
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 290–302
November 12-16, 2024 ©2024 Association for Computational Linguistics

Context Matters: Pushing the Boundaries of Open-Ended Answer
Generation with Graph-Structured Knowledge Context

Somnath Banerjee † Amruit Sahoo † Sayan Layek † Avik Dutta †

Rima Hazra ∓ Animesh Mukherjee †
†Indian Institute of Technology Kharagpur, India

∓Singapore University of Technology and Design, Singapore
{som.iitkgpcse,sayanlayek2002}@kgpian.iitkgp.ac.in

{rima_hazra}@sutd.edu.sg

Abstract

This paper introduces a novel framework that
combines graph-driven context retrieval in con-
junction to knowledge graphs based enhance-
ment, honing the proficiency of LLMs, espe-
cially in domain specific community question
answering platforms like AskUbuntu, Unix,
and ServerFault. We conduct experiments on
various LLMs with different parameter sizes to
evaluate their ability to ground knowledge and
determine factual accuracy in answers to open-
ended questions. Our methodology GRAPH-
CONTEXTGEN consistently outperforms domi-
nant text-based retrieval systems, demonstrat-
ing its robustness and adaptability to a larger
number of use cases. This advancement high-
lights the importance of pairing context rich
data retrieval with LLMs, offering a renewed
approach to knowledge sourcing and genera-
tion in AI systems. We also show that, due to
rich contextual data retrieval, the crucial enti-
ties, along with the generated answer, remain
factually coherent with the gold answer.

1 Introduction

In artificial intelligence, Large Language Mod-
els (LLMs)(Roberts et al., 2020; Kaplan et al.,
2020) have revolutionized text understanding(Lian
et al., 2023) and generation (Wei et al., 2023). De-
spite their impressive capabilities, LLMs struggle
in low-resource settings (Chen et al., 2023; Guu
et al., 2020), are constrained by knowledge cut-
offs, and often produce hallucinations (McKenna
et al., 2023). Additionally, managing the trade-off
between quality and the vast number of parame-
ters (Xu et al., 2023) presents challenges, particu-
larly for researchers with limited resources.
To overcome these limitations, new methods such

as grounding LLMs 1 and Retrieval-Augmented
Generation (RAG) (Yu et al., 2023) have been pro-
posed. These approaches enable models to access

1https://techcommunity.microsoft.com/t5/fasttrack-for-
azure/grounding-llms/ba-p/3843857

α

α

α

𝑞1

𝑞2

𝑞4

𝑞3

𝑞5

How do I extract an ISO file?|

𝐐
A3

Q3

A2

Q2

A1

Q1

Has anyone used
isoInfo to extract ISO

files? How does it
compare to others?

Can you recommend a
good free tool for

extracting ISO files on
macOS?

𝑘
As of my last update in
January 2022, ̀ isoInfo` is
not typically used to
extract ISO files. Instead,
`isoInfo` is a part of the
`cdrtools` package…………..

Hey! On Ubuntu 20.04 and
wanna extract ISO files? Easy
peasy:1. **Archive
Manager**: Built-in tool. Just
right-click the ISO, hit "Open
With Archive M……………………

Context Enhancement [LLM]

Enhanced Context

How do I extract an ISO file?|

[Instruction] tuned

Large Language Model

To extract an ISO file, you may utilize the following tools:1.

7-Zip: - Platforms: Various (Linux version: ̀ p7zip`).

WinRAR: - Platform: Predominantly Windows. - Interface: GUI.

…………………………………. -

Generated Answer
Top k retrieval

Context retriever

<title> [SEP]<desc>

KG driven context enhancement Answer generation

Sentence

Embedding

Q

A

Context QAs from Graph

Figure 1: GRAPHCONTEXTGEN framework.

external databases, enhancing their responses with
current, detailed, and accurate information.
A critical aspect of effective knowledge ground-
ing is the retrieval mechanism (Lewis et al., 2021).
Traditional text-based retrieval methods are evolv-
ing to handle more complex questions, moving
beyond simple keyword matching. Current tech-
niques often struggle with determining optimal
chunk sizes 2 for indexing and querying, leading to
inconsistent results. Graph-based retrieval systems
offer a solution by capturing intricate relationships
through structured data, providing deeper seman-
tic understanding and more contextually relevant
results (Zhang et al., 2021). These systems adapt
to evolving data, uncovering insights and forming
connections among diverse entities.
This technique is vital in various applications, in-
cluding dialogue systems (Li et al., 2022), open-
domain question answering (Lu et al., 2023), and
novelty-controlled paraphrasing (Xie et al., 2023).
For example, StackOverflow’s OverflowAI 3 aims
to refine search and enhance code and discussion
platforms. Automated answer generation on com-
munity Q&A platforms promises timely and ac-
curate information, reducing errors and providing
immediate knowledge access. Unlike past research,

2https://www.pinecone.io/learn/chunking-strategies/
3https://stackoverflow.blog/2023/07/27/announcing-

overflowai/

290

our study uniquely employs LLMs to generate tai-
lored answers for these platforms.
We introduce the GRAPHCONTEXTGEN frame-
work, which combines graph-based retrieval with
LLMs to enhance context and ensure factual accu-
racy. Our extensive experiments in low-resource
domains like AskUbuntu4, Unix 5, and Server-
Fault 6 demonstrate the effectiveness and resilience
of LLM-generated answers, even in specialized
areas.
Contribution: The key contribution of this paper
is as follows.

• We introduce GRAPHCONTEXTGEN, a
framework that integrates graph-based
retrieval with context enhancement us-
ing a knowledge graph for CQA answer
generation. This approach consistently
outperforms previous SOTA methods.
Additionally, instruction tuning with
LLMs further improves performance
(see Section 4).

• We evaluate a range of recently released
LLMs from 1.5B to 40B on CQA of low
resource domains for answer generation
in a zero shot setting (see Table 2).

• In addition to automatic evaluation,
we also perform evaluation based on
human judgements and demonstrate that
in both cases our proposed framework
consistently outperforms all current
SOTA text-based retrieval techniques
(see Table 3 and Section 6).

• We conduct a detailed retrospective anal-
ysis to compare actual answers with
those generated by our framework, fo-
cusing on their factual alignment. The
generated answers typically align well
with the actual ones (see Figure 2).

2 Related Work

Over the years several approaches such as fea-
ture based methods (Wang et al., 2009; Wang
and Manning, 2010), CNN (Severyn and Mos-
chitti, 2015; Rao et al., 2017), RNN (Wang and

4https://askubuntu.com/
5https://community.unix.com/
6https://serverfault.com/

Nyberg, 2015), attention mechanism (Tan et al.,
2016; dos Santos et al., 2016) have been pro-
posed for answer selection and summarization.
Some recent research focuses on summarizing di-
verse content on StackOverflow (Chengran et al.,
2022), using AnswerBot–an answer summary gen-
erator (Xu et al., 2017), Opiner–which summarizes
API reviews (Uddin and Khomh, 2017), extracting
key sentences to guide developers on StackOver-
flow (Nadi and Treude, 2019), and multi-document
summarization (Xu and Lapata, 2020). In the realm
of answer summarization, numerous studies (Gane-
san et al., 2010; Naghshzan et al., 2021) harness
graphical structures, leverage existing graph-based
summarizers (Mihalcea and Tarau, 2004; Erkan
and Radev, 2004; Kazemi et al., 2020), and employ
graph-centric measures. In the age of LLMs, some
research has centered around controlled summary
generation via effective keyword-based prompt-
ing (He et al., 2022).

3 Dataset

Attributes AskUbuntu Unix Serverfault
Train Test Train Test Train Test

Size 15,505 203 19,742 241 10908 226
Year of questions 2019-20 2021-23 2019-20 2021-23 2019-20 2021-23
Avg. length of questions 254.38 156.65 205.85 220.57 259.81 248.93
Avg. length of answers 122.22 217.16 181.17 210.02 145.30 161.73

Table 1: Dataset statistics.

In this experiment, we select three domain-
specific datasets from open-source CQA platforms:
AskUbuntu, ServerFault, and Unix, all of which
originate from a low-resource domain with mini-
mal properly annotated data available on these top-
ics. These datasets, considered from June 2023, in-
cludes questions (title and body), a list of answers,
an accepted answer flag, tags for the questions,
and the posting dates and times for both questions
and answers. For each question, the accepted an-
swer serves as the ground truth. Due to the limited
resources of the datasets and the high expenses
associated with human involvement, we opt not
to use human annotations. Further we apply sev-
eral filtering procedures, such as duplicate ques-
tion removal, non-specific answer removal, and
length constraints (token limit in LLM) resulting
in our dataset. Adopting the temporal splitting
approach inspired by (Hazra et al., 2021, 2023),
we consider training set from 2019-2020 and test
dataset from 2021-2023. Due to resource limita-
tions, we randomly sample test dataset, the details
of which are provided in Table 1. From the training

291

set of each dataset, we construct an instruction-
tuning dataset by pairing questions and answers in
the format ‘[INST]Question[\INST]Answer :
actual_answer’. We prepare this instruction data
for each dataset.

4 Methodology

In this section, we explain our proposed framework
GRAPHCONTEXTGEN. The overall framework is
shown in Figure 1. Our proposed framework con-
sists of three modules – (1) context retriever (2)
KG-driven context enhancement (3) answer gener-
ation. Before explaining every module, we describe
the problem in detail below.

4.1 Preliminaries
Given a community question answering (CQA)
system, there is a collection of questions and
their associated accepted answers, represented as
< Q,AQ > = {(q1, aq1), (q2, aq2), ... (qn, aqn)}.
The anchor question (query) is represented by
q. We consider subset of question pool Qpool,
where Qpool ⊂ Q. We represent our instruction
tuned dataset as DINST which contains instruction
INST , question pool Qpool and their accepted an-
swer AQpool

. Our objective is formalized as fol-
lows.
Context retriever: In this module, we consider

Algorithm 1 GRAPHCONTEXTGEN

1: Input: Initial question pool Qpool , query q, LLM M , instruction dataset DINST
2: function RETRIEVER(Qpool, q)

3: Build G(V,E), nodes V = Qpool , edges E ⊆ Qpool × Qpool where
sim(qa, qb) > T ∀ qa, qb ∈ Qpool

4: Build extended graph G
′
(V

′
, E

′
) where V

′
= V ∪ q and E

′
= E ∪ Eq

5: Qranked
pool = sort(QueryAwarePageRank(G

′
))

6: Choose a set of top k questions Qq
topk

7: end function
8: function CONTEXTENHANCER(Qq

topk
, q)

9: context Cq = < Q
q
topk

, A
Q

q
topk

>

10: Extract τinit(h, r, t) using LLM M and REBEL from Cq

11: Ent(Cq) = EntitySetBuilder(τinit) where Ent(Cq) contains set of entities
e1, e2, ..., en

12: Extract triplets τ(h, r, t) from Wikidata for h ∈ Ent(Cq)

13: Filtered triples set τ ′ if t ∈ Ent(Cq)

14: Prepare triplets set τf = τinit ∪ τ ′

15: Build sequence of sentences S from all triplets τf

16: Enhanced context Cq
enc = Cq ⊕ S

17: end function
18: function ANSWERGENERATOR(Cq

enc, q)

19: M
′

= SupervisedFineTuning(M,DINST)

20: agen
q = M

′
(Cq

enc, q)

21: end function

anchor question q and the Qpool as input and output
the most relevant questions from the Qpool. The
set of relevant questions is represented by Qq

topk
.

We explain the working procedure of the module
in subsequent sections.

KG driven context enhancement: This module
takes the query q and the final set of most rele-
vant question Qq

topk
as input to formulate enhanced

context. The initial context is represented by Cq

which is the < Qq
topk

, AQq
topk

> pairs. Further, we
represent the sequence of sentences by S that are
obtained from the entity extraction procedure and
knowledge graph. Enhanced context is represented
by Cq

enc.
Answer generation: In this module, we provide
the query q and enhanced context Cq

enc as input to
generate the answer denoted by agenq . We denote
the ground truth answer as agtq . We explain each of
the above-mentioned steps in subsequent sections.

4.2 Context retriever

The objective of this module is to retrieve relevant
previous questions given the query question. Our
RETRIEV ER module in Algorithm 1, consists
of two parts – (I) question-question graph (Q-Q
graph) construction and (II) retrieval of top relevant
questions.
(I) Q-Q graph construction: We build a question-
question graph (Q-Q graph) to obtain the relevant
questions from the previously posted question pool
Qpool. In a Q-Q graph (G(V,E)), nodes (V) are
the questions and the edges (E) are formed based
on the cosine similarity between the concatenated
embeddings of the title and the body of two ques-
tions. We include the edge only if the similarity
score crosses a particular threshold7. The major
motivation for building the Q-Q graph is that it
can help to identify semantically similar questions
based on the structural properties of the graph. This
systematically prepared graph will be utilized to
prioritize a set of existing questions given a query
q.
(II) Retrieval of top relevant questions: For a
given query q, we extend the existing Q-Q graph
G(V,E) to G

′
(V

′
, E′). We form the graph G

′
by

including the query q as a node and further measure
the similarity with all the nodes in G. If the simi-
larity score passes a threshold8, the edges (Eq) are
formed between question q to the respective nodes
in G accordingly. We conceptualize that questions
(in graph G

′
) with high node centric score from the

perspective of the query node q could be consid-
ered as the relevant questions (nodes) to the query q.

7Empirically identified based on graph density.
8We followed the same threshold used in Q-Q graph con-

struction.

292

We use personalized PageRank (PPR) (Wang et al.,
2020) which introduces bias toward the query node
and tailor the ranking based on the node preference
(i.e., prior information).

We obtain PPR scores for all the nodes (except q)
in graph G

′
. For the given query node q, we select

the top k relevant questions. This top k question set
is referred to as Qq

topk
. We do the above mentioned

process for all the queries in the query set.

4.3 KG driven context enhancement

From the previous module, we obtain Qq
topk

ques-
tions and their answers AQq

topk
and use them as

context Cq for a query q. It is observed that LLMs
lack in generating aligned answers for open ended
questions (Ai et al., 2023) even after providing the
relevant context. In this module, we attempt to en-
hance the retrieved context Cq. In this process (see
CONTEXTENHANCER module in algorithm 1), we
follow two major steps – (i) entity identification
and triplet formation, (ii) enhanced context formu-
lation.
Entity identification and triplet formation: In
this stage, we first identify all the important infor-
mation (e.g., entities) present in the Cq. For impor-
tant information identification, we employ the LLM
M and REBEL (Huguet Cabot and Navigli, 2021)
to obtain initial relation triplets (τ init) from the
context Cq. We use a simple prompt plus the con-
text Cq to the LLM M for relation triplet extraction
task. In case of REBEL, we obtain the triplets by
passing Cq as input to their internal function. Note
that a triplet consists of (head_entity, tail_entity, re-
lation). We prepare a set Ent(Cq) which contains
all the entities present in these triplets.Further, we
use Wikidata to obtain one hop neighbors of each
entity and their relationship again in the form of
triplets. We now consider all the new triplets (τ ′)
as well as those in τ init to prepare a new extended
set of triplets τ f . We retain only those triplets in
τ ′ whose head_entity and tail_entity are present in
the original context Cq. Enhanced context for-
mulation: We construct a set of sub-contexts (S)
in the form of sequence of sentences from triplet
set τ f . Basically, we form the sentence by placing
the head entity, the relation and the tail entity in se-
quence.We finally construct the enhanced context
Cq
enc by concatenating the actual context Cq and S.

We illustrate the process in Figure 4.

4.4 Answer generation
In this section, we use the enhanced context Cq

enc

and the given query q to generate the answers us-
ing LLM. In this component, we use the LLM in
two ways – pretrained LLM and finetuned LLM.
In the pretrained setup, we pass the enhanced con-
text Cq

enc and the query question q as input and
obtain the answer as output. In this setting, we use
the LLM (model M) as black box. For fine tuned
version, we utilize instruction dataset DINST to
efficiently fine tune the LLM M . The fine tuned
model is represented as M ′ Further, we use the en-
hanced context Cq

enc and query q as input to the fine
tuned model M ′ and obtain the generated answer
agenq .

5 Experimental setup

Baselines: In this work, we use various methods
as baselines. Some of the baselines are proposed
by us which we believe are very competitive to our
best approach.
Pre-LLM era baselines: We compare
our approach with SOTA answer genera-
tion/summarization works such as AnswerBot (Xu
et al., 2017; Cai et al., 2019), GenQA (Hsu et al.,
2021) and TechSumBot (Yang et al., 2023a)
(see Appendix A.2). Due to unavailability of
the codebase and unclear implementation details,
we could not compare this paper (Deng et al.,
2019) with our method. Zeroshot LLMs: In
this setting, we use various competitive LLMs to
generate the answer of the given question. The
LLMs are of different parameter sizes (7B to 40B).
Such a choice enables us to understand how well
models with diverse parameter sizes perform in
zero shot setting. [w/o INST] TEXTGEN: In this
setup, we use a vector database (chromaDB9 and
FAISS10) containing all the training set questions.
We compute contextual similarity between query
q and all the questions in database. We rank
the questions in database based on the cosine
similarity scores (higher scores get top ranks) and
retrieve top k questions. Further we use the top
k questions and their actual answers as few shot
examples to the pretrained LLM for generating
the answer. [w/o INST] TEXTCONTEXTGEN:
In this setup, we retrieve the top k questions
and their answers using the same method as
[w/o INST] TEXTGEN. Subsequently, we use

9https://docs.trychroma.com/getting-started
10https://python.langchain.com/docs/integrations/vectorstores/faiss

293

Method AskUbuntu Unix ServerFault

Size
x BERTScore ROUGE 1 ROUGE L BERTScore ROUGE 1 ROUGE L BERTScore ROUGE 1 ROUGE L

macro-F1 score
Phi (1.5B) (Li et al., 2023) 0.803 0.219 0.202 0.792 0.191 0.176 0.790 0.202 0.183
Falcon (7B) (fal) 0.718 0.167 0.153 0.794 0.151 0.138 0.801 0.181 0.166
MPT (7B) (Team, 2023) 0.738 0.156 0.147 0.786 0.138 0.127 0.709 0.144 0.132
StackLlama (7B) (Beeching et al., 2023) 0.797 0.136 0.130 0.774 0.122 0.112 0.785 0.131 0.120
Llama2 (7B) (Touvron et al., 2023) 0.809 0.221 0.204 0.792 0.178 0.163 0.813 0.183 0.167
Flan-t5-xxl (11B) (Roberts et al., 2022) 0.795 0.131 0.114 0.792 0.106 0.098 0.816 0.135 0.124
Vicuna (13B) (Chiang et al., 2023) 0.741 0.177 0.163 0.789 0.181 0.165 0.810 0.185 0.169
Llama2 (13B) (Touvron et al., 2023) 0.810 0.227 0.211 0.806 0.191 0.175 0.819 0.189 0.176
Gpt-neox (20B) (Black et al., 2022) 0.724 0.136 0.127 0.776 0.140 0.131 0.799 0.152 0.161
Falcon (40B) (fal) 0.721 0.182 0.167 0.801 0.179 0.171 0.812 0.186 0.173

Table 2: Comparison of zero-shot learning performance of various models of different sizes across the AskUbuntu,
Unix, and ServerFault datasets. Metrics include BERTScore, ROUGE 1, and ROUGE L scores. The cell color
intensity indicates the relative performance, with darker shades representing higher values. The best results are
marked with the darkest shade of cyan for BERTScore & magenta for ROUGE scores.

Method
AskUbuntu Unix ServerFault

BERTScore ROUGE 1 ROUGE L FactSumm BERTScore ROUGE 1 ROUGE L FactSumm BERTScore ROUGE 1 ROUGE L FactSumm
macro-F1 score macro-F1 score macro-F1 score

Pre-LLM era
AnswerBot (Xu et al., 2017) 0.803 0.236 0.111 0.578 0.791 0.191 0.091 0.583 0.802 0.191 0.094 0.642
GenQA (Hsu et al., 2021) 0.781 0.095 0.071 0.551 0.55 0.048 0.04 0.427 0.668 0.059 0.045 0.662
TechSumBot (Yang et al., 2023b) 0.781 0.100 0.05 0.580 0.776 0.077 0.039 0.563 0.781 0.064 0.034 0.655

LLM era (best performing LLM from Table 2 is used, i.e., Llama2 (13B))
[w/o INST] TEXTGEN 0.812 0.217 0.202 0.612 0.809 0.179 0.162 0.683 0.810 0.179 0.166 0.733
[w/o INST] TEXTCONTEXTGEN 0.827 0.223 0.204 0.619 0.818 0.184 0.168 0.683 0.823 0.198 0.175 0.738
[w/o INST] GRAPHGEN 0.823 0.204 0.188 0.619 0.809 0.181 0.162 0.683 0.816 0.182 0.166 0.737
[w/o INST] GRAPHCONTEXTGEN 0.831 0.222 0.206 0.621 0.822 0.184 0.169 0.685 0.823 0.197 0.175 0.738
FineTuned GEN Zero-Shot 0.815 0.203 0.187 0.608 0.812 0.183 0.167 0.661 0.821 0.195 0.179 0.733
TEXTGEN 0.821 0.183 0.170 0.623 0.823 0.186 0.169 0.684 0.829 0.197 0.179 0.738
TEXTCONTEXTGEN 0.833 0.221 0.200 0.636 0.834 0.182 0.161 0.689 0.831 0.198 0.180 0.739
GRAPHGEN 0.827 0.182 0.170 0.636 0.817 0.183 0.164 0.691 0.831 0.198 0.180 0.737
GRAPHCONTEXTGEN* 0.840 0.214 0.189 0.639 0.837 0.187 0.169 0.693 0.839 0.198 0.181 0.737

Table 3: Comparison of various question-answering and summarization methods on AskUbuntu, Unix, and
ServerFault platforms using evaluation metrics BERTScore, ROUGE 1, ROUGE L, and FactSumm. Methods are
categorized into those developed before the LLM era (pre-LLM era) and those developed during the LLM era. *
p-value < 0.05 on comparison with pre-LLM era models. The best results are marked with the darkest shade of
cyan for BERTScore, magenta for ROUGE score & blue for FactSumm.

context enhancement component of our approach
to enhance the context. Further we provide the
enhanced context and the query as input to the
pretrained LLM and obtain the generated answer.
[w/o INST] GRAPHGEN: In this setup, we
use the RETRIEVER module of our algorithm to
retrieve the top k questions. We use k questions
and their answers as few shot examples to the
pretrained LLM for generating the answer. [w/o
INST] GRAPHCONTEXTGEN: We follow the
retrieval step from [w/o INST] GRAPHGEN.
Further we use our CONTEXTENHANCER module
to enhance the context. FINETUNED GEN
ZERO-SHOT: In this setting, we use instruction
fine tuned LLM in zero shot settings. Here, we
pass the questions as input and the fine tuned LLM
generates the answer. TEXTGEN: This setup
is same as [w/o INST] TEXTGEN. However,
we use our instruction fine tuned LLM for
generation. GRAPHGEN: This setup is same as
[w/o INST] GRAPHGEN. However, we use our
instruction fine tuned LLM for generation.
Parameter setting11: In our method GRAPHCON-

11Values of all these hyperparameters are obtained through
grid search.

TEXTGEN, we use Flag embedding (Xiao et al.,
2023) (bge-large-en) to obtain embedding for each
question in the training set. The dimension of
the embedding is 1024. We construct the edges
of the Q-Q graph if the embedding cosine simi-
larity between two questions cross a threshold of
0.8 12. In PPR algorithm, the α value is set to 0.85,
max_iter is set to 100 and tol is set to 1e-6. The
k value is set to 2 13. For parameter settings of
instruction tuned models, see Appendix A.1.
Evaluation metrics: We have used three metrics –
ROUGE score14, BERT score (Zhang* et al., 2020;
Zhang et al., 2020) and FactSumm score (Heo,
2021) for automatic evaluation of generated an-
swers. Note that the FactSumm (Heo, 2021) pack-
age extracts the facts from the generated text and
the ground truth text and computes an overall score
based on the fact overlap and fact mismatch. This
package has also been used in earlier works (Liu
et al., 2021; Qian et al., 2023) to measure the fac-
tual accuracy of the generated text.

12Empirically computed based on graph density.
13Empirically identified to fit the whole context within the

acceptable token limit of the LLMs.
14https://huggingface.co/spaces/evaluate-metric/rouge

294

6 Results

The Table 2 notes the BERTScore, ROUGE 1,
ROUGE L (macro-F1) values achieved by different
LLMs in a zero-shot setup across three domains –
AskUbuntu, Unix, and ServerFault.
Zero-shot answer generation by different LLMs:
For AskUbuntu, Llama2 (13B) achieves the high-
est BERTScore (0.810), ROUGE 1 (0.227), and
ROUGE L (0.211). For Unix, Llama2 (13B) leads
in BERTScore (0.806), while Vicuna (13B) tops
ROUGE 1 (0.181), and Llama2 (13B) tops ROUGE
L (0.175). For ServerFault, Llama2 (13B) domi-
nates BERTScore (0.819), Vicuna (13B) leads in
ROUGE 1 (0.185), and Llama2 (13B) in ROUGE
L (0.176). Performances are not always propor-
tional to model size, as Llama2 (13B) often out-
performs larger models like Gpt-neox (20B) and
Falcon (40B). Models of similar sizes also display
varied performances, indicating the importance of
architecture and training methods.
Main results: Table 3 compares baseline results
with our proposed method. Pre-LLM era: Answer-
Bot shows competitive BERTScore (0.803, 0.791,
0.802) for AskUbuntu, Unix, and ServerFault, re-
spectively, while GenQA underperforms on Unix
(BERTScore 0.55). AnswerBot achieves the high-
est FactSumm score across all platforms. LLM era:
Llama2 (13B) is the reference model for generat-
ing answers. Our model, GRAPHCONTEXTGEN,
outperforms all baselines in BERTScore and Fact-
Summ for AskUbuntu and Unix, producing fac-
tually more correct answers. For ROUGE 1 and
ROUGE L, GRAPHCONTEXTGEN shows competi-
tive performance in Unix and ServerFault. Models
from the LLM era generally outperform pre-LLM
models in these metrics.
Grounding of the generated answers: We use
UniversalNER (Zhou et al., 2023) to identify en-
tities in the ground truth and generated answers.
The Jaccard similarity between entity sets for our
model is 0.85, 0.75, and 0.79 for AskUbuntu, Unix,
and ServerFault, respectively (Figure 2(A)). The
overlap in the number of triplets is shown in Fig-
ure 2(B), indicating our model’s answers are rich
in entities and relationships present in the ground
truth.

6.1 Ablation study

In this section, we attempt to understand how well
each component of our model is working and con-
tributing to the overall performance. Here, we have

AskUbuntu Unix ServerFault
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ja
cc

ar
d

Si
m

ila
rit

y
Sc

or
e

0.85
0.75 0.79

A

0-5 6-10 11-15 >15
0

5

10

15

20

25

Co
un

t

B

AskUbuntu
Unix
ServerFault

Figure 2: Performance metrics on community datasets
using the UniNER model. (A) Jaccard similarity scores
illustrate the level of overlap between predicted enti-
ties and actual entities. (B) Triplet overlap distribution
across different ranges, provide insights into the depth
of entity matching in the model’s predictions.

Askubuntu

Unix

ServerFault

12
3

4

5

1
2

3
4

5

1
2

3

4

5

Askubuntu Unix ServerFault
0

10

20

30

40

50

60

70

80

W
in

 R
at

e
(%

)

58%

63%

53%

50% Threshold

Figure 3: Comparative analysis of human feedback on
the generated answers for test questions drawn from
Askubuntu, Unix, and ServerFault. On the left, a dual-
layer pie chart breaks down the total number of answers
and their respective ratings from 1 to 5. The right side
displays a bar graph indicating the percentage of wins
for answers from each community, benchmarked against
a 50% threshold. Notably, a majority of the ratings
lean toward the higher end, indicating overall positive
reception.

done this study mainly from three different angles
(see Table 4).

• Based on embedding algorithms: The
performance differences between sentence
BERT (Reimers and Gurevych, 2019) and
BGE embeddings (Xiao et al., 2023) within
the TEXTGEN model are evident. The BGE
variant demonstrates a slightly improved per-
formance over sentence BERT.

• Based on one-shot: When focusing on one-
shot methodologies, the GRAPHGEN model
achieves marginally better scores compared to
the TEXTGEN model. This suggests that the
incorporation of graph structures potentially
aids in better knowledge retrieval

• Based on only knowledge graph context:
Focusing solely on the knowledge graph
context, two variants emerge: ONLYCON-
TEXTGEN[FT] (from text) and ONLYCON-
TEXTGEN[FG] (from graph). The ‘From
Graph’ variant consistently exhibits slightly

295

Method AskUbuntu Unix ServerFault
Based on embedding algorithms

[w/o INST] TEXTGEN (Sentence BERT) 0.808 0.783 0.803
[w/o INST] TEXTGEN (BGE) 0.812 0.809 0.810

Based on one-shot
[w/o INST] TEXTGEN 0.809 0.807 0.807
[w/o INST] GRAPHGEN 0.818 0.809 0.812

Based on only knowledge graph context
[w/o INST] ONLYCONTEXTGEN[FT] 0.819 0.807 0.819
[w/o INST] ONLYCONTEXTGEN[FG] 0.827 0.820 0.818

Table 4: Ablation study highlighting the performance
of various methods. FT: From text, FG: From graph.

higher scores across all platforms than its
‘From Text’ counterpart. This underscores
the importance of leveraging structured graph
data for enhanced performance in our applica-
tion.

7 Human evaluation

In the results of the automatic evaluation, it is essen-
tial to remember that low values of BERTScore or
FactSumm might also correspond to lower-quality
ground truth answers posted by humans. Thus,
there is a possibility that the model-generated
answers are superior in quality compared to the
ground truth answers. Such points can be verified
only by human judgment experiments presented in
Figure 3 and the Appendix A.6.

8 Error Analysis

This section presents a systematic error analysis
highlighting the error types and corresponding ex-
amples (see Table 7).
Misaligned retrieval outcomes: This misalignment
occurs when the retrieved content, accurate in its
context, doesn’t match the user’s intended query,
leading to off-target responses due to the genera-
tion’s reliance on the retrieved data. On platforms
like AskUbuntu, Unix, and ServerFault, overlap-
ping themes, like a ‘boot issues’ query retrieving
‘USB booting’ content instead of ‘system booting
problems’, exacerbates the issue.
Entity misalignment: This issue arises when the
retrieval mechanism accurately finds data but incor-
rectly links it to an entity in the knowledge graph,
causing responses to deviate from the user’s con-
text. For example, in UNIX, a term like ‘read’
might refer to a command or a configuration file,
leading to misassociations if not accurately disam-
biguated.
Composite query conundrums: This problem oc-
curs when a user’s query involves multiple issues,
and the retrieval system typically focuses primar-
ily on one, neglecting the others. For example, on

platforms like AskUbuntu, a user might ask about
‘memory and CPU usage’, and the system might
only address the memory part.
Factual fidelity fallacies: This issue arises when
the RAG system, skilled in retrieval and genera-
tion, delivers answers that lack factual accuracy or
are outdated, a common issue in rapidly evolving
platforms like AskUbuntu. For instance, a query
about a software tool may elicit a response based
on outdated versions.
Contextual content crux: When the system re-
trieves broad or limited contents, it can produce
answers that lack depth or specificity, a challenge
often seen on platforms like AskUbuntu. For exam-
ple, a query about a specific Ubuntu feature might
get a general response if the corpus lacks in-depth
content.

9 Complexity analysis

As the dimension is fixed, the cosine similarity
between two embeddings is O(1). For training
set questions (say nq = variable), it becomes nq

× O(1) = O(nq). By including the query in the
graph, pagerank becomes O((nq+1)+(eq+e′)) =
O(nq+1+eq+e′) = O(nq+eq+e′). Assuming e′

can be at max(nq), it simplifies to O(nq+nq+eq)
= O(nq + eq). Therefore, the total complexity
until pageRank calculation for each test instance is
O(nq + eq). The worst-case complexity could be
O(nq + n2

q) = O(n2
q). For each dataset, nq and eq

remain constant for all test instances.

10 Conclusion

This study addresses a notable challenge in CQA
platforms: the automatic generation of answers
across popular platforms often lacks clear problem
definitions, leading to issues with proper knowl-
edge grounding and factually incoherent responses.
We present GRAPHCONTEXTGEN, which, to the
best of our knowledge, is the first solution that
uses graph retrieval combined with knowledge
graph context for this challenge in domain-specific
CQA platforms. Our evaluations indicate that
this model outperforms previous prominent ap-
proaches. Notably, human evaluators determine
that answers generated by GRAPHCONTEXTGEN

exhibit greater factual coherence and knowledge
grounding. We further demonstrate that researchers
with constrained GPU resources can adopt this so-
lution with smaller parameter LLMs and achieve
performance that are at par with larger models.

296

11 Limitation

Using knowledge graphs with LLMs to generate
technical answers encounters several challenges.
The effectiveness of this approach partially depends
on the accuracy and completeness of the knowledge
graphs, as any gaps or inaccuracies can mislead the
LLM’s responses. LLMs tailored for summariza-
tion may sacrifice detail for conciseness, potentially
overlooking critical nuances of technical topics.
Challenges in handling ambiguous contexts and
the potential for biases introduced during knowl-
edge graph construction and LLM training further
complicate accurate answer generation. Moreover,
the computational resources required for process-
ing large-scale knowledge graphs pose scalability
issues. Ensuring that knowledge graphs remain
up-to-date and that LLMs can adapt to new infor-
mation without frequent retraining are ongoing con-
cerns. Finally, while LLMs are versatile, they may
not achieve the level of specificity and accuracy
provided by systems specialized in particular non
niche domains.

12 Ethical consideration

The information in our dataset is free from harmful
or offensive materials. We take serious measures
to anonymize and handle any personal or sensitive
data with the highest level of confidentiality. Pro-
tection of participants’ privacy is our priority and
we consistently ensure to acquire their informed
consent when collecting, annotating, and analyzing
data. We provide equal incentives to all annotators
for their efforts toward the annotation task.

References
Technology innovation institute tii. falcon llm, 2023.

Qingyao Ai, Ting Bai, Zhao Cao, Yi Chang, Jiawei
Chen, Zhumin Chen, Zhiyong Cheng, Shoubin Dong,
Zhicheng Dou, Fuli Feng, Shen Gao, Jiafeng Guo,
Xiangnan He, Yanyan Lan, Chenliang Li, Yiqun
Liu, Ziyu Lyu, Weizhi Ma, Jun Ma, Zhaochun Ren,
Pengjie Ren, Zhiqiang Wang, Mingwen Wang, Ji-
Rong Wen, Le Wu, Xin Xin, Jun Xu, Dawei Yin,
Peng Zhang, Fan Zhang, Weinan Zhang, Min Zhang,
and Xiaofei Zhu. 2023. Information retrieval meets
large language models: A strategic report from chi-
nese ir community. AI Open, 4:80–90.

Edward Beeching, Younes Belkada, Kashif Rasul,
Lewis Tunstall, Leandro von Werra, Nazneen Ra-
jani, and Nathan Lambert. 2023. Stackllama: An rl
fine-tuned llama model for stack exchange question
and answering.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 – Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 95–136, virtual+Dublin. Association
for Computational Linguistics.

Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin
Xia, David Lo, and Zhenchang Xing. 2019. Answer-
bot: An answer summary generation tool based on
stack overflow. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2019, page
1134–1138. Association for Computing Machinery.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, and Jiliang Tang. 2023. Explor-
ing the potential of large language models (llms) in
learning on graphs.

Yang Chengran, Bowen Xu, Ferdian Thung, Yucen Shi,
Ting Zhang, Zhou Yang, Xin Zhou, Jieke Shi, Junda
He, DongGyun Han, and David Lo. 2022. Answer
summarization for technical queries: Benchmark and
new approach.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Yang Deng, Wai Lam, Yuexiang Xie, Daoyuan Chen,
Yaliang Li, Min Yang, and Ying Shen. 2019. Joint
learning of answer selection and answer summary
generation in community question answering.

Cícero Nogueira dos Santos, Ming Tan, Bing Xiang,
and Bowen Zhou. 2016. Attentive pooling networks.
ArXiv, abs/1602.03609.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. J. Artif. Int. Res., 22(1):457–479.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: a graph-based approach to abstrac-
tive summarization of highly redundant opinions. In
Proceedings of the 23rd international conference on
computational linguistics, pages 340–348. Associa-
tion for Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.

297

https://falconllm.tii.ae/. [Online; accessed 10-July-2023]
https://doi.org/https://doi.org/10.1016/j.aiopen.2023.08.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2023.08.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2023.08.001
https://doi.org/10.57967/hf/0513
https://doi.org/10.57967/hf/0513
https://doi.org/10.57967/hf/0513
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.1145/3338906.3341186
https://doi.org/10.1145/3338906.3341186
https://doi.org/10.1145/3338906.3341186
http://arxiv.org/abs/2307.03393
http://arxiv.org/abs/2307.03393
http://arxiv.org/abs/2307.03393
http://arxiv.org/abs/2209.10868
http://arxiv.org/abs/2209.10868
http://arxiv.org/abs/2209.10868
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/1911.09801
http://arxiv.org/abs/1911.09801
http://arxiv.org/abs/1911.09801
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909

Rima Hazra, Hardik Aggarwal, Pawan Goyal, Animesh
Mukherjee, and Soumen Chakrabarti. 2021. Joint
autoregressive and graph models for software and
developer social networks. In Advances in Infor-
mation Retrieval - 43rd European Conference on
IR Research, ECIR 2021, Virtual Event, March 28 -
April 1, 2021, Proceedings, Part I, volume 12656 of
Lecture Notes in Computer Science, pages 224–237.
Springer.

Rima Hazra, Arpit Dwivedi, and Animesh Mukherjee.
2023. Is this bug severe? a¬†text-cum-graph based
model for¬†bug severity prediction. In Machine
Learning and Knowledge Discovery in Databases,
pages 236–252, Cham. Springer Nature Switzerland.

Junxian He, Wojciech Kryscinski, Bryan McCann,
Nazneen Rajani, and Caiming Xiong. 2022. CTRL-
sum: Towards generic controllable text summariza-
tion. pages 5879–5915, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Hoon Heo. 2021. Factsumm: Factual consistency scorer
for abstractive summarization. https://github.
com/Huffon/factsumm.

Chao-Chun Hsu, Eric Lind, Luca Soldaini, and Alessan-
dro Moschitti. 2021. Answer generation for retrieval-
based question answering systems. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4276–4282, Online. Association
for Computational Linguistics.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Ashkan Kazemi, Verónica Pérez-Rosas, and Rada Mi-
halcea. 2020. Biased TextRank: Unsupervised graph-
based content extraction. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1642–1652, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks.

Yu Li, Baolin Peng, Yelong Shen, Yi Mao, Lars Li-
den, Zhou Yu, and Jianfeng Gao. 2022. Knowledge-
grounded dialogue generation with a unified knowl-
edge representation.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical re-
port.

Long Lian, Boyi Li, Adam Yala, and Trevor Darrell.
2023. Llm-grounded diffusion: Enhancing prompt
understanding of text-to-image diffusion models with
large language models.

Wei Liu, Huanqin Wu, Wenjing Mu, Zhen Li, Tao Chen,
and Dan Nie. 2021. Co2sum: Contrastive learn-
ing for factual-consistent abstractive summarization.
ArXiv, abs/2112.01147.

Yujie Lu, Siqi Ouyang, and Kairui Zhou. 2023. Struc-
tured knowledge grounding for question answering.

Nick McKenna, Tianyi Li, Liang Cheng, Moham-
mad Javad Hosseini, Mark Johnson, and Mark Steed-
man. 2023. Sources of hallucination by large lan-
guage models on inference tasks.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into text. pages 404–411, Barcelona, Spain.
Association for Computational Linguistics.

Sarah Nadi and Christoph Treude. 2019. Essential sen-
tences for navigating stack overflow answers.

AmirHossein Naghshzan, Latifa Guerrouj, and Olga
Baysal. 2021. Leveraging unsupervised learning to
summarize APIs discussed in stack overflow. IEEE.

Hongjing Qian, Yutao Zhu, Zhicheng Dou, Haoqi Gu,
Xinyu Zhang, Zheng Liu, Ruofei Lai, Zhao Cao,
Jian-Yun Nie, and Ji-Rong Wen. 2023. Webbrain:
Learning to generate factually correct articles for
queries by grounding on large web corpus.

Jinfeng Rao, Hua He, and Jimmy Lin. 2017. Experi-
ments with convolutional neural network models for
answer selection. SIGIR ’17, page 1217–1220, New
York, NY, USA. Association for Computing Machin-
ery.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Adam Roberts, Hyung Won Chung, Anselm Levskaya,
Gaurav Mishra, James Bradbury, Daniel Andor, Sha-
ran Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz,
Alex Salcianu, Marc van Zee, Jacob Austin, Se-
bastian Goodman, Livio Baldini Soares, Haitang
Hu, Sasha Tsvyashchenko, Aakanksha Chowdh-
ery, Jasmijn Bastings, Jannis Bulian, Xavier Gar-
cia, Jianmo Ni, Andrew Chen, Kathleen Kenealy,
Jonathan H. Clark, Stephan Lee, Dan Garrette, James
Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin
Ritter, Maarten Bosma, Alexandre Passos, Jeremy
Maitin-Shepard, Noah Fiedel, Mark Omernick, Bren-
nan Saeta, Ryan Sepassi, Alexander Spiridonov,
Joshua Newlan, and Andrea Gesmundo. 2022. Scal-
ing up models and data with t5x and seqio. arXiv
preprint arXiv:2203.17189.

298

https://aclanthology.org/2022.emnlp-main.396
https://aclanthology.org/2022.emnlp-main.396
https://aclanthology.org/2022.emnlp-main.396
https://github.com/Huffon/factsumm
https://github.com/Huffon/factsumm
https://doi.org/10.18653/v1/2021.findings-acl.374
https://doi.org/10.18653/v1/2021.findings-acl.374
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2021.findings-emnlp.204
http://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2020.coling-main.144
https://doi.org/10.18653/v1/2020.coling-main.144
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2112.07924
http://arxiv.org/abs/2112.07924
http://arxiv.org/abs/2112.07924
http://arxiv.org/abs/2309.05463
http://arxiv.org/abs/2309.05463
http://arxiv.org/abs/2305.13655
http://arxiv.org/abs/2305.13655
http://arxiv.org/abs/2305.13655
https://api.semanticscholar.org/CorpusID:244798787
https://api.semanticscholar.org/CorpusID:244798787
http://arxiv.org/abs/2209.08284
http://arxiv.org/abs/2209.08284
http://arxiv.org/abs/2305.14552
http://arxiv.org/abs/2305.14552
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
http://arxiv.org/abs/1912.13455
http://arxiv.org/abs/1912.13455
https://doi.org/10.1109/scam52516.2021.00026
https://doi.org/10.1109/scam52516.2021.00026
http://arxiv.org/abs/2304.04358
http://arxiv.org/abs/2304.04358
http://arxiv.org/abs/2304.04358
https://doi.org/10.1145/3077136.3080648
https://doi.org/10.1145/3077136.3080648
https://doi.org/10.1145/3077136.3080648
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. SIGIR ’15, page 373–382,
New York, NY, USA. Association for Computing
Machinery.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
464–473, Berlin, Germany. Association for Compu-
tational Linguistics.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-05-05.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Gias Uddin and Foutse Khomh. 2017. Automatic sum-
marization of api reviews. ASE ’17, page 159–170.
IEEE Press.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. pages 707–712, Beijing, China. As-
sociation for Computational Linguistics.

Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang,
and Zengfeng Huang. 2020. Personalized pager-
ank to a target node, revisited. In Proceedings of
the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’20,
page 657–667, New York, NY, USA. Association for
Computing Machinery.

Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. 2009.
A syntactic tree matching approach to finding sim-
ilar questions in community-based qa services. In
Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’09, page 187–194, New
York, NY, USA. Association for Computing Machin-
ery.

Mengqiu Wang and Christopher Manning. 2010. Prob-
abilistic tree-edit models with structured latent vari-
ables for textual entailment and question answering.
In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
1164–1172, Beijing, China. Coling 2010 Organizing
Committee.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding.

Jiayuan Xie, Wenhao Fang, Qingbao Huang, Yi Cai,
and Tao Wang. 2023. Enhancing paraphrase question
generation with prior knowledge. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
31:1464–1475.

Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo.
2017. Answerbot: Automated generation of answer
summary to developers’ technical questions. In 2017
32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 706–716.

Yumo Xu and Mirella Lapata. 2020. Coarse-to-fine
query focused multi-document summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3632–3645, Online. Association for Computa-
tional Linguistics.

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue
Wang, Kaixiong Zhou, Xia Hu, and Anshumali Shri-
vastava. 2023. Compress, then prompt: Improving
accuracy-efficiency trade-off of llm inference with
transferable prompt.

Chengran Yang, Bowen Xu, Jiakun Liu, and David
Lo. 2023a. Techsumbot: A stack overflow answer
summarization tool for technical query. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-
Companion), pages 132–135.

Chengran Yang, Bowen Xu, Ferdian Thung, Yucen Shi,
Ting Zhang, Zhou Yang, Xin Zhou, Jieke Shi, Junda
He, Donggyun Han, and David Lo. 2023b. Answer
summarization for technical queries: Benchmark and
new approach. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software En-
gineering, ASE ’22, New York, NY, USA. Associa-
tion for Computing Machinery.

299

https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1145/2766462.2767738
https://doi.org/10.1145/2766462.2767738
https://doi.org/10.18653/v1/P16-1044
https://doi.org/10.18653/v1/P16-1044
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.3115/v1/P15-2116
https://doi.org/10.3115/v1/P15-2116
https://doi.org/10.3115/v1/P15-2116
https://doi.org/10.1145/3394486.3403108
https://doi.org/10.1145/3394486.3403108
https://doi.org/10.1145/1571941.1571975
https://doi.org/10.1145/1571941.1571975
https://aclanthology.org/C10-1131
https://aclanthology.org/C10-1131
https://aclanthology.org/C10-1131
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
https://doi.org/10.1109/TASLP.2022.3221045
https://doi.org/10.1109/TASLP.2022.3221045
https://doi.org/10.1109/ASE.2017.8115681
https://doi.org/10.1109/ASE.2017.8115681
https://doi.org/10.18653/v1/2020.emnlp-main.296
https://doi.org/10.18653/v1/2020.emnlp-main.296
http://arxiv.org/abs/2305.11186
http://arxiv.org/abs/2305.11186
http://arxiv.org/abs/2305.11186
https://doi.org/10.1109/ICSE-Companion58688.2023.00040
https://doi.org/10.1109/ICSE-Companion58688.2023.00040
https://doi.org/10.1145/3551349.3560421
https://doi.org/10.1145/3551349.3560421
https://doi.org/10.1145/3551349.3560421

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023. Augmentation-adapted retriever improves gen-
eralization of language models as generic plug-in.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

Yufeng Zhang, Jinghao Zhang, Zeyu Cui, Shu Wu, and
Liang Wang. 2021. A graph-based relevance match-
ing model for ad-hoc retrieval.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen,
and Hoifung Poon. 2023. Universalner: Targeted dis-
tillation from large language models for open named
entity recognition.

A Appendix

A.1 Instruction tune hyperparameters

Hyperparameter Value
Learning Rate 2e-4
Batch Size 4
Gradient Accumulation Step 1
Number of Epochs 10
Weight Decay 0.001
Optimizer paged adamw 32bits
LR scheduler cosine
Warmup ratio 0.03
Max grad norm 0.3
bf16 True
LoRA r, alpha, dropout 64, 16, 0.1
bf16 True
Quantization 4bit
PEFT Techniques LoRA
Trainer SFTT

Table 5: Hyperparameters for instruction tuning the
LLM using SFTT trainer.

A.2 Pre-LLM era baselines

A.2.1 AnswerBot (Xu et al., 2017; Cai et al.,
2019):

Authors of this work proposed an approach called
AnswerBot, where the task is to generate a sum-
mary from diverse answers for a query. They fol-
lowed three major steps – relevant question re-
trieval, useful answer paragraph selection, diverse
answer summary generation. For retrieval, they
used word2vec model and relevance calculation al-
gorithm. For answer paragraph selection, they used
various query, paragraph and user related features
– relevance to query, entity overlap, information

entropy, semantic pattern, format patterns, para-
graph position, vote on answer. In answer sum-
mary generation stage, they used maximal marginal
relevance (MMR) algorithm to select a subset of an-
swer paragraphs. Further they used selected answer
paragraphs to form the answer summary.

A.2.2 GenQA (Hsu et al., 2021):
Authors of this paper proposed a framework to gen-
erate answers from the top candidates of a set of
answer selection models. Instead of selecting the
best candidates, they train a sequence to sequence
transformer model to generate an answer from can-
didate set.

A.2.3 TechSumBot (Yang et al., 2023a):
Authors of this paper show that developers fre-
quently turn to StackOverflow for solutions, but
they often encounter redundant or incomplete re-
sults. Current tools designed to summarize Stack-
Overflow answers have clear drawbacks: they
predominantly depend on manually-designed fea-
tures, they struggle to filter out repetitive content,
and they usually target specific programming lan-
guages. This tool autonomously produces answer
summaries by extracting and ranking answers for
their relevance, measuring the core importance of
each sentence, and eliminating redundant details.
Presented in a search engine format, TechSumBot’s
efficiency is benchmarked against existing Stack-
Overflow summary methods.

A.3 Sample prompt and generated answer

The sample prompt and the generated answer for a
specific example is shown in Table 8.

A.4 Sample questions retrieved from our
method

We include a few examples in Table 6 that take
into account both PPR (graph structure-based) and
simple similarity for certain questions. The ques-
tions retrieved by the PPR method are very specific,
to-the-point, and strongly related to the actual ques-
tion. The simple similarity-based questions, on the
other hand, are very generic (e.g., What are some
common network troubleshooting tools. . . , What
are the best practices for managing log files. . .).

A.5 Enhanced context formulation

A.6 Human annotation

We engaged nine undergraduate students, each an
expert in their domain, to undertake our annotation

300

http://arxiv.org/abs/2305.17331
http://arxiv.org/abs/2305.17331
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/2101.11873
http://arxiv.org/abs/2101.11873
http://arxiv.org/abs/2308.03279
http://arxiv.org/abs/2308.03279
http://arxiv.org/abs/2308.03279

Question Related Question from PPR Related Question from simple similarity

Experiencing Intermittent Network Failures
on Ubuntu Server After Recent Update.

Desc: After a recent update on my Ubuntu
20.04 server, I’m experiencing intermittent
network failures. The server loses connectivity
randomly, and I’ve been unable to diagnose the
issue. Here’s the output of ifconfig and
dmesg | grep eth0 after the failure occurs...

How can I rollback a recent Ubuntu update to
troubleshoot network connectivity issues?

Desc: Following recent network issues on
my Ubuntu server, I suspect a recent update
might be the cause. I need to rollback this
update to confirm. What is the safest way to
revert the last system update? Is there a way
to identify which packages were updated
and selectively rollback, or do I need to restore
from a backup?

What are some common network troubleshooting
tools in Ubuntu for diagnosing connectivity problems?

Desc: In dealing with intermittent network failures on
my Ubuntu server, I’m looking for effective tools or
commands to diagnose the issue. What are the best tools
available in Ubuntu for network troubleshooting, especially
for monitoring and logging network activity over time to
catch these intermittent failures?

Script for Automating Log File Rotation
and Compression Not Working as Expected
on Linux.

Desc: I’m attempting to create a bash script
to automate log file rotation and compression
in a Linux environment. The script is supposed
to find all log files under /var/log , compress them,
and then move them to /archive/logs.However,
it’s not working as expected, and some log files
are being missed...

How can I set up a cron job to run this script
daily at midnight?

Desc: I have a script for log file rotation and
compression, but I’m not sure how to set it up
as a cron job to run automatically. What is the
correct way to schedule this script in cron to
run daily at midnight? Are there any specific
considerations for running such scripts as cron jobs?

What are the best practices for managing log files in
a Unix environment?

Desc: As I work on automating log file rotation and
compression, I want to ensure I’m following best
practices. What are the recommended strategies
for log file management in a Unix environment?
This includes considerations for log rotation frequency,
compression, archiving, and ensuring log integrity and security?

Table 6: Retrieved questions from PPR (graph structure based) and simple similarity for certain questions.

ID Error Type Samples

1 Misaligned Retrieval Outcomes

Question: How can I change the desktop environment in Ubuntu?

Retrieved Content: Steps to change the desktop wallpaper in Ubuntu.

Generated Answer: To change the wallpaper , right-click on the desktop and select ’Change Wallpaper’........

Analysis: The retrieved content precisely discusses changing the wallpaper , but the user’s query was about

changing the entire desktop environment , not just the wallpaper.

2 Entity Misalignment

Question: What is the use of `chmod` in UNIX ?
Retrieved Entity: `chown` command details from the KG .
Generated Answer: `chown` is used to change the owner of a file or directory...................................
Analysis: The retrieved information is accurate about `chown` , but the user’s query was about `chmod` .
This represents a wrong entity linking.

3 Composite Query Conundrums

Question: How do I configure the firewall on my server to allow SSH access , and also set up an FTP server
for file transfers?
Retrieved Content: Detailed steps on configuring the firewall for SSH access .

Generated Answer: To configure the firewall for SSH access , you need to open port 22 and apply the necessary rules...

Analysis: While the retrieved content and generated answer correctly address the firewall configuration

for SSH , the question’s second aspect about setting up an FTP server is entirely neglected.

4 Factual Fidelity Fallacies

Question: How can I upgrade to the latest version of Ubuntu ?

Retrieved Content: Steps to upgrade Ubuntu 16.04 to Ubuntu 18.04 .

Generated Answer: To upgrade to the latest version of Ubuntu , follow these steps to upgrade from Ubuntu 16.04 to 18.04 ...
Analysis: While the retrieved and generated content might be factually correct for the specific version transition, it’s
outdated if the latest version is beyond Ubuntu 18.04 .

5 Contextual Content Crux

Question: How do I solve the XYZ error in Ubuntu?

Retrieved Content: A post briefly mentioning the XYZ error with a comment saying, "Ï also faced this."
Generated Answer: The XYZ error is an issue some users have faced in Ubuntu..
Analysis: The retrieved content acknowledges the error but provides no solution or detailed information,
leading to an unsatisfactory and unhelpful answer.

Table 7: The actual rationale being marked with the green and retrieved and generated rationale marked as red .

Triplet entities extracted
<'WinRAR', 'paid tool', 'is a’>
<'7-Zip', 'extract ISO files', 'is used to’>
<'Daemon Tools', 'mounting ISOs', 'is used for’>
<'isoinfo', 'extracting ISO files', 'is used for’>
<'Archive Manager', 'extracting ISO files', 'is used for’>
<'mount', 'extracting ISO files', 'is used for’>
………………………………………………….

Context Expansion
• Daemon Tools is used for mounting ISOs.
• Isoinfo is used for extracting ISO files
• Mount is used for extracting ISO files
• 7-Zip is used to extract ISO files.
• ………………………………………………….

Context
Hey! So, `isoInfo` isn't for extracting ISO files; it just shows
details about them. You wanna extract? Use `isoinfo` from the
same package……………………………………………

Figure 4: Sample context preparation.

task, dividing them into groups of three for each
dataset. All these students are majoring in Com-
puter Science and have a proven track record of
contributing high-quality answers within relevant
community platforms. They voluntarily joined our
project after receiving an invitation through depart-
mental emails and were rewarded with Amazon
gift cards for their contributions. Each undergradu-
ate student annotates 50 instances individually. We
utilize the Doccano15 tool for obtaining the annota-
tions. The annotators provided feedback on a scale
from 1 to 5. A rating of ‘1’ means the answer is
unhelpful or misleading, while a ‘5’ indicates an
exemplary response. In Figure 3, we display the

15https://elements.heroku.com/buttons/doccano/doccano

301

Question How do I extract an ISO file?

Context

Question: Has anyone used isoInfo to extract ISO files? How does it compare to others?

Answer: Hey! So, ‘isoInfo‘ isn’t for extracting ISO files; it just shows details about them. You wanna extract?
Use ‘isoinfo‘ from the same package. Like this: isoinfo -i image.iso -x /PATH/INSIDE/ISO >output.file
Now, comparing ‘isoinfo‘ with other tools:
1. 7-Zip: Cool for many file types, has both GUI and command-line.
2. WinRAR: Good for ISOs, but it’s paid (though many stick to the trial).
3. Daemon Tools: Great for ’mounting’ ISOs, but can extract too.
4. dd & mount (Linux stuff): More techie, but pretty powerful.
If you’re a Linux person comfy with commands, go for ‘isoinfo‘. If not, maybe try a tool with a friendly interface.

Question: Can you recommend a good free tool for extracting ISO files on Ubuntu 20.04?

Answer: Hey! On Ubuntu 20.04 and wanna extract ISO files? Easy peasy:
1. Archive Manager: Built-in tool. Just right-click the ISO, hit "Open With Archive Manager", and boom, you’re in.
2. 7-Zip: Not just a Windows thing! Get the Linux version, ‘p7zip‘, with:
sudo apt install p7zip-full
Then run: 7z x file.iso
3. mount: A bit techie. Mount the ISO, copy its stuff, like:
mkdir /path/to/mountpoint
sudo mount -o loop file.iso /path/to/mountpoint
cp -r /path/to/mountpoint /path/to/destination
sudo umount /path/to/mountpoint
4. isoinfo: Fancy extracting specific stuff? Grab it with:
sudo apt install genisoimage
Most folks will find Archive Manager or 7-Zip super easy. But if you’re a command line junkie, try ‘mount‘ or ‘isoinfo‘.

Question: What could be the important context to answer this?
Answer:
(’Archive Manager is a built-in tool’),
(’Archive Manager is used for extracting ISO files’),
(’7-Zip is a Linux version’),
(’7-Zip is used to extract ISO files’),
(’7-Zip is used for extracting ISO files’),
(’WinRAR is a paid tool’),
(’Daemon Tools is used for mounting ISOs’),
(’dd & mount is a Linux stuff’),
(’isoinfo is used for extracting specific stuff’),
(’isoinfo is used for extracting ISO files’),
(’mount is used for extracting ISO files’)

Answer

To extract an ISO in Linux/Ubuntu:
1. Archive Manager: Built-in. Right-click the ISO, select "Open With Archive Manager", and extract.
2. 7-Zip: Install using ‘sudo apt install p7zip-full‘ and extract with ‘7z x file.iso‘.
3. mount: Create a mount point ‘mkdir /mount/spot‘. Mount with ‘sudo mount -o loop file.iso /mount/spot‘, copy with
‘cp -r /mount/spot /destination‘, then unmount ‘sudo umount /mount/spot‘.
4. isoinfo: Install with ‘sudo apt install genisoimage‘.
To extract specifics, use ‘isoinfo -i image.iso -x /PATH/INSIDE/ISO >output.file‘.
For ease, go with Archive Manager or 7-Zip. If you’re command-line savvy, try ‘mount‘ or ‘isoinfo‘.

Table 8: Sample prompt an generated answer.

feedback distribution for test instances. In the pie
chart, the outer ring represents the three datasets.
For every dataset, five segments in the inner ring de-
pict the distribution of ratings from 1 to 5. The plot
reveals that the answers generated by our model
for both the AskUbuntu and the Unix test cases
predominantly have a rating of 4 as per human
judgement, while those generated by our model
for the ServerFault test cases predominantly have
ratings of 5. Next we compute ‘win rate’ which
refers to the percentage of individuals who favor
the output from our model over the standard zero-
shot output. In our analysis comparing answers
generated by our model with those from a simple
zero-shot approach, we observe a notable trend in
win rates across the three platforms. Specifically,
for Askubuntu, Unix, and ServerFault, the win rates

are 58%, 63%, and 53%, respectively. These rates
consistently exceed the 50% benchmark.

302

