources effectively. We picked two relatively
more dense Indian cities: Nagpur, located in cen-
tral India, and Surat, situated in western India. The
statistics for both are provided in Table 10.

5.1 T5 vs QLF-Llama-3
We examined two widely used Language model
backbones, Flan-T5-base and Llama-3-8b. T5 be-
ing a smaller model, we fine-tuned all 220M pa-
rameters whereas for Llama-3 we used Q-LoRA
(Dettmers et al., 2024) and only targeted three mod-
ules - K(Key), Q(Query), V(Value) such that pre-
trained model gets adapted to our task. Detailed
configuration is provided in Appendix H.1. Three
different evaluation metrics were studied to assess
the performance of our models - Mean distance
error (Mean), 90th percentile (P90), and 99th per-
centile (P99) distance errors. It is evident from
the results in Table 2 that T5 outperformed QLF-
Llama-3 across all metrics. We concluded that
QLoRA alone is not capable enough to learn such
geospatial relationships effectively. It is necessary
to either fine-tune the entire model or use ReLoRA
(Lialin et al., 2023).

Model Mean (km) P90 (km) P99 (km)
N S N S N S

T5 0.6 0.4 1.2 0.8 7.2 5.6
QLF-

Llama-3
1.3 0.8 2.2 1.9 9.7 7.8

Table 2: Performance comparison between QLF-Llama-
3 and T5. "N" denotes Nagpur, and "S" denotes Surat.
The best results are highlighted in bold.

We investigated the embedding quality of T5
and QLF-Llama-3 by selecting addresses from 10
regions of Surat and visualizing their embeddings
with t-SNE (Figure 1). The T5 model’s t-SNE plot
shows well-defined, tightly packed distant clusters
with clear separation. In contrast, QLF-Llama-3’s t-
SNE plot shows dispersed clusters with noticeable
overlap, suggesting it struggles to cluster geospa-
tially close addresses.

5.2 Geographic Expansion using Transfer
Learning

In the industry, there is a common need to extend
geocoders to different regions. To address this, we
explored the possibility of adding new geographies
using learning gained from other regions. Our find-
ings revealed that by using the weights of the ex-

(a) QLF-Llama-3 (b) T5

Figure 1: Embedding representation of addresses taken
from 10 different regions of Surat.

isting model as initial weights lead to reduction of
convergence time by reducing the number epochs
by three times (Figure 2). To achieve this we did
two experiments. In the first, we fine-tuned the
pre-trained T5 weights. In the second, we initial-
ized weights from an already fine-tuned city model
(Nagpur) and then trained the model. Our goal
was to see if starting with region-specific weights
offered performance improvements and faster con-
vergence. We picked Bihar, Delhi, and Gujarat
to assess the performance differences in these two
scenarios.
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Figure 2: Impact of Transfer Learning on Bihar

To illustrate the impact of transfer learning, we
compared the convergence rates and accuracy im-
provements over training epochs on the evaluation
set of Bihar. Figure 2 shows the model trained for
30 epochs with pretrained T5 weights and Nag-
pur initialized weights. In the first scenario, the
distance error decreased from ∼3 km to ∼0.5 km
over 30 epochs. In the second scenario, the dis-
tance error dropped from ∼1.2 km to ∼0.4 km
within 10 epochs. This demonstrates that the model
with Nagpur initialized weights converged faster
and achieved lower geocoding error in significantly
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State Mean (km) P90 (km) P99 (km)
PW NIW PW NIW PW NIW

Bihar 3.5 2.1 7.2 4.8 15.3 7.2
Delhi 2 0.5 4.5 0.6 15.1 8.6
Gujarat 6.7 4.1 8.4 7.6 16.5 9.7

Table 3: Performance comparison in two scenarios: PW
refers to generic Pre-trained Flan-T5 weights, and NIW
refers to Nagpur Initialized Weights. The best results
are highlighted in bold.

fewer epochs.
Table 3 indicates, initializing model weights

with already trained model of another region led to
improved performance across all states compared
to starting from generic pretrained weights.

5.3 Data Constrained Learning
For smaller states, we have limited data (<0.1M).
Training a data-hungry model like Flan-T5 and
achieving good performance on a task like geocod-
ing with such limited data is challenging. There-
fore, we explored the impact of adjusting batch
size and accumulation steps to optimize model’s
performance under these constraints. Large batch
size and accumulation steps can speed up conver-
gence but may miss data variations, while smaller
values capture nuances leading to better accuracy
but convergence takes more time.

To explore this balance, we conducted experi-
ments across several states with varying dataset
sizes. The results are summarized in Table 4, high-
lighting the impact of different batch sizes and ac-
cumulation steps on model performance.

State Train Batch
size

Acc.
steps

Mean
(km)

P99
(km)

HP ∼96k
8 4 4.8 8.7
4 2 4.3 7.8
2 1 3.8 6.9

Tripura ∼58k
4 2 4.3 9.4
2 2 4.1 9.1
2 1 4.1 9

Goa ∼32k
4 2 2.6 6.2
2 1 2.5 5.9
1 1 2.4 5.6

Table 4: Impact on performance with different Batch
size and Accumulation steps (Acc. steps). The best
configuration and its result are highlighted in bold.

Results in Table 4 clearly shows that in states
with less data, lower batch sizes and accumulation
steps significantly enhanced performance. For ex-
ample, in Himachal Pradesh (HP), using batch size
of 2 & accumulation step of 1 led to a mean error

Seen Unseen
Mean
(↓%)

P99
(↓%)

Mean
(↓%)

P99
(↓%)

Bihar 62.5 84.7 47.3 71.8
Delhi 30.6 71.7 22.6 57.1

Gujarat 27.5 84.1 22.2 73.7

Table 5: Performance comparison of our approach with
Google Maps.

of 3.8 km & 99th percentile error of 6.9 km, com-
pared to batch size of 8 & accumulation step of
4, which resulted in mean error of 4.8 km & 99th
percentile error of 8.7 km. This approach ensures
frequent parameter updates, capturing patterns in
limited data effectively. Final configurations for
each state are provided in Table 11.

5.4 Industry Benchmark Comparison

We compared the performance of our geocoding
pipeline against Google Maps, which is widely re-
garded as one of the best in class globally. We
present the comparison for three states here (in
Table 5) where the difference in results is signif-
icant, while the detailed results for all states are
provided in Table 12 (Appendix I). To ensure the
robustness of our approach, we also compared the
Google Maps results on H3 cells that were not in
the training data. This is shown by the "Seen" and
"Unseen" categories in Table 5. The table displays
the percentage reduction in all metrics for both seen
and unseen data categories.

Table 5 shows significant performance gap be-
tween GeoIndia and Google Maps. For example,
in Bihar, GeoIndia achieved a mean distance error
reduction of 62.5% for seen data and 47.3% for
unseen data. Similar trends in other states show our
approach significantly outperforms Google Maps,
even in emerging geographies.

6 Real World Deployment

We deployed GeoIndia for a leading Indian E-
Commerce platform, powering GeoFencing, Hub
allocation and Route Optimization for the past 4
months. To ensure a smooth experience with real-
time inferencing (<100ms), we optimized model
latency from ∼700ms to ∼80ms using Nvidia Ten-
sorRT (NVIDIA). See Appendix J for production
workflow details.
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7 Conclusion & Future Work

In this work, we proposed GeoIndia, an effective
solution that addressed complexities in geocoding
diversely structured addresses. The proposed ap-
proach suggests that the region-specific fine-tuning
leads to faster convergence. Adjustments to pa-
rameters such as batch size and accumulation steps
in data-scarce settings were discussed to achieve
higher accuracy. We went on to discuss low latency
model serving infrastructure with coverage across
all states in India and concluded the effectiveness
of the proposed solution by comparing it with top
industry benchmark (Google Maps).

In future, we will study the impact of noise, such
as incorrect pincodes, on geocoding errors. Addi-
tionally, we plan to explore complete fine-tuning
of different LLMs.

References
Ana Bárbara Cardoso, Bruno Martins, and Jacinto Es-

tima. 2019. Using recurrent neural networks for to-
ponym resolution in text. In Progress in Artificial In-
telligence: 19th EPIA Conference on Artificial Intel-
ligence, EPIA 2019, Vila Real, Portugal, September
3–6, 2019, Proceedings, Part II 19, pages 769–780.
Springer.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Grant DeLozier, Jason Baldridge, and Loretta London.
2015. Gazetteer-independent toponym resolution
using geographic word profiles. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 29.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Preprint, arXiv:2305.14314.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Tommaso Fornaciari and Dirk Hovy. 2019. Geoloca-
tion with attention-based multitask learning models.
In Proceedings of the 5th Workshop on Noisy User-
generated Text (W-NUT 2019), pages 217–223.

Daniel W Goldberg, John P Wilson, and Craig A
Knoblock. 2007. From text to geographic coordi-
nates: the current state of geocoding. URISA journal,
19(1):33–46.

Milan Gritta, Mohammad Taher Pilehvar, and Nigel Col-
lier. 2018. Which melbourne? augmenting geocod-
ing with maps. Association for Computational Lin-
guistics.

Jizhou Huang, Haifeng Wang, Yibo Sun, Yunsheng Shi,
Zhengjie Huang, An Zhuo, and Shikun Feng. 2022.
Ernie-geol: A geography-and-language pre-trained
model and its applications in baidu maps. In Pro-
ceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 3029–
3039.

Morteza Karimzadeh, Wenyi Huang, Siddhartha
Banerjee, Jan Oliver Wallgrün, Frank Hardisty,
Scott Pezanowski, Prasenjit Mitra, and Alan M
MacEachren. 2013. Geotxt: a web api to leverage
place references in text. In Proceedings of the 7th
workshop on geographic information retrieval, pages
72–73.

Morteza Karimzadeh, Scott Pezanowski, Alan M
MacEachren, and Jan O Wallgrün. 2019. Geotxt:
A scalable geoparsing system for unstructured text
geolocation. Transactions in GIS, 23(1):118–136.

Govind Kothari and Saurabh Sohoney. 2022. Learn-
ing geolocations for cold-start and hard-to-resolve
addresses via deep metric learning. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing: Industry Track, pages
322–331.

T Kudo. 2018. Sentencepiece: A simple and lan-
guage independent subword tokenizer and detok-
enizer for neural text processing. arXiv preprint
arXiv:1808.06226.

Sayali Kulkarni, Shailee Jain, Mohammad Javad Hos-
seini, Jason Baldridge, Eugene Ie, and Li Zhang.
2020. Spatial language representation with multi-
level geocoding. arXiv preprint arXiv:2008.09236.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2023. Relora: High-
rank training through low-rank updates. In The
Twelfth International Conference on Learning Repre-
sentations.

Linlin Liang, Yuanfei Chang, Yizhuo Quan, and
Chengbo Wang. 2024. A hierarchy-aware geocoding
model based on cross-attention within the seq2seq
framework. ISPRS International Journal of Geo-
Information, 13(4):135.

Michael D Lieberman and Hanan Samet. 2012. Adap-
tive context features for toponym resolution in stream-
ing news. In Proceedings of the 35th international
ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 731–740.

Ji Liu and Diana Inkpen. 2015. Estimating user location
in social media with stacked denoising auto-encoders.
In Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing, pages
201–210.

401

https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314


Meta. Introducing meta llama 3: The most capable
openly available llm to date. https://ai.meta.
com/blog/meta-llama-3/.

NVIDIA. Tensorrt. https://developer.nvidia.
com/tensorrt/.

Benjamin J Radford. 2021. Regressing location on
text for probabilistic geocoding. arXiv preprint
arXiv:2107.00080.

Yaswanth Reddy, Sumanth Sadu, Abhinav Ganesan, and
Jose Mathew. 2022. Address location correction sys-
tem for q-commerce. In Proceedings of the Second
International Conference on AI-ML Systems, pages
1–7.

Pavel Serdyukov, Vanessa Murdock, and Roelof
Van Zwol. 2009. Placing flickr photos on a map.
In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 484–491.

Diogo Alexandre Araujo Viegas. 2021. Toponym Reso-
lution in Text with Neural Language Models. Ph.D.
thesis, Instituto Superior Técnico Lisbon, Portugal.

Xiaobai A Yao. 2020. Georeferencing and geocoding.

Wei Zhang and Judith Gelernter. 2014. Geocoding lo-
cation expressions in twitter messages: A preference
learning method. Journal of Spatial Information Sci-
ence, (9):37–70.

A H3 vs Other grid systems

A.1 S2
S2 and H3 are open-source grid systems using 64-
bit cell indexes for efficiency in big data. S2 uses
square cells, while H3 uses hexagonal, affecting
neighbors, sub division, and visualization.

Neighbors: Squares have two types of neigh-
bors: edge-sharing and point-sharing, complicating
real-world movement analysis since movements
rarely align with the grid. Analysts must consider
both neighbor types. Hexagons have only edge-
sharing neighbors, simplifying convolutions and
data smoothing as only grid distance matters, not
geographic distance.

Subdivision: S2 uses an aperture 4 system, di-
viding each cell into 4 child cells, ensuring that a
point indexed to a cell remains within its parent
cell’s bounds. In contrast, H3 approximates this
process since hexagons don’t subdivide exactly into
7 child hexagons.

Visualization: Figure 3 illustrates the projection
of S2 and H3 cells on the globe. S2 cells (3a),

11https://opensource.googleblog.com/2017/12/announcing-
s2-library-geometry-on-sphere.html

12https://observablehq.com/@claude-ducharme/h3-map

Flan-T5
variant

Mean P90 P99

N S N S N S
Small 2.3 1.8 5.3 4.7 15.4 10.3
Base 0.6 0.4 1.2 0.8 7.2 5.6
Large 1 0.9 2.9 2.9 8.3 9.6
3B 2.7 2.2 7 5.6 9.2 8.7
11B 4.4 3.6 11.1 8.5 17.4 10.5

Table 6: Performance comparison among the T5 vari-
ants. Here N denotes Nagpur and S denotes Surat. All
metrics are measured in kilometers. The best result are
highlighted in bold.

which are square in the system’s projection, can
appear distorted when visualized on a globe, often
looking like quadrilaterals. In contrast, H3 cells,
while also subject to map projection distortions,
tend to appear less distorted due to their hexagonal
shape.

A.2 Geohash
Geohash encodes locations using a string of char-
acters, forming a hierarchical square grid system
known as a quadtree.

Area distortion: Geohash, which encodes lati-
tude and longitude pairs, results in significant area
differences across latitudes. Near the poles, a de-
gree of longitude spans a much shorter distance
compared to the same degree near the equator.

Identifiers: Geohash uses strings for its cell
indexes, allowing for arbitrarily precise cells. In
contrast, H3 uses 64-bit integers for its cell indexes,
which can be converted to strings if necessary. The
integer representation offers higher performance
due to faster operations compared to strings. How-
ever, since the indexes are of fixed size, H3 has a
maximum resolution it can encode.

B Performance comparison: T5 Variants

We began by experimenting with all the variants of
the Flan-T5 model: Flan-T5-small (60 million pa-
rameters), Flan-T5-base (220 million parameters),
Flan-T5-large (770 million parameters), Flan-T5-
3B (3 billion parameters), and Flan-T5-11B (11
billion parameters). Our experiments were con-
ducted on data from Nagpur and Surat, focusing
on the sequence generation task as defined in this
paper. The results for each model are summarized
in Table 6.

It can be clearly seen in Table 6 that the Flan-T5-
base variant consistently outperformed the others
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(a) S2 Projection (Image credit11) (b) H3 Projection (Image credit12)

Figure 3: Projections of S2 and H3 on the globe.

in all the metrics. The Flan-T5-base model, with
220 million parameters, strikes a balance between
model complexity and the ability to generalize well.
For instance, in Nagpur, the Flan-T5-base achieved
a mean error of 0.6 km and a P99 error of 7.2 km,
whereas the Flan-T5-11B, despite its larger size,
had a mean error of 4.4 km and a P99 error of 17.4
km. The smaller Flan-T5-small had a mean error
of 2.3 km and a P99 error of 15.4 km, showing that
it lacked the capacity to capture the intricate details
necessary for precise geocoding. The larger mod-
els like Flan-T5-3B and Flan-T5-11B might suffer
from overfitting, especially given the variability
and complexity of Indian addresses.

C Prompts

We added a specific prompt before each address to
help the model understand better. Table 7 shows
the prompts used for each model.

D Tokenizer Experimentations

D.1 Performance comparison: Custom vs
Vanila T5 Tokenizer

As previously mentioned in the paper, we utilized
a custom-trained tokenizer tailored to our use case.
We tested performance using both the vanilla T5
tokenizer and the custom-trained tokenizer over
two cities, Nagpur and Surat. The results of this
comparison are presented in Table 8.

D.2 Treating Pincode as special tokens

We initially explored treating the entire pin code as
a single token (“440014” as compared to “4400”
and “14”) during our experiments. However, this
approach led to suboptimal results. Specifically, it
increased the mean distance error from 0.6 km to
2.6 km in Nagpur. By splitting the pin code into
hierarchical segments (e.g., “4400” representing
a larger region and “14” representing a smaller
locality), the model achieved better performance.

This segmentation leverages the inherent hier-
archical structure of the Indian Postal Index Num-
ber (PIN) system, where each digit encodes pro-
gressively smaller geographical regions. This al-
lowed the model to learn geographical relationships
more effectively and significantly reduced the over-
all vocabulary size, which in turn saved compu-
tational resources. As a result, we have retained
the segmented approach. For additional reference,
the structure of Indian PIN codes is detailed on
Wikipedia13.

E Performance Comparison: Pan-India
vs State-wise models

Before transitioning to state-specific models, we
initially trained a single model for all Indian states,
which we referred to as the Pan-India model. We
then compared its performance with that of individ-
ual state-based models. The results are presented
in Table 9.

13https://en.wikipedia.org/wiki/Postal_Index_
Number
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Model Prompt
T5 Find the H3-index (15 bits alphanumeric representation of latitude and longitude)

corresponding to the address: {address}

QLF-Llama-3
Instruction:
Find the H3-index (15 bits alphanumeric representation of latitude and longitude)
corresponding to the address: {address}
Response: {H3-index}

Table 7: Prompts

City Mean (km) P90 (km) P99 (km)
Custom Vt5 Custom Vt5 Custom Vt5

Nagpur 0.6 3.8 1.2 8.1 7.2 19.3
Surat 0.4 2.5 0.8 5.8 5.6 12.8

Table 8: Performance comparison between custom and
Vanila T5 (Vt5) tokenizer.

State Model
Mean
(km)

P90
(km)

P99
(km)

Delhi
state 0.5 0.6 8.6

pan-india 0.7 1.0 10.7
Himachal
Pradesh

state 3.8 4.7 6.9
pan-india 5.9 10.9 17.7

Haryana
state 2.0 3.8 26.9

pan-india 2.9 7.0 28.6

Table 9: State-based vs pan-india model performance
comparison

F Training Objective

In this section, we provide a detailed explanation
of the training objective and loss function used
in our model. The model follows a sequence-
to-sequence approach, where each token in
the input sequence is processed to generate a
corresponding output token at each time step. The
loss is computed for each individual output token
in the sequence, and the overall objective is to
minimize this loss across all tokens. For example,
consider an input address: “XX, nagsen nagar,
bhim chowk, jaripatka, nagpur, maharashtra,
440014” and the corresponding output tokens:
ˆ$8$ˆˆ$9$ˆˆ$3$ˆˆ$d$ˆˆ$b$ˆˆ$6$ˆˆ$2$ˆˆ$0$ˆ
ˆ$b$ˆˆ$1$ˆˆ$3$ˆˆ$f$ˆˆ$f$ˆˆ$f$ˆˆ$f$ˆ

After tokenization, the input sequence is repre-
sented as:

[25602, 108, 103, 1844, ...]

and the output sequence is:

[32108, 32109, 32106, 32100, ...]

At each time step, the model generates a proba-
bility distribution over the entire vocabulary. For
example, at time step 1, the predicted distribution
is:

[0.2 , 0.05 , 0.01, ..., 0.65, ...]

Let’s assume the predicted probability of target
token 32108 is 0.65, the loss at this step would be
calculated as:

L1 = − log(0.65) ≈ 0.43.

Similarly, at time step 2, predicted probability
distribution is:

[0.05, 0.1, 0.15, ..., 0.7, ...]

So, the predicted probability of target token
32109 is 0.7, the loss at this step would be cal-
culated as::

L2 = − log(0.70) ≈ 0.36.

The total loss for the sequence is then the sum
of the individual token losses across all time steps:

Ltotal =
∑

i

Li.

In this example, the total loss would be approxi-
mately:

Ltotal = 0.43 + 0.36 + . . .

with each token’s contribution aggregated to
guide the model’s training process.

G Data statistics

Table 10 displays the volumes of the training, eval-
uation, and test datasets used for model creation
and testing.
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State/City #Train #Test #Eval
Uttar Pradesh 6774636 715238 329704
Maharashtra 4124983 422402 164567
Karnataka 3225645 341366 128323

Bihar 2973674 305415 153213
Andhra Pradesh 2778415 299606 111282

Tamil Nadu 2677789 287302 112636
Rajasthan 2513467 263968 96809
Gujarat 2169534 227639 85836
Delhi 1999972 195807 83193

Jharkhand 1456786 157714 57254
West Bengal 1393252 149801 95143

Haryana 1344594 136493 53721
Telangana 857638 79222 40297

Uttarakhand 771748 81046 31181
Madhya Pradesh 764635 89595 48621

Punjab 550542 56649 37880
Assam 462330 56996 44162
Odisha 453252 58534 40629
Kerala 443570 56498 64606

Chhattisgarh 302431 40495 25297
Himachal Pradesh 96076 13281 8989

Tripura 58577 7199 6018
Meghalaya 37715 4888 2826
Manipur 35606 3410 3212

Goa 32020 3568 3400
Arunachal Pradesh 26569 2915 1957

Nagaland 21168 2100 1475
Mizoram 14053 1412 887
Sikkim 12207 1342 678
Nagpur 250417 10400 25583
Surat 294488 12228 28858

Table 10: Final Data statistics

H Training configuration

The training of our geocoding models was con-
ducted on a high-performance computing instance
to ensure efficient processing and optimal perfor-
mance. We used an instance type of g2-standard-
96, which is equipped with 96 vCPUs, 384 GB of
memory, and 8 NVIDIA Tesla V100 GPUs.

For the training, we used PyTorch along with
the Hugging Face Transformers14 library to lever-
age state-of-the-art natural language processing
capabilities. We optimized the models using the
AdamW optimizer with a learning rate of 3e-4 and
a weight decay of 0.01 to prevent overfitting. The

14https://huggingface.co/docs/transformers/v4.
31.0/en/index

State Batch
size

Acc.
steps

Uttar Pradesh 32 32
Maharashtra 32 16
Karnataka 16 8
Bihar 16 8
Andhra Pradesh 16 8
Tamil Nadu 16 8
Rajasthan 16 8
Gujarat 16 8
Delhi 16 8
Jharkhand 8 8
West Bengal 8 8
Haryana 8 8
Telangana 8 8
Uttarakhand 8 8
Madhya Pradesh 8 8
Punjab 8 4
Assam 4 4
Odisha 4 4
Kerala 4 4
Chhattisgarh 4 4
Himachal Pradesh 2 1
Tripura 2 1
Meghalaya 1 1
Manipur 1 1
Goa 1 1
Arunachal Pradesh 1 1
Nagaland 1 1
Mizoram 1 1
Sikkim 1 1

Table 11: Final batch size and accumulation steps

models were trained for 10 epochs in the weight-
initialized (NIW) scenario and 30 epochs in the
pre-trained scenario (PW), ensuring thorough fine-
tuning and convergence.

Each state was experimented with multiple sets
of batch sizes and accumulation steps. The final set
of configuration used during training is provided in
the Table 11.

H.1 Llama Training: LoRA configuration

For the Llama-3 model training, we utilized Low-
Rank Adaptation (LoRA) to enhance the model’s
performance. The configuration details for LoRA
are as follows:

1. LoRA attention dimension (r): 256, which
determines the rank of the low-rank adaptation
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matrices.

2. Alpha for LoRA scaling: 512, which is a
scaling factor for the low-rank matrices.

3. Dropout probability for LoRA: 0.1, which
helps in regularizing the adaptation process
by preventing overfitting.

4. Inference mode: Set to False, indicating that
the model is in training mode.

5. Bias: None, meaning no additional bias pa-
rameters were introduced in the adaptation.

6. Task type: Causal Language Modeling
(CAUSAL_LM), tailored for the generative na-
ture of the geocoding task.

I Comparison with Google Maps

GeoIndia was able to perform extremely well even
in underdeveloped states of India where address
complexity is highly severe. The comparison is
detailed in Table 12, which shows the percentage
reduction in distance error metrics between our
approach and Google Maps.

In Uttar Pradesh, the mean distance error saw a
reduction of 38.5% in seen data and 27% in unseen
data. The 99th percentile error reduced by 85.6%
in seen data and 75.5% in unseen data.

In Andhra Pradesh, the mean distance error de-
creased by 53.7% in seen data and 40% in unseen
data, with the 99th percentile error reducing by
88.2% in seen data and 64.3% in unseen data.

Even in states with limited data availability,
such as those in North-East India, our approach
demonstrated strong performance. For instance,
in Arunachal Pradesh, the 99th percentile error
reduced by 72.0% in seen data and 52.8% in un-
seen data, showcasing the robustness and general-
ization capability of our model. This consistent
performance across various metrics highlights the
effectiveness of GeoIndia in addressing the unique
challenges of Indian address geocoding compared
to Google Maps.

J Production Workflow

Our production service is powered by Kubernetes
Clusters where we have hosted our models using
Nvidia Triton Inference Server. Additionally we
also optimized our models with Nvidia-TensorRT,
resulting in bringing down model latency from
∼700 ms to ∼80 ms. For model routing we have

trained a gating network(kind of a neural network)
and also model guardrails have been implemented
to ensure production safety. To save the compute on
repeated address we have utilized redis for caching
with moderate TTL. In the end we have imple-
mented a feedback loop mechanism to iteratively
improve our models. The final workflow of our
deployed geocoding system is shown in Figure 4.

Figure 4: Realtime Geocoding System
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State/City Seen Unseen
Mean
(↓%)

Median
(↓%)

P75
(↓%)

P90
(↓%)

P99
(↓%)

Mean
(↓%)

Median
(↓%)

P75
(↓%)

P90
(↓%)

P99
(↓%)

Jharkhand 39.5 25 53.6 55.4 85.2 30.1 18 40.2 42.3 67.7
West

Bengal
54.2 25 54.3 65.5 86.5 40 19.8 36.8 43.2 69.6

Uttar
Pradesh

38.5 40 51.7 67.4 85.6 27 30.7 39.2 45.1 75.5

Odisha 39.1 38.5 24.7 40.3 85.6 34.3 34.5 17.1 28.4 58.4
Nagpur 38.5 0 42.9 35.5 69.3 25.2 0 33.7 25 60.3
Delhi 30.6 57.1 60.3 34.1 71.7 22.6 49.3 40 26.2 57.1
Surat 22.2 33.3 54.5 31.8 69.2 18.5 23.5 42.8 24.1 62

Andhra
Pradesh

53.7 50 52.7 63.1 88.2 40 37.3 39.3 41.9 64.3

Arunachal
Pradesh

84.9 45 59.7 69.7 72 68.8 35.6 43.3 61.7 52.8

Assam 82.5 27.8 24.1 44.1 79.1 60.4 23.6 20.9 36.2 64
Bihar 62.5 40 70.8 71.6 84.7 47.3 31.6 46.2 62.6 71.8

Chhattisgarh 38.7 5.6 41.9 55.4 77.9 33.3 4.1 35.1 43.4 65.3
Goa 12.9 11.1 21.4 15.2 72.1 11.1 9.7 15.7 13.2 61.3

Gujarat 27.5 16.7 59.6 29.6 84.1 22.2 11.6 52.2 20.4 73.7
Himachal
Pradesh

19.3 15.4 38.5 34.5 87.4 12.7 12.1 25.2 25.8 62.5

Karnataka 41.9 0 12.9 15.9 86.9 37.3 0 11.2 13.1 75.6
Kerela 9.6 16.7 12.2 23.1 81.3 7.9 13.3 10.8 16.8 61.7

Madhya
Pradesh

28.3 42.9 43.4 34.1 74.4 23.6 33 38 25.8 49.7

Maharashtra 17.6 33.3 55.3 44 88.5 14.4 24.4 47.9 31.7 73.2
Manipur 6.3 14.3 60.5 50.6 81 5.4 10.8 54.1 35.1 72.8

Meghalaya 15.2 31.6 50.5 43.9 51 11.1 26.3 36.2 28.9 42.7
Mizoram 20.7 0 45.6 50.8 75.1 15.6 0 34.5 42.9 49.7
Nagaland 8.8 36.4 25.2 14.8 83.7 6.9 25.1 18.3 12.2 58.3
Rajasthan 31.3 45.5 41.6 55.4 82.4 25.1 30.9 31.4 37.6 59.9

Sikkim 13.9 9.1 31.9 31.6 68.4 10 7 21.1 23.4 54.3
Tamil
Nadu

32 46.2 58.5 68.7 88.2 23.9 41.4 48.2 50.5 73

Telangana 25.6 27.3 41 37.9 84.6 19.1 21.6 35.5 31.3 64.1
Tripura 27.8 27.8 52.5 51.1 78.6 20.9 21 38.7 37.7 62.3

Uttarakhand 63 55.6 5.1 17.7 87.2 42.6 44.9 4 12 60.9
Harayana 26.5 50 63.2 37.2 77.3 19.2 43.7 42.4 26.8 50.3

Punjab 18 0 13.1 14.6 72.4 15.5 0 11.3 10.9 62.9

Table 12: Geocoding metrics relative to Google Maps.
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