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Abstract

Large language models (LLMs) have surged
in popularity and are extensively used in com-
mercial applications, where the efficiency of
model serving is crucial for the user experi-
ence. Most current research focuses on opti-
mizing individual sub-procedures, e.g. local
inference and communication, however, there
is no comprehensive framework that provides a
holistic system view for optimizing LLM serv-
ing in an end-to-end manner. In this work, we
conduct a detailed analysis to identify major
bottlenecks that impact end-to-end latency in
LLM serving systems. Our analysis reveals
that a comprehensive LLM serving endpoint
must address a series of efficiency bottlenecks
that extend beyond LLM inference. We then
propose ScaleLLM, an optimized system for
resource-efficient LLM serving. Our extensive
experiments reveal that with 64 concurrent re-
quests on Mixtral 8x7B, ScaleLLM achieves
a 4.3 x speed up over vLLM and outperforms
state-of-the-arts with 1.5x higher throughput'.

1 Introduction

Large language models (LLMs) have significantly
changed the field of natural language processing
and have been widely used in commercial appli-
cations. However, serving LLMs effectively re-
mains challenging due to system latency, query con-
currency, and computational resources constraints.
LLM applications are typically deployed as online
services where users expect real-time responses,
while any delay can impact user experience, mak-
ing low latency to be crucial. Also, the computa-
tionally intensive nature of LLMs, which involve
inference with billions of parameters, requires sub-
stantial computational resources. Moreover, achiev-
ing scalability to handle multiple concurrent re-
quests without performance degradation further
complicates the serving process.

1https://tensoropera.ai/prod/model/mistralai/
ScalelLLM-Mixtral-8x7B

Latency in LLM serving primarily arises from
the processing at the serving engine as well as the
gateway. The serving engine is the core compo-
nent responsible for executing the LLM inference
tasks. It optimizes resource allocation to handle
the intensive computational workload of LLMs to
efficiently utilize computational resources, such as
GPUs. The gateway manages communication be-
tween clients (e.g., end-users or applications) and
LLM instances. It handles incoming requests, di-
rects them to the LLM instances, and ensures that
responses are returned correctly and efficiently.

Existing research focuses on optimizing individ-
ual subprocedures of LLM serving, especially ac-
celerating local inference speeds (Dao et al., 2022;
VLLM AI; NVIDIA). However, in commercial
LLM applications, end-to-end latency, introduced
from functionalities of the gateway, becomes the
most significant bottleneck. Meanwhile, commer-
cial LLM applications have specific requirements
on serving, which directly accessing a single LLM
instance fails to address. In practice, commercial
LLM applications must satisfy several critical re-
quirements for efficient and reliable inference: i)
fault tolerance: there must be replicas of LLMs to
ensure that the serving system can select appropri-
ate replica upon receiving requests under a specific
resource constraint, thereby maintaining service re-
liability even when individual replica instance fails;
i) inference control: the serving system should
manage the inference process to ensure that the
models are accessed with authentication and can
produce responses that are appropriate and safe
while adapting to different user demands; iii) low
latency: to ensure the user experience, the serv-
ing system should process inferences efficiently
and deliver responses in real-time; iv) concurrency:
small batch sizes and high throughput for individ-
ual requests become impractical in real-world LLM
services such as ChatGPT, where the queries can
be frequent, e.g., with queries per second (QPS)
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Figure 1: Overview of ScaleLLM Serving System. ScaleLLM provides an optimized gateway for balancing
workloads of user requests to different inference replicas and an efficient serving engine for promptly response with

high concurrent requests.

often exceeding 200 (Lammertyn, 2024); v) frugal
computational resource usage: given the substan-
tial computational demands, optimizing resource
utilization is crucial to prevent excessive costs and
ensure the reliable operation of the serving system.
Thus, a comprehensive LLM serving system must
balance computational efficiency, concurrency, and
latency to manage the high volume of requests.

To address the efficiency of LLM serving com-
prehensively, we present ScaleLLM, an optimized
LLM serving system, as well as an end-to-end mea-
surement, to meet real-world requirements of com-
mercial LLM applications. As shown in Figure 1,
to address different challenges in commercial LLM
applications, ScaleLLM optimizes two crucial
modules, including i) a Routing Module that effi-
ciently does replica level load balancing and data
transmission; and i) a strong LLM engine to infer-
ence promptly with high concurrent requests. Our
contributions are summarized as follows.

* We go beyond optimizing the latency of LLM
inference and measure the end-to-end time and
resource cost of maintaining an LLM serving end-
point. Moreover, we present a breakdown of the
end-to-end LLM serving endpoint to showcase
the overhead introduced in each component.

* We optimize LLM serving for both the local in-
ference and the gateway, and provide a recipe for
efficient LLM serving frameworks for commer-
cial applications. Specifically, instead of random
selection, we evaluate different gateways in §4.2

and choose Rust as the backend due to its supe-
rior performance in terms of latency, concurrency
handling, and resource efficiency.

» Extensive experiments highlight that with
64 concurrent requests on Mixtral 8x7B,
ScalelLLM achieves a 4.3 x speed up over vLLM
and outperforms the state-of-the-arts with 1.5x
higher throughput (Fireworks AlI; Together Al).

 Lastly, we synthesize our insights and findings
from extensive experiments into the blueprint
design of a dynamic inference load balancing
system engineered to adapt to varying workloads
to address the critical requirements of contempo-
rary production environments.

2 Related Work

Many pre-trained open LL.Ms have been released
since last year, where the most commonly used
models include Mixtral 8x7B (Jiang et al., 2024)
and Llama-3 (Touvron et al., 2023)). Such open-
source models motivate the industry to build public
LLM-serving endpoints (Together Al; Fireworks
AI) and empower researchers to work on speed-
ing up the inference speed. FlashAttention (Dao
et al., 2022) is proposed to approximate the atten-
tion calculation to reduce memory usage with fast
computation. By representing the weights and acti-
vations with low-precision data types, Model Quan-
tization (Lin et al., 2024; Liu et al., 2024) is also
widely adopted to reduce memory and computation
costs.
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During LLM serving, the key-value cache (KV
cache) memory for each request is huge and grows
and shrinks dynamically, Page attention (Kwon
et al., 2023) is proposed for efficient manage-
ment of KV cache memory blocks with exact
model computation. Built on top of PagedAtten-
tion, vLLM (VLLM AlI) is proposed as a high-
throughput distributed LLM serving engine that
aims to increase GPU utilization and hence speeds
up the throughput of LLM serving. TensorRT-
LLM (NVIDIA) provides industrial-level integra-
tion of these state-of-the-art optimization methods
with Python and C++ runtimes to perform infer-
ence efficiently on NVIDIA GPUs.

However, these serving engines primarily focus
on accelerating local LLM computation, neglect-
ing other crucial components such as gateway and
routing. To the best of our knowledge, our pro-
posed ScaleLLLLM is the first to offer an end-to-end
latency measurement and optimization specifically
for resource-efficient LLM serving.

3 Benchmark LLM Serving Solutions

We first provide the end-to-end system breakdown
of serving latency in §3.1, then provide the bench-
mark results of baselines in §3.2.

3.1 System Breakdown

To optimize the user’s experience with low latency,
there are two components to be focused on.
Replica Router. In practical applications, the serv-
ing endpoint is not a single instance but consists of
multiple replicas and schedulers to facilitate load
balancing. The router functions as a crucial module
that mediates request and response transformation
between the engine and the end user. Given the
high concurrency of user requests, the router typi-
cally operates under significant pressure.
Inference Engine within Replica. A replica repre-
sents the smallest unit of resource allocation and is
designed to be homogeneous. Each replica houses
an instance of the inference engine, utilizing one
or more GPUs with a specific parallelism pattern,
such as tensor parallelism or process parallelism.

3.2 Performance of Baseline Solutions

For the routing gateway, FastAPI is widely adopted
due to its user-friendliness and ease of setup. For
the serving engine, there are two baselines, includ-
ing Huggingface Transformer (Wolf et al., 2019)
and vLLM (Kwon et al., 2023). Benchmark results

0.069 20
Engine Latency

BN Gateway Latency

Engine Latency
B Gateway Latency

2.195 0.053 5.189

o)

15

Latency(s)
S

(%)
[}

7.255 0.058

HPGTransformers vLLM ScaleLLM 0

Frameworks

vLLM ScaleLLM

Frameworks

(a) Concurrency: 4. (b) Concurrency: 256.

Figure 2: Comparisons with the two baseline solutions.
ScaleLLLLM is applied without gateway optimization.

in Figure 2 indicate that with 4 concurrent requests,
engine latency is the primary bottleneck. However,
at 256 concurrent requests, the gateway latency
becomes the predominant bottleneck.

4 Optimizations

This section discusses the optimization goal, then
decomposes the latency into engine latency and
gateway latency, and optimizes each component.
Optimization Goal. Our goal is to leverage vari-
ous optimization techniques on both the inference
engine and the replica router to improve the end-to-
end serving performance. The inference engine is
applied with different frameworks and optimization
methods to increase the throughput and decrease
the latency. For the replica router, we break down
the latency to engine latency and gateway routing
latency. The goal is to decrease the engine latency,
especially when the concurrency is high.

4.1 Optimize Inference Engine

We mainly focus on optimizing the Mixture of Ex-
perts (Jiang et al., 2024) LLMs that are being
widely used nowadays.

Model Parallelization. We utilize parallel process-
ing across multiple GPUs to accommodate models
with multiple experts (MoEs), as the model may
not fit within the memory of a single GPU. As
shown in Figure 9 in § Appendix, TensorRT engine
(NVIDIA) offers three approaches for achieving
parallelism, including Tensor Parallel, Expert Par-
allel, and a hybrid of the two. Tensor parallelism
(TP) is a method for distributing a model’s com-
putation across multiple GPUs by splitting tensors
into non-overlapping pieces, which allows different
parts of the tensor to be processed simultaneously
on separate GPUs. Expert Parallelism (EP), on the
other hand, distributes experts of an MoE across
GPUs. We found that a hybrid mode for balancing
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TP and EP can be 1.5 x faster than the original TP
solution; see Exp4 in §5 for details.

Model Quantization. During model inference,
each parameter of the original LLM model is stored
as a float number with 32-bit (fp32), resulting in
significant GPU memory consumption and slower
inference speeds. However, applying quantization
techniques using 16-bit (fp16) and 8-bit (fp8) float-
ing point numbers can substantially reduce mem-
ory usage and accelerate inference speeds, while
maintaining nearly the same model accuracy as
fp32 (Liu et al., 2024; Lin et al., 2024).
Continuous Batching and Batch Scheduler. To
efficiently handle asynchronous user requests, we
use a continuous batching strategy that batches re-
quests for simultaneous processing by the engine.
This method addresses variability in user input char-
acteristics, such as input length, which can cause
inefficiencies in static batching. Furthermore, our
experiments with scheduling policies revealed that
setting policy to max utilization, when in-flight se-
quence batching is enabled, significantly enhances
GPU utilization by processing the maximum num-
ber of requests per iteration. However, this ag-
gressive approach may require pausing requests if
the KV cache size limit is reached, a trade-off to
consider in production systems.

Other Optimizations. We adopt Flash Atten-
tion (Dao et al., 2022) for operator fusion and
Paged Attention (Kwon et al., 2023) to boost the
performance

4.2 Optimize Replica Router

To effectively manage high concurrent requests,
the gateway must exhibit superior performance in
handling extensive Network /O, database /O, and
CPU-intensive operations, including authentication
processes, routing algorithms, and token filtering
for security purposes. The efficient execution of
these resource-bound tasks is critical, as they sig-
nificantly impact the system’s overall latency and
throughput. Optimizing the gateway’s capacity to
handle these diverse and demanding operations is
essential for maintaining system performance and
scalability under high-load conditions. To address
these requirements, we replace the baseline router
framework, which is based on FastAPI (Python),
with Axum (Rust). In terms of transaction protocol,
we migrate from HTTP/1.1 to the gRPC protocol.
The architecture is shown in Figure 3.

CPU Bound Job Optimization. For CPU-bound
jobs, the FastAPI gateway in the baseline imple-
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Figure 3: ScaleLLM Gateway Architecture
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mentation is constrained by the Global Interpreter
Lock (GIL), which limits its ability to utilize multi-
ple CPU cores effectively. We refactor the gateway
using Tokio (Lerche et al., 2017) for multi-task ex-
ecution across multiple worker threads and Axum
(Pedersen, 2021) for web development.

Network 1I/0 Bound Job Optimization. We im-
plement a gRPC connection pool based on Tonic
(Franco, 2020), a robust and efficient gRPC frame-
work. This approach allows new requests to reuse
existing connection channels, thereby reducing con-
nection establishment overhead. Additionally, by
utilizing Protocol Buffers for data serialization, we
further decreased associated costs.

4.3 Safety and Observability Module

ScaleLLM incorporates a comprehensive Safety
Module that addresses key security concerns like
user authentication, rate limiting, and sensitive con-
tent detection. Token-based authentication is se-
curely managed in Redis to prevent unauthorized
access. Rate limiting controls user requests to en-
sure fair usage, while advanced algorithms detect
and filter harmful content for system integrity.

Additionally, the Observability Module tracks
performance and operational metrics, which are
stored locally to meet production compliance stan-
dards. This module enables detailed monitoring
for analysis and troubleshooting. Rust’s multi-
threading boosts performance by supporting effi-
cient concurrent processing, minimizing latency,
and optimizing high-traffic handling.

S Experiments

Experimental settings. We employ 8§ NVIDIA
DGX H100 GPUs, connected via 18 NVLink links,
each providing a bandwidth of 26.562 GB/s. We
select Mixtral 8x7B (Jiang et al., 2024) as the infer-
ence LLM and set the maximum tokens generation

282



length to 512, the temperature to 0.5, and the top-p
parameter to 0.7. We optimize the ScaleLLM en-
gine based on TensorRT-LLM (NVIDIA). Our eval-
uations use OpenOrca dataset (Lian et al., 2023)
that contains question-response pairs for LLMs, as
well as predefined system prompts. We simulated
the user’s behavior of submitting a prompt in Ope-
nAl API format (OpenAl, 2024) to the system, in a
concurrent and continuous manner. Figure 4 illus-
trates the typical lifecycle of concurrent requests in
comparison to one request.

Compared Endpoints. We utilized several
endpoints for comparisons, including i) Hugging-
face Endpoint that is deployed with Huggingface
transformer (Wolf et al., 2019) and FastAPI gate-
way; ii) vLLM Endpoint that is deployed with
vLLM (VLLM Al) and FastAPI gateway; and iii)
Fireworks and Together AI Endpoints (Fireworks
Al Together Al).

5.1 Evaluation Metrics

We define metrics to evaluate the efficiency of LLM
serving frameworks. To explain the definitions
clearly, we illustrate different stages of LLM infer-
ence in Figure 4.
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Figure 4: Lifecycle of Concurrent and Single Request

For the rest of §5.1, we denote t( as the times-
tamp the user submits a request, ¢; as the timestamp
for the router to receive that request, ¢o as the start
time for the engine’s local inference, t3 as the en-
gine finished the inference, £ as the time gateway
received the response from engine, {5 as the time
for the user to receive the first token, and ¢¢ as the
timestamp that they receive the full output.

# of Concurrency Requests: The upper bound of
the number of ongoing requests at a single moment.
# of Requests: In order to fulfill the system during
an elapsed time period, this number is set to be 20 x
c where c is the number of concurrency requests.
Average Latency: The average waiting time for a
user to see the full output, computed as t5 — tg.

Gateway Latency: The time cost for process-
ing and routing requests and LLM responses be-
tween the user and the inference engine, defined as
(tQ — to) + (t5 - tg), where to — % is the time for
processing and routing a user request to the infer-
ence engine, and t5 — t3 is the time for transferring
the response from the engine to the user.

Engine Latency: The time for the engine to pro-
cess a local inference, computed as t3 — to.
Throughput: The number of tokens that the whole
system generates within a certain time frame, com-
puted as %%’ where NV, is the number of gen-
erated tokens, 77 is the timestamp to finish the
last request, and 7§ is the time that the concurrent
requests start.

Time to First Token (TTFT): The elapsed time
between the user to submit a new request and to
receive the first token, computed as t4 — tg.

Time Between Tokens (TBT): The average wait
time to the next generated token after the first gen-
erated token, computed as ((i\g"_ _1551; , where N is the
number of generated tokens for one request.

5.2 Serving Performance Evaluation

We first provide the comparison with the state-of-
the-art endpoints, then make a detailed comparison
for non-streaming and streaming generation.
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Figure 5: Endpoint Throughput Comparison.
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Table 1: TTFT and TBT for end to end streaming requests on 2 H100s. Smaller TTFT means faster response for the
first token and smaller TBT means faster generation of tokens. Timeout: 90% of the users’ requests cannot complete
in 60s.

Concurrent | Huggingface Endpoint vLLM Endpoint ScaleLLM
Requests TTFT/ms TBT/ms TTFT/ms TBT/ms | TTFT/ms TBT/ms
1 315.6 834 48.4 16.5 25.0(1.9x)  8.5(1.9x)
2 637.2 218.3 51.9 16.7 253 (2.1x)  8.7(1.9x)
4 1157.8 506.4 55.1 21.1 25.5(2.2x) 104 (2.0x)
8 Timeout Timeout 70.2 30.1 259 (2.7x) 12.2(2.5x)
16 Timeout Timeout 93.1 38.3 26.7 (3.5x) 13.4(2.9x)
32 Timeout Timeout 135.8 50.1 29.8 (4.5x) 14.6 (3.4x)
64 Timeout Timeout 285.4 70.8 99.4 (2.9x) 16.5(4.3x)
~ 1 8Bit-TP§ —— 16 Bit EP4 TP2 6000
g /) s 00 = T,
.é /
< 10000 600 4000
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Figure 7: Throughputs for different replica settings and varying # of concurrency (conc) requests for batch size 64.

Expl. Endpoints Throughput Comparison. We
compare the throughput of ScaleLLM against
Deeplnfra, Fireworks, and Together Al across dif-
ferent levels of concurrency. ScaleLLM ultilizes 8
H100 GPUs for creating the endpoint. As shown
in Figure 5, ScaleLLM performs comparably to
other endpoints at lower concurrency levels. How-
ever, ScaleLLM significantly outperforms the
endpoints as the concurrency scales up, and sur-
passes all other endpoints by a huge margin for
batch size 64.

Exp2. Non-Streaming Generation Evaluation.
We conducted a comprehensive latency break-
down evaluation for Mixtral 8x7B running on two
H100 GPUs, examining various levels of concur-
rent requests. The averaged latency decompo-
sition is shown in Figure 6. The result shows
that with ScaleLLM , the engine latency is re-
duced compared to the baseline engine. How-
ever, at concurrency levels of 64/128/256, the base-
line gateway latency increases when connected
to the ScaleLLM Engine, compared to its con-
nection with the Baseline engine, making it the
new bottleneck. This is attributed to the base-
line gateway’s inability to keep pace with the
ScaleLLM Engine’s generation speed due to CPU
bound task and Network I/O task as mentioned
in §4.2. However, we observe a significant reduc-
tion in latency upon swapping the baseline gate-

ways out with ScaleLLM Gateway, indicating that
ScaleLLM Gateway matches the engine’s gener-
ation speed, thereby shifting the bottleneck back
to the engine. The result of the concurrency level
from 1 to 32 is in Appendix §E.

Exp3. Streaming Generation Evaluation. To
provide an intuitive perspective from the user’s
point of view, we compared the time to the first
token (TTFT) and the time between tokens (TBT)
on ScaleLLM with Huggingface Transformer and
vLLM. In order to simulate the realistic user’s wait-
ing threshold, we set the timeout of generating all
the tokens to be 60 seconds. The results in Ta-
ble 1 show that the HuggingFace Endpoint has the
highest TTFT and TBT, where over 90% of the
user’s requests get timeout after 60 seconds when
the concurrency is 8. On the contrary, vVLLM has
lower TTFT and TBT but ScaleLLM improved
over 1.9x lower TTFT and TBT compared with
the vLLM Endpoint.

Exp4. Parallelism Comparisons. We experiment
with replicas and computations parallelism. For
computation parallelism, we test three combina-
tions: Vanilla Tensor Parallelism 8, MOE Expert
Parallelism 4 with Tensor Parallelism 2, and MOE
Expert Parallelism 2 with Tensor Parallelism 4. We
present results in Figure 7 and explain in details in
Appendix §B and §C.
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6 Blueprint Architecture of Dynamic
Inference Load Balancing System

Our experiments have revealed that different en-
gine parameters are suited for different throughput
loads, thereby emphasizing the need for a dynamic
load balancing system for Al inference unifying the
strengths of these heterogeneous configurations and
averaging out weakness. We propose a blueprint
for such a dynamic inference load balancing sys-
tem, designed to optimize resource allocation by
efficiently distributing inference requests across
these heterogeneous replicas, thereby maintaining
consistently high throughput regardless of the con-
currency scale.

The core component of the proposed system is a
dynamic inference balancing router that handles in-
coming inference requests and intelligently routes
them to the appropriate replica based on a rout-
ing policy, mapping request concurrency levels to
throughput ranges and selecting the replica best
suited to manage the specific workload range.

1Replica, Tensor Parallel 8
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Figure 8: Blueprint Architecture of Dynamic Inference
Load Balancing System.

The dynamic routing policy illustrated in Fig-
ure 8, showcasing the blueprint architecture and the
policy breakdown follows a general rule of thumb:

Low concurrency (< 64 requests). Route re-
quests to nodes with fewer replicas but higher ten-
sor parallelism to optimize resource utilization for
smaller batch computations.

High concurrency (> 64 requests). Route re-
quests to nodes with more replicas but lower tensor
parallelism, effectively distributing the workload
to squeeze everything out of available compute by
leveraging the power of replica parallelism.

7 Discussion

7.1 Serving Any LLMs

The paper primarily uses the Mistral 8x7B model
as an example of the serving engine to demon-
strate its effectiveness. The reason is that Mistral
8x7B features 8 experts and utilizes 2 experts per
token generation, making it more complex and suit-
able for showcasing the effectiveness of the pro-
posed optimizations. However, the methodology
of ScaleLLLLM is not limited to this specific model.
In addition to the optimization on the mixture of
experts, the optimizations on Gateway and Serving
Engine can be applied to any LLMs, and the frame-
work is designed with generalizability in mind.

7.2 Serving Cost Analysis

The system is deployed on an industry cloud plat-
form with H100 GPUs, where the current market
price for a dedicated H100 GPU is $2.2 per hour.
ScaleLLM achieves a 4.3x speed-up in through-
put compared to vLLM while using the same 8
H100s, which means that ScaleLLM can save 4.3x
computation cost for the same system throughput.
Dynamic pricing on volatile instances can also be
an interesting direction for future research.

7.3 Fault Tolerant

ScaleLLM’s architecture incorporates replica-level
load balancing and dynamic routing, ensuring in-
herent fault tolerance. This design minimizes ser-
vice degradation and supports seamless recovery
from replicas or infrastructure failures. The Gate-
way’s gRPC channels employ timeouts and error
codes to detect replica failures, triggering the rec-
onciler to initiate recovery actions such as restart-
ing components or migrating them to other nodes.
Further exploration of failure scenarios presents a
promising avenue for future security research.

8 Conclusion and Future work

In this paper, the proposed ScaleLLM framework
optimizes both the LLM serving engine and the
platform. As LLLM applications grow in complex-
ity, platform latency becomes increasingly criti-
cal. Instead of focusing solely on local inference
speed, industrial research should prioritize reduc-
ing end-to-end latency by streamlining the serving
gateway and optimizing the platform-level perfor-
mance. LLM can also be deployed in a federated
way to further reduce the latency (Yao et al., 2024).
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A User-Oriented Metrics

From the user’s point of view, the metrics to mea-
sure an inference system are close to their intuitive
feeling, which is the following four metrics:

e Throughput: The number of output tokens per
second that an inference server can generate
across all users and requests.

» Latency: The overall time for a user to get the
full response from the system.

* Time to first token (TTFT): For streaming re-
sponse format, the time that the user receives the
first generated token.

¢ Time between tokens (TBT): After the first to-
ken gets generated, the time of generating each
following token.

B Experiment results for Tensor Parallel
and Expert Parallel for Mixture of
Experts LLMs.

We conducted a series of experiments to assess
the performance of a variety of computation par-
allelism techniques as depicted in Figure 9. The
tested configurations, using a Mixtral 8x7B model
include: i) Vanilla Tensor Parallelism 8 (TP8) ii)
MOE Expert Parallelism 4 (EP4) with Tensor Par-
allelism 2 (TP2); and iii) MOE Expert Parallelism
2 (EP2) with Tensor Parallelism 4 (TP4)

Our findings illustrated in Figure 7c and 7d indi-
cate that MOE-EP2-TP4 consistently outperformed
all other methods across the entire concurrency
spectrum, demonstrating a particularly significant
advantage at higher concurrency levels, specifi-
cally beyond 128 concurrent requests. While TP8
showed superior performance compared to MOE-
EP4-TP2 at lower concurrency levels, it was even-
tually surpassed by MOE-EP4-TP2 as concurrency
increased beyond 16 requests.

These results underscore the effectiveness of
MOE-EP2-TP4 in managing high-concurrency sce-
narios, establishing it as the optimal configuration
for deployments intended to handle large-scale con-
currency.

C Throughput for different replica
settings and varying # of concurrency
requests for batch size 64.

In our study, we evaluated the impact of combin-
ing replica parallelism with tensor parallelism to
provide a thorough assessment of performance un-
der different parallelism strategies. Specifically,

we tested the following configurations using an 8-
bit quantized Mixtral 8x7B model: i) One replica
with Tensor Parallelism 8 (TP8), utilizing 8 GPUs
for a single replica i) Two replicas with Tensor
Parallelism 4 (TP4), utilizing 4 GPUs per replica;
and iii) Four replicas with Tensor Parallelism 2
(TP2), utilizing 2 GPUs per replica. These config-
urations were chosen to equalize the utilization of
the computational resource for each setup, ensuring
a comprehensive but fair evaluation.

As illustrated in Figure 7a, at lower concurrency
levels, fully utilizing the available compute for ten-
sor parallelism, without any replica parallelism
demonstrates superior performance compared to
configurations combining tensor and replica par-
allelism. However, as shown in Figure 7b, the
trend shifts significantly at higher concurrency lev-
els, favoring configurations with higher degrees
of replica parallelism. Notably, the configuration
with four replicas and Tensor Parallelism 2 (TP2)
significantly outperforms both the two-replica TP4
and single-replica TP8 configurations. Specifically,
the four-replica TP2 setup achieves markedly high
throughput as the concurrency level exceeds 128
requests while the single-replica TP8 configuration
exhibits the poorest performance. The two-replica
TP4 configuration shows a modest improvement
over the singe-replica TP8 configuration. This
study highlights the importance of replica paral-
lelism for handling high concurrency levels, and
conversely, highlights the effectiveness of tensor
parallelism at lower concurrency levels.

D Throughput vs # of concurrency
requests.

We evaluated the throughput differences between
the ScaleLLM Engine and the vLLM Engine, as
well as their integration with the FastAPI Gate-
way and the optimized ScaleLLLM Gateway. The
complete results (with Concurrency from 1 to 256)
are illustrated in Figure 10. The findings indicate
that engine optimization leads to significant im-
provements in throughput; Additionally, the op-
timization of the Gateway contributes to further
notable performance enhancements, demonstrating
the cumulative impact of both engine and gateway
optimizations on overall system performance.
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Figure 10: Throughput vs # of concurrent requests.

E Comprehensive Result of System
latency vs # of concurrency requests.

Building upon our findings presented in §3.2,
where we discussed the latency characteristics of
the Gateway, we now provide a more comprehen-
sive examination of this phenomenon. Figure 11
illustrates a detailed analysis of the relationship be-
tween system latency and the number of concurrent
requests. Our results demonstrate a notable trend:
the Gateway’s latency increases substantially when
the number of concurrent requests exceeds 32. This
observation provides crucial insights into the sys-
tem’s performance characteristics and scalability
limitations.
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Figure 11: System latency vs # of concurrent requests.
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