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Abstract

Machine learning applications for text classifi-
cation are increasingly used in domains such as
toxicity and misinformation detection in online
settings. However, obtaining precisely labeled
data for training remains challenging, partic-
ularly because not all problematic instances
are reported. Positive-Unlabeled (PU) learning,
which uses only labeled positive and unlabeled
samples, offers a solution for these scenarios.
A significant concern in PU learning, especially
in online settings, is fairness: specific groups
may be disproportionately classified as prob-
lematic. Despite its importance, this issue has
not been explicitly addressed in research. This
paper aims to bridge this gap by investigating
the fairness of PU learning in both offline and
online settings. We propose a novel approach
to achieve more equitable results by extending
PU learning methods to online learning for both
linear and non-linear classifiers and analyzing
the impact of the online setting on fairness. Our
approach incorporates a convex fairness con-
straint during training, applicable to both of-
fline and online PU learning. Our solution is
theoretically robust, and experimental results
demonstrate its efficacy in improving fairness
in PU learning in text classification.

1 Introduction

A classification system with machine learning for
text data has been developed widely for various
application such as toxicity classification (Thain
et al., 2017; Wulczyn et al., 2017; Androcec, 2020;
Li et al., 2022b) and misinformation detection (Go
et al., 2022; Park et al., 2022). However, obtain-
ing precisely labeled data for training can be an
arduous task (Du Plessis et al., 2015), and the ab-
sence of positivity does not automatically equate to
negativity in some cases (Hsieh et al., 2015). For
example, in both toxicity and misinformation de-
tection, only part of textual contents containing tox-
icity or misinformation are reported as concerns, as

illustrated in Fig.1. Positive-unlabeled (PU) learn-
ing (Elkan and Noto, 2008; Du Plessis et al., 2015;
Kiryo et al., 2017) aims to learn from this incom-
plete information and achieve reliable classification
by using only labeled-positive and unlabeled sam-
ples, where the unlabeled samples are permitted to
be classified as either positive or negative.

Furthermore, we acknowledge the necessity
of an online learning framework in PU learning.
Firstly, integrating PU learning with online learn-
ing can effectively address real-world challenges
(Zhang et al., 2021), when a machine learning sys-
tem operates in dynamic environments where new
data is continuously arriving. For example, as vi-
sualized in Fig.1, the patterns of toxicity or misin-
formation evolve online, so the machine learning
system needs to keep training on newly arrived data
with new patterns, while only a few documents are
reported as concerns. However, offline batch train-
ing is inadequate to sequentially provided data, as
retraining the system from scratch with all the data
is costly (Thennakoon et al., 2019), while unre-
ported cases might also possess the potential for
positivity (de Souza et al., 2022), necessitating the
utilization of a PU learning framework in online
scenario (Zhang et al., 2021).

However, PU learning faces a significant fair-
ness issue by disproportionately predicting certain
groups as positive based on factors such as gender,
race, and the presence of specific features. Fairness
concerns in PU learning stem from two different
perspectives. First, the training data might naturally
contain biases. For example, in the Wikipedia Talk
dataset (Thain et al., 2017; Wulczyn et al., 2017)
for toxicity classification, 36.03% of documents
with sexuality terms contain toxicity, whereas only
9.28% of documents without sexuality terms are
toxicity documents. A PU learning-based auto-
mated toxicity classification system might overly
depend on the existence of sexuality terms, result-
ing in unfair predictions by misleading to an in-
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Figure 1: Online Positive-Unlabeled (PU) learning is an effective framework for toxicity classification in social
networks, where only a subset of positive (reported toxicity) samples are labeled and there exist unlabeled positive
(non-reported toxicity), and the data pool evolves over time. However, online PU learning may encounter fairness
challenges due to prevalent biases in the data, where contents with identity terms have higher chances of toxicity
compared to those without identity terms, as well as the long-term constraints inherent in online learning.

creased false positive rate (FPR). Secondly, PU
learning tends to produce a higher false positive
rate because the PU framework is inherently blind
in differentiating false positives from false nega-
tives due to the lack of negative samples in the
unlabeled pool (Kong et al., 2019). To address
this issue, the risk estimator for PU learning tends
to convert negative risk to unlabeled risk based
on the class prior (Du Plessis et al., 2015), which
compulsively assigns positive labels to a portion
of unlabeled data, resulting in higher FPR, as il-
lustrated in Fig.2 (b). Despite its relevance, the
fairness issue in PU learning remains largely un-
explored (Wu and He, 2022), and existing fairness
literature (Jang et al., 2021; Chai and Wang, 2022)
is mostly confined to PN learning, where all labels
are readily available.

Furthermore, online learning may encounter fair-
ness issues due to its long-term constraint (Zhao
et al., 2021). The original data’s uneven distribu-
tion across sensitive groups means each incremen-
tal stage might have few or no samples from certain
subgroups, especially with limited positive samples.
Such imbalances can reduce diversity in each incre-
mental stage. The incrementally provided data may
not accurately reflect the overall distribution, po-
tentially leading to a higher false positive rate and
more unfair predictions. In Fig.2 (c), the compari-
son between the solid bar (offline) and the hatched
bar (online) demonstrates that online learning can
worsen fairness issues in PU learning.

In short, online PU learning suffers from twofold
fairness violations due to both 1) PU learning and
2) online learning. Wu and He (2022) first ad-
dressed fairness in PU learning, but the reason of
bias in PU learning was not extensively studied.
Additionally, Wu and He (2022) relies on the se-
lected completely at random (SCAR) assumption
(Elkan and Noto, 2008), which could be unrealistic
in practice. Zhang et al. (2021) proposed an online
PU learning framework, but it didn’t discuss fair-
ness issue in PU learning and was limited to linear
classifiers. Overall, fairness in offline PU learning
is largely unexplored, and no research explicitly
addresses fairness in online PU learning, making it
a pressing concern.

In this paper, we firstly address this gap by study-
ing fairness in PU learning and extend it to the
online framework by introducing a convex fair-
ness constraint ensuring Equalized Odds fairness,
while maintaining the model’s prediction capac-
ity. Specifically, we apply PU learning methods
to online learning for linear, Multilayer Perceptron
(MLP), and Long Short-Term Memory (LSTM)
(Graves and Graves, 2012) classifiers, analyzing the
impact of the online setting on fairness by defining
the concept of fair regret. Our proposed approach,
fairness-aware online positive-unlabeled learning
(FOPU) is theoretically grounded, and we provide
experimental results to demonstrate its efficacy in
enhancing fairness in PU learning. To this end, this
paper offers a practical framework for implement-

171



Figure 2: In the Wiki Toxicity dataset, we compare scenarios with (green) and without (orange) a fairness constraint,
using LSTM classifier. Bar plots illustrate the True Positive Rate (TPR), False Positive Rate (FPR), and ∆EOd,
while line plots show F1-score. In the first two subfigures, darker bars represent a document group without sexuality
term, and lighter bars correspond to a group with sexuality term. Bars with hatching indicate online learning. The
figure reveals that both PU learning (orange) and online learning (hatched) result in a higher FPR compared to PN
learning (blue) and offline learning (solid), respectively. Implementing fairness-aware training (green) reduces the
disparity in the FPR between demographic groups, thereby promoting fairness while preserving F1-score.

ing fairer online learning applications for text clas-
sification across various real-world contexts. We
validate the effectiveness of our approach through
extensive experimental results, ensuring fairness
without compromising its utility, i.e., F1-score.

2 Related Work

Fairness. To achieve fairness in classification tasks,
diverse methodologies have been proposed. These
include pre-processing, post-processing, and in-
processing approaches. Pre-processing approaches
focus on refining training data such as data reweigh-
ing (Chai and Wang, 2022; Li and Liu, 2022) and
data augmentation (Jang et al., 2021; Rajabi and
Garibay, 2022). Based on the ordinarily trained
classifier, post-processing methods optimize the
accuracy-fairness trade-off using confusion matrix
(Kim et al., 2020) or manipulating threshold (Jang
et al., 2022). In-processing methods directly in-
corporate fairness constraints into the learning al-
gorithm itself making the model explicitly learn a
desired fairness criteria (Zafar et al., 2017b,a). Par-
ticularly, making the fairness constraint convex is
important since it ensures the existence of a unique
optimal solution. Wu et al. (2019) suggested a
relaxed convex fairness constraint as an objective
function to be optimized.

Positive-Unlabeled learning. Elkan and Noto
(2008) assumes that labeled examples are selected
completely at random (SCAR) from the entire body
of positive samples. However, the assumption
of SCAR is unrealistic in practice (Bekker and

Davis, 2020), and overestimates the true class prior
(Christoffel et al., 2016). Du Plessis et al. (2015)
and Kiryo et al. (2017) suggested optimizing PU
risk estimators using true class prior by converting
the negative empirical risk to unlabeled empirical
risk. Moreover, various types of PU frameworks
are suggested utilizing label distribution (Kato
et al., 2019; Zhao et al., 2022), data-reweighing
(Zhu et al., 2023), and data augmentation (Li et al.,
2022a).

Online Learning. Online Gradient Descent
(OGD) (Zinkevich, 2003) is a fundamental tech-
nique in online learning, while only linear classi-
fier is considered in (Zinkevich, 2003). Sahoo et al.
(2017) suggested Online Deep Learning making
online learning for a neural network. In this paper,
we apply the same strategy (Sahoo et al., 2017) to
make LSTM (Graves and Graves, 2012) online.

Composite Task. Fairness in machine learning,
positive-unlabeled learning, and online learning
are three distinct yet deeply interconnected fields.
Zhao et al. (2021) and Patil et al. (2021) discussed
fairness in online learning but not in real-time man-
ner. Zhang et al. (2021) proposed online PU learn-
ing, viable only for linear classifiers, but the fair-
ness concern is not discussed. Although Wu and
He (2022) suggested a post-processing framework
attaining fairness in PU learning, it is based on
SCAR assumption which is impractical (Bekker
and Davis, 2020), and not feasible to online learn-
ing framework and PU risk estimators.
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3 Method

3.1 Risk Estimator for PU learning

In PU learning, instead of the class label y ∈
{+1,−1}, we use the label indicator s ∈
{+1,−1}, s = +1 denoting the label exists and
the class of the sample is positive, while s = −1
indicates the label does not exist and the class of
the sample can be either positive or negative.

Denote the class-conditional densities for posi-
tive and negative class as pp(x) = p(x|y = +1),
and pn(x) = p(x|y = −1) where x ∈ Rd

is input data, and y ∈ {+1,−1} is the binary
class label. Also, let p(x) denote the marginal
density regarding unlabeled data. Then, p(x) =
πpp(x) + (1 − π)pn(x) if we assume that the
positive class-prior probability π = p(y = +1)
and p(y = −1) = 1 − π are given. In the
positive-negative (PN) setting, we minimize the
following risk estimator for a real-valued classifier
ŷ = sign(f(x)), f : X −→ R,

Rpn(f) = πEp[ℓ(f(X))] + (1− π)En[ℓ(−f(X))]

where Ep[·] = EX∼pp(x) and En[·] = EX∼pn(x),
and ℓ is a surrogate loss function such as square
loss, zero-one loss, and double hinge loss. Based
on the fact that p(x) = πp(x|y = +1) + (1 −
π)p(x|y = −1), the ‘negative’ risk can be replaced
with ‘unlabeled’ risk such that

Eu[ℓ(−f(X))] = πEp[ℓ(−f(X))] + (1− π)En[ℓ(−f(X))]

Therefore, the risk estimator for PU learning
(Du Plessis et al., 2015) can be approximated by

Rupu(f) = πEp[ℓ(f(X))] +
[
Eu[ℓ(−f(X))]− πEp[ℓ(−f(X))]

]
.

(1)
Furthermore, we adopt nnPU (Kiryo et al., 2017).
nnPU is modified version of uPU to prevent over-
fitting to training data,

Rnnpu(f) = πEp[ℓ(f(X))] + max
(
0,
[
Eu[ℓ(−f(X))]− πEp[ℓ(−f(X))]

])
.

However, PU learning suffers from fairness issues
as described in Fig.2 and Appendix A by posing
higher FPR. To this end, we propose the need for
a fairness constraint on PU learning and its impact
on prediction in the following sections.

3.2 Fairness Constraints and Convexity

In this paper, we utilize a fairness constraints such
as the Difference of Demographic Parity (DP)

and Difference of Equalized Odds (EOd). DP re-
quires independence between the predicted out-
come and the sensitive information a ∈ {+1,−1},
P (ŷ|a = −1) = P (ŷ|a = +1), i.e. ŷ ⊥⊥ a. How-
ever, the usefulness of DP is limited to cases where
there exists a correlation between y and a such
that y ⊥̸⊥ a. EOd overcomes the limitation of DP
by conditioning the metric on the ground truth Y ,
i.e. P (ŷ|a = +1, y) = P (ŷ|a = −1, y),∀y ∈
{+1,−1}. Based on convex form of DP suggested
in (Wu et al., 2019), we extend the convex fairness
constraint for EOd. DP and EOd will be used as
evaluation metrics to verify each model’s perfor-
mance, while EOd convex form is used as a part
of the objective function. Details of fairness con-
straints are introduced in Eq.(3) and Appendix B.

3.3 Fairness-aware Online PU learning
We propose a fairness-aware PU learning frame-
work for both offline and online learning. Specifi-
cally, we use Lagrangian relaxation such that

Roff(f) = Rpu(f) + λrΩ(f) + λfRfair(f) (2)

where λr and λf are hyperparameters, Rpu(f) can
be any PU risk estimator, and Rfair(f) is the fair-
ness constraints. In detail, in the training step,
Rfair(f) is determined by the sign of the empiri-
cal fairness measure in every iteration,

Rfair(f) =

{
EOdκ(f) if EOd(f) ≥ 0

EOdδ(f) if EOd(f) < 0,
(3)

where

EOdκ(f) = E
[
Ia=1,y=1

p1,1
κ(f(x))−

(
1− Ia=−1,y=1

π−p1,1
κ(−f(x))

)]

+E
[ Ia=1,y=−1

p1,−1
κ(f(x))−

(
1− Ia=−1,y=−1

1−π−p1,−1
κ(−f(x))

)]

EOdδ(f) = E
[
Ia=1,y=1

p1,1
δ(f(x))−

(
1− Ia=−1,y=1

π−p1,1
δ(−f(x))

)]

+E
[
Ia=1,y=−1

p1,−1
δ(f(x))−

(
1− Ia=−1,y=−1

1−π−p1,−1
δ(−f(x))

)]

are convex form of EOd fairness constraints where
κ is a convex surrogate function κ(z) = max(z +
1, 0) and δ is a concave surrogate function δ(z) =
min(z, 1). However, Rfair(f) potentially reduces
the TPR to achieve equalized TPR across the group.
To prevent a reduction in TPR, we apply a penalty
term to Rfair(f) when the empirical TPR is lower or
FPR is higher than in the previous iteration. Details
and its impact are in Appendix B.3 and B.4.

For online learning, we consider multiple data
It = {(x(i)

t , y
(i)
t )}bi=1 is provided at round t (t =
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Wiki Baseline Fairness-aware Learning
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

Linear uPU 0.5485 ± 0.0033 0.2618 ± 0.0079 0.1721 ± 0.0156 0.5622 ± 0.0038 0.2216 ± 0.0089 0.1620 ± 0.0175
nnPU 0.5491 ± 0.0034 0.2628 ± 0.0080 0.1738 ± 0.0176 0.5609 ± 0.0035 0.2191 ± 0.0073 0.1575 ± 0.0128

MLP uPU 0.5940 ± 0.0109 0.2262 ± 0.0118 0.0934 ± 0.0253 0.6033 ± 0.0094 0.2188 ± 0.0192 0.0798 ± 0.0163
nnPU 0.5544 ± 0.0285 0.2237 ± 0.0174 0.0859 ± 0.0238 0.5849 ± 0.0105 0.2158 ± 0.0098 0.0589 ± 0.0155

LSTM uPU 0.6019 ± 0.0190 0.1684 ± 0.0142 0.0860 ± 0.0222 0.6216 ± 0.0097 0.1710 ± 0.0152 0.0558 ± 0.0191
nnPU 0.6400 ± 0.0063 0.2031 ± 0.0114 0.0697 ± 0.0170 0.6433 ± 0.0056 0.1823 ± 0.0145 0.0382 ± 0.0204

Chat Toxicity Baseline Fairness-aware Learning
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

Linear uPU 0.4013 ± 0.0134 0.4106 ± 0.1104 0.4569 ± 0.1986 0.3912 ± 0.0142 0.3158 ± 0.0665 0.3128 ± 0.1135
nnPU 0.4013 ± 0.0075 0.4599 ± 0.0798 0.5208 ± 0.1677 0.3874 ± 0.0112 0.3254 ± 0.0498 0.3002 ± 0.0785

MLP uPU 0.4145 ± 0.0251 0.2758 ± 0.0967 0.2494 ± 0.1202 0.3666 ± 0.0209 0.2334 ± 0.0602 0.1954 ± 0.0926
nnPU 0.4272 ± 0.0279 0.4003 ± 0.0847 0.4026 ± 0.1340 0.4178 ± 0.0280 0.2740 ± 0.0859 0.2830 ± 0.1045

LSTM uPU 0.4714 ± 0.0145 0.2804 ± 0.0831 0.2734 ± 0.0878 0.4592 ± 0.0139 0.2235 ± 0.0729 0.1827 ± 0.1258
nnPU 0.4891 ± 0.0099 0.3533 ± 0.0936 0.3136 ± 0.1748 0.4710 ± 0.0140 0.2455 ± 0.0502 0.2075 ± 0.0983

NELA Baseline Fairness-aware Learning
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

Linear uPU 0.7780 ± 0.0022 0.0822 ± 0.0057 0.0549 ± 0.0097 0.7849 ± 0.0009 0.0787 ± 0.0086 0.0469 ± 0.0182
nnPU 0.7781 ± 0.0021 0.0821 ± 0.0056 0.0551 ± 0.0095 0.7855 ± 0.0013 0.0760 ± 0.0127 0.0497 ± 0.0158

MLP uPU 0.7710 ± 0.0042 0.1219 ± 0.0120 0.0422 ± 0.0225 0.8029 ± 0.0079 0.1014 ± 0.0453 0.0406 ± 0.0247
nnPU 0.7919 ± 0.0029 0.0653 ± 0.0312 0.0379 ± 0.0253 0.7961 ± 0.0044 0.0866 ± 0.0091 0.0222 ± 0.0153

LSTM uPU 0.7902 ± 0.0041 0.1283 ± 0.0111 0.1633 ± 0.0273 0.8057 ± 0.0056 0.1006 ± 0.0110 0.0731 ± 0.0306
nnPU 0.8041 ± 0.0055 0.0867 ± 0.0240 0.1117 ± 0.0266 0.8010 ± 0.0028 0.0497 ± 0.0188 0.0359 ± 0.0084

Table 1: Experimental results for offline learning with and without fairness constraints. The superior results (higher
F1-score; lower ∆DP and ∆EOd) for each evaluation metric are bolded for each combination of model, PU
method, and dataset, comparing the baseline without fairness constraints to the model with fairness constraints.

Wiki Baseline Fairness-aware Learning
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

Linear uPU 0.5667 ± 0.0019 0.2405 ± 0.0064 0.1740 ± 0.0113 0.5601 ± 0.0026 0.2132 ± 0.0103 0.1506 ± 0.0209
nnPU 0.5625 ± 0.0030 0.2435 ± 0.0068 0.1734 ± 0.0112 0.5633 ± 0.0020 0.2220 ± 0.0142 0.1531 ± 0.0221

MLP uPU 0.5424 ± 0.0057 0.2613 ± 0.0093 0.1707 ± 0.0214 0.5544 ± 0.0076 0.2322 ± 0.0134 0.1505 ± 0.0202
nnPU 0.5421 ± 0.0086 0.2604 ± 0.0078 0.1714 ± 0.0220 0.5545 ± 0.0073 0.2290 ± 0.0115 0.1463 ± 0.0201

LSTM uPU 0.5617 ± 0.0130 0.2170 ± 0.0239 0.1331 ± 0.0217 0.5583 ± 0.0080 0.2034 ± 0.0200 0.1107 ± 0.0247
nnPU 0.5570 ± 0.0086 0.2400 ± 0.0180 0.1306 ± 0.0220 0.5507 ± 0.0178 0.2246 ± 0.0224 0.1168 ± 0.0252

Chat Toxicity Baseline Fairness-aware Learning
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

Linear uPU 0.4070 ± 0.0353 0.3773 ± 0.1369 0.4977 ± 0.3522 0.4423 ± 0.0229 0.3613 ± 0.1323 0.3944 ± 0.3059
nnPU 0.3703 ± 0.0421 0.3116 ± 0.1362 0.4563 ± 0.3314 0.4229 ± 0.0336 0.3333 ± 0.1255 0.3299 ± 0.1070

MLP uPU 0.4045 ± 0.0339 0.3547 ± 0.0924 0.3744 ± 0.1555 0.4386 ± 0.0291 0.3193 ± 0.1028 0.3176 ± 0.0894
nnPU 0.3525 ± 0.0441 0.2697 ± 0.1749 0.4194 ± 0.3296 0.4504 ± 0.0425 0.3486 ± 0.1056 0.3334 ± 0.1400

LSTM uPU 0.4571 ± 0.0442 0.3305 ± 0.1092 0.3220 ± 0.1143 0.5056 ± 0.0352 0.3521 ± 0.0792 0.2973 ± 0.1253
nnPU 0.4403 ± 0.0512 0.3505 ± 0.1662 0.4438 ± 0.3166 0.4746 ± 0.0380 0.3754 ± 0.1069 0.3317 ± 0.1727

NELA Baseline Fairness-aware Learning
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

Linear uPU 0.7855 ± 0.0014 0.0042 ± 0.0029 0.0182 ± 0.0108 0.7896 ± 0.0004 0.0014 ± 0.0008 0.0180 ± 0.0042
nnPU 0.7877 ± 0.0010 0.0086 ± 0.0104 0.0278 ± 0.0224 0.7899 ± 0.0005 0.0018 ± 0.0013 0.0214 ± 0.0042

MLP uPU 0.7702 ± 0.0017 0.0915 ± 0.0071 0.0540 ± 0.0150 0.7783 ± 0.0053 0.0376 ± 0.0372 0.0355 ± 0.0213
nnPU 0.7719 ± 0.0019 0.0890 ± 0.0070 0.0556 ± 0.0136 0.7792 ± 0.0043 0.0334 ± 0.0348 0.0363 ± 0.0225

LSTM uPU 0.7622 ± 0.0134 0.1122 ± 0.0396 0.0605 ± 0.0310 0.7863 ± 0.0021 0.0035 ± 0.0036 0.0103 ± 0.0085
nnPU 0.7932 ± 0.0029 0.1168 ± 0.0163 0.0560 ± 0.0123 0.7792 ± 0.0124 0.0096 ± 0.0094 0.0263 ± 0.0212

Table 2: Experimental results for online learning with and without fairness constraints. The superior results (higher
F1-score; lower ∆DP and ∆EOd) for each evaluation metric are bolded for each combination of model, PU
method, and dataset, comparing the baseline without fairness constraints to the model with fairness constraints.

1, 2, · · · , T ) with subset size b where T is the num-
ber of total training rounds. At t-th training round,
ft = f(xt,wt) =

∑b
i=1w

T
t · x(i)

t where f is a lin-
ear classifier, and wt ∈ F is a learnable weight vec-
tor for a convex set F . By adding L2 regularizer
and a conservative constraint to the PU risk estima-
tor, the final objective function of fairness-aware
online PU learning (FOPU) becomes

RIt(ft) = Rpu(ft) + λrΩ(ft) + λfRfair(ft) +
γt
2 ∥wt −wt−1∥22

(4)
where γ, λr, and λf are hyperparemeters, and

Ω(ft) =
∥wt∥22

2 is a parameter regularizer. We
set γt = γ + λrt with γ = 1/

√
b as suggested in

(Zhang et al., 2021). The last term limits the drastic

changes of the weight to avoid overfitting to newly
provided data. More details about optimization for
online learning is introduced in Appendix C.

4 Theoretical Analysis

In the previous literature, the fairness violation in
online learning has not been studied. Although
(Zhao et al., 2021) shows aO(√T log T ) bound of
long-term fairness constraint, it is limited to the on-
line meta-learning and not applicable to real-time
online learning like FOPU. Furthermore, the im-
pact of online learning with neural networks on
fairness has not been studied either at each round.
We prove that the cumulative fairness regret bound

174



Wiki Baseline (Offline) Fairness-aware Learning (Offline)
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

BERT uPU 0.6987±0.0055 0.2281±0.0154 0.0992±0.0129 0.6733±0.0199 0.1931±0.0319 0.0882±0.0308
nnPU 0.7091±0.0073 0.2326±0.0137 0.0819±0.0170 0.7132±0.0059 0.2215±0.0091 0.0774±0.0138

Distill uPU 0.7114±0.0020 0.2496±0.0060 0.1217±0.0078 0.7155±0.0048 0.2126±0.0078 0.0506±0.0138
nnPU 0.7374±0.0038 0.2400±0.0189 0.1159±0.0293 0.7346±0.0013 0.2026±0.0098 0.0384±0.0111

Chat Toxicity Baseline (Offline) Fairness-aware Learning (Offline)
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

BERT uPU 0.5603±0.0182 0.5010±0.0571 0.5623±0.0750 0.5437±0.0116 0.4247±0.0995 0.4382±0.1471
nnPU 0.5860±0.0200 0.4626±0.0915 0.4645±0.1660 0.5759±0.0142 0.3809±0.0960 0.3370±0.1329

Distill uPU 0.5941±0.0211 0.4905±0.0995 0.4813±0.1665 0.5929±0.0189 0.4503±0.0921 0.4241±0.1453
nnPU 0.6007±0.0133 0.4792±0.1041 0.4462±0.1804 0.6009±0.0183 0.4723±0.1060 0.4331±0.2048

NELA Baseline (Offline) Fairness-aware Learning (Offline)
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

BERT uPU 0.8202±0.0021 0.1950±0.0091 0.0468±0.0144 0.8245±0.0017 0.1865±0.0141 0.0312±0.0153
nnPU 0.8174±0.0029 0.1670±0.0120 0.0533±0.0175 0.8227±0.0027 0.2100±0.0074 0.0275±0.0107

Distill uPU 0.8289±0.0019 0.1804±0.0061 0.0378±0.0111 0.8325±0.0022 0.1935±0.0178 0.0248±0.0116
nnPU 0.8303±0.0019 0.1891±0.0109 0.0213±0.0124 0.8309±0.0017 0.1953±0.0117 0.0129±0.0077

Wiki Baseline (Online) Fairness-aware Learning (Online)
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

BERT uPU 0.6953±0.0022 0.1903±0.0104 0.0971±0.0062 0.6881±0.0019 0.1790±0.0059 0.0844±0.0094
nnPU 0.6905±0.0022 0.1862±0.0081 0.0877±0.0116 0.6822±0.0022 0.1755±0.0078 0.0830±0.0098

Distill uPU 0.6966±0.0020 0.2412±0.0057 0.1202±0.0095 0.6861±0.0016 0.2044±0.0042 0.0674±0.0076
nnPU 0.6902±0.0030 0.2343±0.0064 0.1063±0.0083 0.6790±0.0019 0.2083±0.0074 0.0688±0.0096

Chat Toxicity Baseline (Online) Fairness-aware Learning (Online)
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

BERT uPU 0.4891±0.0308 0.4427±0.0536 0.5169±0.1171 0.4753±0.0563 0.4176±0.0776 0.4754±0.1574
nnPU 0.4875±0.0275 0.4660±0.0781 0.5492±0.1463 0.4918±0.0363 0.4373±0.0908 0.4938±0.1744

Distill uPU 0.5107±0.0343 0.4806±0.0609 0.5381±0.1285 0.5010±0.0250 0.4040±0.0701 0.4562±0.1148
nnPU 0.5169±0.0359 0.4750±0.0834 0.5291±0.1449 0.5116±0.0370 0.4254±0.0857 0.4577±0.1507

NELA Baseline (Online) Fairness-aware Learning (Online)
F1-score ∆DP ∆EOd F1-score ∆DP ∆EOd

BERT uPU 0.7983±0.0009 0.1027±0.0072 0.0770±0.0088 0.7978±0.0012 0.1309±0.0100 0.0419±0.0143
nnPU 0.8161±0.0015 0.1448±0.0178 0.0519±0.0203 0.8160±0.0019 0.1485±0.0143 0.0440±0.0148

Distill uPU 0.8034±0.0009 0.1219±0.0113 0.0601±0.0251 0.8034±0.0008 0.1075±0.0157 0.0395±0.0298
nnPU 0.8035±0.0012 0.1113±0.0195 0.0456±0.0291 0.8034±0.0013 0.1134±0.0184 0.0328±0.0236

Table 3: Experimental results for offline and online learning with and without fairness constraints for pre-trained
language model, BERT and DistillBERT. The superior results (higher F1-score; lower ∆DP and ∆EOd) for each
evaluation metric are bolded for each combination of model, PU method, and dataset, comparing the baseline
without fairness constraints to the model with fairness constraints.

in OGD such that O(
√
T
b ) where b is the size of in-

coming dataset. It indicates online learning frame-
work with a linear classifier affects the fairness
violation in two ways, the total number of round
T and the size of incoming data b. In the special
case of online learning such that only a single da-
tum is provided at each round, this proof still holds
with a single batch size, b = 1. Moreover, we
show the usage of MLP in online PU learning also
affects the fairness regret compared to a linear clas-
sifier, making O(√T logL+

√
T
b ) bound where L

is the number of layer in MLP. All assumptions and
proofs are elaborated in Appendix E.

5 Experimental Results

5.1 Implementation Detail

In this paper, we utilize three different NLP
datasets: Wikipedia Talk (Thain et al., 2017;
Wulczyn et al., 2017) and Chat Toxicity (Lin
et al., 2023) datasets for toxicity classification, and
NELA-2018 dataset (Nørregaard et al., 2019) for
misinformation detection. Toxicity classification
is prone to bias, particularly as documents contain-

ing sexuality-related terms are often misclassified
as toxic, resulting in an increased false positive
rate. For the NELA-2018 dataset (Nørregaard et al.,
2019), the sensitive attribute raising fairness con-
cerns is the political leaning, either left or right, as
indicated in (Park et al., 2022). All datasets are
divided into 60%, 20%, and 20% splits for training,
validation, and testing, respectively.

As only positive-negative labels are given in the
dataset, we replace them with positive-unlabeled
settings using a hyperparameter, unlabeled positive
ratio γu, indicating the portion of positive samples
turned into unlabeled along with all the negative
samples. For example, when γu = 0.4, 40% of
positive samples and all negative samples are re-
garded as unlabeled. We employ γu = 0.5 to report
performance in Tables 1 and 2, while the impact
of γu and the robustness of FOPU against γu are
discussed in Fig.3.

We conduct extensive experiments to validate
the feasibility of our proposed Fairness-Aware On-
line PU learning as well as offline learning. Two
different PU approaches, uPU and nnPU are imple-
mented for three different classifiers, linear, MLP,
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Figure 3: The experimental results with online MLP and
nnPU for Wiki dataset varying γu show that the fairness
constraint consistently improves fairness by lowering
∆EOd while preserving F1 score.

and LSTM. In the online setting, we conduct ex-
tensive experiments with the fixed total number of
rounds T = 200, where only b = N/T samples
are provided at each round only once, where N is
the total number of training samples. More details
of implementation are introduced in Appendix G.

5.2 Result Analysis

We successfully integrate fairness constraints, PU
learning, and online learning for all classifiers. As
shown in Tables 1 and 2, the fairness constraint,
Eq.(3), effectively improves targeted fairness met-
ric, ∆EOd, while maintaining comparable F1-
scores across all datasets and PU baselines. Ad-
ditionally, Fig.3 shows that applying the fairness
constraint in an online learning setting consistently
enhances fairness for all γu values, while preserv-
ing F1-scores comparable to the baseline.

5.3 Extension to Pre-trained Language
Models

With the growing adaptability of pre-trained lan-
guage models, our approach can be effectively ex-
tended to such models, followed by a linear clas-
sifier. Specifically, instead of utilizing Doc2Vec
(Le and Mikolov, 2014) for vectorization in linear,
MLP, or LSTM classifiers, we leverage pre-trained
models like BERT (Devlin, 2018) and DistilBERT
(Sanh, 2019) as feature extractors, with a linear
classifier applied on the representations. Since the
primary objective is fair classification, training only
the final linear classifier has been demonstrated as
an efficient strategy to obtain fair prediction, as
evidenced in (Mao et al., 2023).

In our experiments applying FOPU to pre-
trained BERT and DistilBERT models, our frame-
work effectively reduces the ∆EOd while preserv-
ing the F1 score, as shown in the Table 3. The
results underscore the flexibility of our method in
integrating with pre-trained language models while
retaining a strong theoretical basis by restricting

training to the linear classifier alone.

5.4 Limitation

We have considered recent PU learning methods
such as Dist-PU (Zhao et al., 2022) and Robust-
PU (Zhu et al., 2023). However, these approaches
require a significant number of data points dur-
ing training, making them more suitable for static
settings. For example, Dist-PU compares the la-
bel distribution of predicted results with ground
truth, requiring a large dataset to accurately align
the distributions. In an online setting, where only
limited data is available at each iteration, the la-
bel distribution in the prediction set may become
skewed, restricting the applicability of Dist-PU.
Similarly, Robust-PU iteratively refines the selec-
tion of negative samples from unlabeled data by
adjusting hardness thresholds, which also necessi-
tates a substantial number of unlabeled samples per
iteration—an unrealistic requirement in an online
context.

Given these constraints, we prioritize PU learn-
ing methods that rely solely on designing a risk
estimator such as uPU and nnPU, which is more
suited to online learning.

6 Conclusion

In this study, we address the issue of fairness in
Positive-Unlabeled (PU) learning in text classifi-
cation, particularly in the challenging context of
online learning. We emphasize the necessity of
strategies that ensure fairness in scenarios where
data is incrementally provided, and only positive
and unlabeled data are available. Our approach
aims to enhance fairness in PU learning and ex-
tend it to online learning for both linear and deep
neural network classifiers. We demonstrate that
incorporating a convex fairness constraint during
the training significantly improves fairness metrics
(∆EOd) while maintaining the F1-score. Addition-
ally, we delve into the mathematical foundations of
fairness in online settings by proving a cumulative
fairness loss, i.e. fair regret bound.
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A Investigating Separated Class Prior

As we extend the PU learning framework con-
sidering fairness with respect to the different de-
mographic groups, the class priors for two sen-
sitive groups might be different from each other.
We re-formulate Eq.(1) by separating the risk es-
timator for two subgroups’ sensitive information
a ∈ {+1,−1},

Rupu(f)

=
[
π+Ep[ℓ(f(X

+)] +
[
Eu[ℓ(−f(X+))]− π+Ep[ℓ(−f(X+))]

]]

+
[
π−Ep[ℓ(f(X

−)] +
[
Eu[ℓ(−f(X−))]− π−Ep[ℓ(−f(X−))]

]]

where the superscript indicates the sensitive groups
such that π+ = p(y+ = +1), π− = p(y− = +1)
with (X+, y+) ∈ {(x, y)|x ∈ X, y ∈ Y , a =
+1}, (X−, y−) ∈ {(x, y)|x ∈ X, y ∈ Y , a =
−1}. However, this method does not consistently
mitigate bias arising from an imbalanced dataset
since PU learning tends to assign positive labels to
negative samples, even when class priors are cor-
rectly assigned for each demographic group. Based
on this understanding, we recognize the need for a
fairness constraint on PU learning and its impact.

B Fairness Constraint and Convexity

B.1 DP and EOd Constraints with Convexity
Optimizing fairness constraints is a popular in-
processing approach in fairness-aware classifica-
tion. Learning a fair classifier is formulated as
optimizing the objective function with L2 regular-
ization (Ω(f)) and fairness constraints such as the
Difference of Demographic Parity (DP)

min
f∈F

Rpu(f) + λrΩ(f) (5)

subject to |DP (f)| ≤ τ

where f denotes the real-valued classifier with
learnable parameter w ∈ Rd, Ω(f) = ∥w∥22

2 , and
λr is a hyperparameter. DP requires independence
between the predicted outcome and the sensitive
information a ∈ {+1,−1}, P (ŷ|a = −1) =
P (ŷ|a = +1), i.e. ŷ ⊥⊥ a. The empirical DP
is

DP (f) = E
[Ia=1

p1
If(x)>0−(1−

Ia=−1

1− p1
If(x)<0)

]

(6)
where p1 = p(a = +1).

However, the linear fairness constraint in Eq.(5)-
(6) is not suitable for online PU learning since the

online framework requires the objective function
to be convex (Zinkevich, 2003). Thus, we adopt a
convex fairness constraint (Wu et al., 2019) based
on relaxed form of Eq.(6) by replacing the indicator
function to real-valued function f , and wrapping
them in convex-concave surrogate function κ and
δ to make the fairness constraint bounded by the
lower and upper bound, so that to be convex.

DPκ(f) = E
[ Ia=1

p1
κ(f(x))−

(
1− Ia=−1

1−p1
κ(−f(x))

)]

DPδ(f) = E
[ Ia=1

p1
δ(f(x))−

(
1− Ia=−1

1−p1
δ(−f(x))

)]

where κ is a convex surrogate function κ(z) =
max(z+1, 0) and δ is a concave surrogate function
δ(z) = min(z, 1) as proposed in (Wu et al., 2019).
Therefore, optimizing the fairness constraint in
Eq.(5) becomes a convex problem

min
f∈F

Rpu(f) + λrΩ(f)

subject to DP κ(f) ≤ τ,

subject to −DP δ(f) ≤ τ.

However, the usefulness of DP is limited to cases
where there exists a correlation between y and a
such that y ⊥̸⊥ a. Difference of Equalized Odds
(EOd) overcomes the limitation of DP by condition-
ing the metric on the ground truth Y , i.e. P (ŷ|a =
+1, y) = P (ŷ|a = −1, y),∀y ∈ {+1,−1}. De-
fine π = p(y = +1), p(y = −1) = 1 − π,
p1,1 = P (a = +1, y = +1) and p1,−1 = P (a =
+1, y = −1), EOd can be rewritten as,

EOd(f)

= E
[Ia=1,y=1

p1,1
If(x)>0 −

(
1− Ia=−1,y=1

π − p1,1
If(x)<0

)]

+ E
[
Ia=1,y=−1

p1,−1
If(x)>0 −

(
1− Ia=−1,y=−1

1−π−p1,−1
If(x)<0

)]

(7)

We extend the fairness constraint by deriving a
convex form of EOd,

EOdκ(f) = E
[
Ia=1,y=1

p1,1
κ(f(x))−

(
1− Ia=−1,y=1

π−p1,1
κ(−f(x))

)]

+E
[ Ia=1,y=−1

p1,−1
κ(f(x))−

(
1− Ia=−1,y=−1

1−π−p1,−1
κ(−f(x))

)]

(8)

EOdδ(f) = E
[
Ia=1,y=1

p1,1
δ(f(x))−

(
1− Ia=−1,y=1

π−p1,1
δ(−f(x))

)]

+E
[
Ia=1,y=−1

p1,−1
δ(f(x))−

(
1− Ia=−1,y=−1

1−π−p1,−1
δ(−f(x))

)]

(9)
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DP and EOd will be used as evaluation metrics
to verify each model’s performance, while their
convex form is used as a part of the objective func-
tion. The detailed derivation for EOd is introduced
in next section.

B.2 Details of the convex form of Equalized
Odds (EOd) constraint

From the definition of DP, we can obtain a similar
expression for EOd by conditioning DO for each
y ∈ {+1,−1}. The Difference of Equalized Odds
(EOd) is

EOd(f) =
[

1
|Ia=1,y=1|

∑
S+1,+1

If(x)>0 − 1
|Ia=−1,y=1|

∑
S−1,1

If(x)>0

]

+
[

1
|Ia=1,y=−1|

∑
S+1,−1

If(x)>0 − 1
|Ia=−1,y=−1|

∑
S−1,−1

If(x)>0

]
,

where Sa,y, a ∈ {+1,−1}, y ∈ {+1,−1} is a sub-
group with corresponding a and y. and can be
rewritten in the expected form as

EOd(f) =

E
[ Ia=1,y=1

p1,1
If(x)>0 −

(
1− Ia=−1,y=1

π−p1,1
If(x)<0

)]

+ E
[ Ia=1,y=−1

p1,−1
If(x)>0 −

(
1− Ia=−1,y=−1

1−π−p1,−1
If(x)<0

)]
,

since

1 = E[
Ia=−1,y=1

p−1,1
] = E[

Ia=−1,y=1

π − p1,1
]

= E[
Ia=−1,y=1

π − p1,1
If(x)<0 +

Ia=−1,y=1

π − p1,1
If(x)>0],

1 = E[
Ia=−1,y=−1

p−1,−1
] = E[

Ia=−1,y=−1

1− π − p1,−1
]

= E[ Ia=−1,y=−1

1−π−p1,−1
If(x)<0 +

Ia=−1,y=−1

1−π−p1,−1
If(x)>0]

where π = p(y = 1), p(y = −1) = 1− π, p1,1 =
P (a = 1, y = 1) and p1,−1 = P (a = 1, y = −1).

EOd can be expressed as a convex form,

EOdκ(f) = E
[
Ia=1,y=1

p1,1
κ(f(x))−

(
1− Ia=−1,y=1

π−p1,1
κ(−f(x))

)]

+E
[ Ia=1,y=−1

p1,−1
κ(f(x))−

(
1− Ia=−1,y=−1

1−π−p1,−1
κ(−f(x))

)]

EOdδ(f) = E
[
Ia=1,y=1

p1,1
δ(f(x))−

(
1− Ia=−1,y=1

π−p1,1
δ(−f(x))

)]

+E
[
Ia=1,y=−1

p1,−1
δ(f(x))−

(
1− Ia=−1,y=−1

1−π−p1,−1
δ(−f(x))

)]

If we replace the target fairness constraint to EOd
rather than DP , the convex form of fairness con-
straint in objective function REOd is defined

REOd(f) =

{
EOdκ(f) if EOd(f) ≥ 0

EOdδ(f) if EOd(f) < 0.

B.3 Positive Rate Penalty
The current fairness constraint aims to minimize
(TPR1−TPR0)+(FPR1−FPR0), as outlined
in Eq.(7)-(9). Although minimizing the overall
EOd constraint can enhance fairness by reducing
differences in TPR and FPR across groups, it car-
ries the potential risk of lowering the TPR value.
In tasks such as toxicity classification or misinfor-
mation detection, TPR (recall) is a critical metric
(Kurita et al., 2019), and any reduction is unde-
sirable. Despite adopting the risk estimator in PU
learning to improve agreement between predictions
and ground truth, it may not adequately prevent
a TPR decrease when the number of positive in-
stances is limited (e.g., 9.66% in the Wiki Toxicity
dataset). Consequently, an additional constraint is
necessary to avoid a decrease in TPR and an in-
crease in FPR. This new constraint would penalize
the model if the current TPR is lower or the FPR
is higher than in the previous step. Furthermore,
because the indicator function used in TPR and
FPR calculations is not differentiable, we apply the
sigmoid function in place of the indicator function,
e.g., TPR1 =

∑
a=1,y=1 σ(ŷ)

n11
.

Lp =max(0, TPRbase
1 − TPR

(t)
1 )

+ max(0, TPRbase
0 − TPR

(t)
0 )

+ max(FPR
(t)
1 − FPRbase

1 , 0)

+ max(FPR
(t)
0 − FPRbase

0 , 0) (10)

where TPRbase ← max(TPRbase, TPR(t)) and
FPRbase ← min(FPRbase, FPR(t)). Therefore,
Rfair ← Rfair + Lp.

B.4 Impact of Positive Rate Penalty
As discussed in the Section 3.3 and Appendix B.3,
we employ a positive rate penalty term to mitigate
the reduction of TPR when applying a fairness
constraint. To verify its impact, we conducted an
ablation study on the Wiki dataset, comparing the
results of the fairness constraint with and without
the positive rate penalty. Table 4 demonstrates
that the positive rate penalty term significantly im-
proves recall without compromising the fairness
level.

C Online Learning Schemes

The weight vector wt of the linear classifier ft
in Eq.(4) is updated by Online Gradient Descent
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Wiki-Offline W/O Positive Penalty W/ Positive Penalty
F1 Recall ∆EOd F1 Recall ∆EOd

Linear uPU 0.5610 ± 0.0038 0.5727 ± 0.0130 0.1607 ± 0.0156 0.5622 ± 0.0038 0.5792 ± 0.0123 0.1620 ± 0.0175
nnPU 0.5600 ± 0.0038 0.5704 ± 0.0132 0.1575 ± 0.0113 0.5609 ± 0.0035 0.5763 ± 0.0120 0.1575 ± 0.0128

MLP uPU 0.5931 ± 0.0096 0.6737 ± 0.0547 0.0550 ± 0.0163 0.6033 ± 0.0094 0.7386 ± 0.0217 0.0798 ± 0.0324
nnPU 0.5604 ± 0.0050 0.6493 ± 0.0296 0.0551 ± 0.0223 0.5849 ± 0.0105 0.7779 ± 0.0210 0.0589 ± 0.0155

LSTM uPU 0.5894 ± 0.0189 0.5007 ± 0.0363 0.0396 ± 0.0191 0.6216 ± 0.0097 0.5959 ± 0.0311 0.0558 ± 0.0191
nnPU 0.6407 ± 0.0069 0.6479 ± 0.0274 0.0352 ± 0.0227 0.6433 ± 0.0056 0.6638 ± 0.0327 0.0382 ± 0.0204

Wiki-Online W/O Positive Penalty W/ Positive Penalty
F1 Recall ∆EOd F1 Recall ∆EOd

Linear uPU 0.5593 ± 0.0028 0.5704 ± 0.0157 0.1475 ± 0.0172 0.5601 ± 0.0026 0.5722 ± 0.0110 0.1506 ± 0.0209
nnPU 0.5597 ± 0.0027 0.5874 ± 0.0182 0.1490 ± 0.0148 0.5633 ± 0.0020 0.5999 ± 0.0182 0.1531 ± 0.0221

MLP uPU 0.5519 ± 0.0069 0.5920 ± 0.0166 0.1601 ± 0.0307 0.5544 ± 0.0076 0.6450 ± 0.0309 0.1505 ± 0.0202
nnPU 0.5505 ± 0.0078 0.5793 ± 0.0208 0.1516 ± 0.0341 0.5545 ± 0.0073 0.6433 ± 0.0191 0.1463 ± 0.0201

LSTM uPU 0.5546 ± 0.0152 0.6159 ± 0.0892 0.1098 ± 0.0244 0.5583 ± 0.0080 0.6215 ± 0.0639 0.1107 ± 0.0247
nnPU 0.5545 ± 0.0176 0.6712 ± 0.0852 0.1149 ± 0.0248 0.5507 ± 0.0178 0.6950 ± 0.0667 0.1168 ± 0.0252

Table 4: Ablation study on the effect of the positive rate penalty term within the fairness constraint.

(OGD) (Zinkevich, 2003) at t-th time step,

wt ←− ΠW(wt−1 − ηt∇t)

where ηt = b/(β
√
t) is a step size, β = b/η1, and

η1 is the initial learning rate. ∇t is the gradient of
RIt(ft), and ΠW(w) is a projection step defined as
ΠW(w) = argminw′∈W ∥w−w′∥ withW being
a feasible set of w.

As OGD is designed only for linear classifiers,
we further extend the framework for MLP using
Online Deep Learning (ODL) (Sahoo et al., 2017).
In (Sahoo et al., 2017), MLP is regarded as a mix-
ture of experts considering each linear layer as an
expert. The intermediate predictions are aggre-
gated for the final prediction, and back-propagated
by Hedge Backpropagation (Freund and Schapire,
1997). Since the deep neural networks for online
PU learning have not been studied yet in previous
literature, we modify the ODL framework to fa-
cilitate online PU learning with an MLP classifier,
and apply ODL to LSTM. Details in Online Deep
Learning are introduced in Appendix D.

D Online Deep Learning with Hedge
Backpropagation

In this appendix, we elucidate our online deep
learning framework which integrates the Hedge
Backpropagation methodology. Traditional online
learning models have been primarily constructed
for linear models. When applied to Deep Neural
Networks (DNNs), these conventional models face
convergence difficulties, the notorious vanishing
gradient problem, and challenges in determining
an optimal network depth.

For a standard representation of a DNN, the re-
lationship is defined as

F(x) = softmax(W (L+1)h(L)),

h(l) = σ(W (l)h(l−1))

for all l = 1, · · · , L, where h(0) = x. In the
Online Gradient Descent (OGD), the updating rule
is expressed as

W
(l)
t+1 ←W

(l)
t − η▽

W
(l)
t
L(F(xt), yt).

In the proposed Hedge Backpropagation, the net-
work’s prediction is a weighted sum of predictions
from all layers:

F(x) =

L∑

l=0

α(l)f (l),

f (l) = softmax(h(l)Θ(l)), ∀l = 0, · · · , L,
h(l) = σ(W (l)h(l−1)), ∀l = 1, · · · , L.

New parameters Θ(l) and α(l) are introduced,
where Θ(l) is associated with each layer’s output
and α(l) serves as a weight for all outputs across
layers. The overall loss function is then formulated
as

L(F(x), y) =
L∑

l=0

α(l)L(f (l), y).

For the updating algorithm, we start with α(l) =
1

L+1 for all l = 0, · · · , L. During each iteration,

classifier f (l) predicts ŷ(l)t and updates α(l)
t+1 using

α
(l)
t+1 ← α

(l)
t βL(f (l)(x),y),

where β ∈ (0, 1) is the discount rate. Finally, both
Θ and W are updated through OGD as detailed in
the equations provided.

E Theoretical Analysis

In this section, we aim to investigate how online
learning and deep neural networks with fairness
constraints affect the cumulative fairness regret
compared to offline learning.
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Theorem E.1. Consider ft : X −→ R is a real
valued linear function with learnable parameter
wt at round t ∈ {1, · · · , T} in online learning.
Let Rfair(ft(wt)) be a convex approximation of
fairness constraint at t-th time step as defined in
Eq.(3). Let {It}Tt=1 be the incoming training data
at the t-th time step where its size is b = |It| > 0.
Denote gt = ∇Rfair(ft(wt)) for simplicity and
assume that ∥gt∥ ≤ G, ∥wt −w∗∥2 ≤ K2, with
constants K,G > 0 where w∗ is an optimal weight
obtained by the offline learning. Define the fair
regret as

RegretT
(
Rfair(f(w))

)
=

T∑

t=1

E[Rfair(ft(wt))−Rfair(ft(w∗))],

then we have the Fair Regret Bound as follows:

RegretOGD
T

(
Rfair(f(w))

)
≤

(β2F 2 + 2G2

2bβ

)√
T ,

(11)
where β = b/η1, where b is the size of incoming
dataset and η1 is the initial learning rate. In the
special case of online learning such that only a
single datum is provided at each round, this proof
still holds with a single batch size, b = 1.

Insights from Theorem E.1. Theorem E.1 indi-
cates online learning framework with a linear clas-
sifier affects the fairness violation in two ways, the
total number of round T and the size of incoming
data b.

Moreover, we show the usage of MLP in online
PU learning also affects the fairness regret com-
pared to a linear classifier.

Theorem E.2. Let F : X −→ R be an Online Deep
Learning framework with Hedge Backpropagation,
where the final prediction is a weighted sum of
each layer in MLP, i.e. F(w) =

∑L
l=0 α

(l)f(w(l))
where f(w(l)) is each layer in MLP, α(l) is multi-
plicative weight of each layer, and L is the number
of layers. The cumulative fairness regret against a
linear classifier is bounded by

RegretHedge
T

(
Rfair(F(w))

)
≤ k + 1

k

√
T ln(L+ 1)

(12)

where k =

√
ln(L+1)

T /ϵ, ϵ = ln(1/µ), and µ ∈
(0, 1) is a constant discount rate paramter of multi-
plicative weight. In this research, µ = 0.99 follow-
ing (Sahoo et al., 2017).

Insights from Theorem E.1 and E.2. In Online
Deep Learning with Hedge Backpropagation, the
Theorem E.2 presents the cumulative fairness vio-
lation against a single linear classifier. On the other
hand, each linear expert has its own fairness regret
bound against the parameter obtained by offline
learning as shown in Theorem E.1. Therefore, the
final fairness violation of Hedge is the additive of
two regret bounds.

Corollary E.3. In Online Deep Learning with
Hedge, there exists loosely Fair Regret bound
against an offline linear classifier. From Eq.(15)
and Eq.(12),

RegretODL
T

(
Rfair(F(w))

)
≤ RegretOGD

T + RegretHedge
T

=
k + 1

k

√
T ln(L+ 1) +

(λ2
rK

2 + 2G2

2bλr

)√
T .

(13)

The proofs for Theorem E.1 and Theorem E.2 are
explained in Appendix F.1 and F.2, respectively.

F Proofs

F.1 Proof of Theorem 5.1
Consider ft : X −→ R is a real valued linear func-
tion with learnable parameter wt at round t ∈
{1, · · · , T} in online learning. Let Rfair(ft(wt))
be a convex approximation of fairness constraint
as an objective function at t-th time step. Let
{It}Tt=1 be the incoming training data at the t-th
time step where its size is b = |It| > 0. Denote
gt = ∇Rfair(ft(wt)) for simplicity and assume
that ∥gt∥ ≤ G, ∥wt − w∗∥2 ≤ K2, with con-
stants K,G > 0 where w∗ is an optimal weight
obtained by the offline learning. This assumption is
valid since ΠW(w) is a projection step defined as
ΠW(w) = argminw′∈W ∥w−w′∥ withW being
a feasible set of w. Define the fair regret as

RegretT
(
Rfair(f(w))

)
=

T∑

t=1

E[Rfair(ft(wt))−Rfair(ft(w∗))], (14)

then we have the Fair Regret Bound as follows:

RegretOGD
T

(
Rfair(f(w))

)
≤

(β2K2 + 2G2

2bβ

)√
T ,

(15)

where β = b/η1, where b is the size of incoming
dataset and η1 is the initial learning rate. In the
special case of online learning such that only a
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single datum is provided at each round, this proof
still holds with a single batch size, b = 1.

Proof. Let w∗ be an optimal parameter obtained
by the offline learning with the convex fairness
constraint (3). As Rfair(ft(wt)) is convex for all
w,

Rfair(ft(wt)) ≥∇Rfair(ft(wt))(w −wt)

+Rfair(ft(wt))

From the definition of gt,

Rfair(ft(w∗)) ≥ (w∗ −wt)gt +Rfair(ft(wt))

⇔Rfair(ft(wt))−Rfair(ft(w∗)) ≤ (wt −w∗)gt
(16)

The parameter wt is updated by the Online Gradi-
ent Descent, wt+1 = wt − ηt

b

∑b
i=1 gi,t where ηt

is a step size at the round t. Then,

(wt+1 −w∗)2 = (wt −
ηt
b

b∑

i=1

gi,t −w∗)2

= (wt −w∗)2 − 2ηt
b (wt −w∗)

∑b
i=1 gi,t +

η2t
b2

∥∥∑b
i=1 gi,t

∥∥2

≤ (wt −w∗)2 −
2ηt
b
(wt −w∗)

b∑

i=1

gi,t +
η2t
b2

G2

⇔ 1

b
(wt −w∗)

b∑

i=1

gi,t

≤ 1

2ηt

(
(wt −w∗)2 − (wt+1 −w∗)2) +

ηt
2b2

G2

(17)

From (14), (16) and (17),

RegretOGD
T

(
Rfair(ft(wt))

)

=
T∑

t=1

E[Rfair(ft(wt))−Rfair(ft(w∗))]

≤
T∑

t=1

E[(wt −w∗)gt]

=

T∑

t=1

(1
b
(wt −w∗)

b∑

i=1

gi,t
)

≤ 1

2η1
(w1 −w∗)2 −

1

2ηT
(wT+1 −w∗)2

+
1

2

T∑

t=2

(
1

ηt
− 1

ηt−1
)(wt+1 −w∗)2 +

G2

2b2

T∑

t=1

ηt

≤ K2
( 1

2η1
+

1

2

T∑

t=2

(
1

ηt
− 1

ηt−1
)
)
+

G2

2b2

T∑

t=1

ηt

≤ K2

2ηT
+

G2

2b2

T∑

t=1

ηt (set ηt = b/(β
√
t))

=
K2

2

β
√
T

b
+

G2

2b2
b

β

T∑

t=1

1√
t

≤ βK2
√
T

2b
+

G2

2bβ
· 2
√
T

=
βK2
√
T

2b
+

G2
√
T

bβ

=
(β2K2 + 2G2

2bβ

)√
T (18)

F.2 Proof of Theorem 5.2

Let F : X −→ R be an Online Deep Learning frame-
work with Hedge Backpropagation, where the final
prediction is a weighted sum of each layer in MLP,
i.e. F(w) =

∑L
l=0 α

(l)f(w(l)) where f(w(l)) is
each layer in MLP, α(l) is multiplicative weight
of each layer, and L is the number of layers. The
cumulative fairness regret against a single linear
classifier (expert) is bounded by

RegretHedge
T

(
Rfair(F(w))

)
≤ k + 1

k

√
T ln(L+ 1)

(19)

where k =

√
ln(L+1)

T /ϵ, ϵ = ln(1/µ), and µ ∈
(0, 1) is a constant discount rate parameter of mul-
tiplicative weight. In this research, µ = 0.99 fol-
lowing (Sahoo et al., 2017).

Proof. In Online Deep Learning, the final predic-
tion is a weighted sum of each linear layer. At time
step t,

Ft(w) =
L∑

l=0

α
(l)
t f(w

(l)
t )

f(w
(l)
t ) = softmax(h(l)

t w
(l)
t,out), ∀l = 0, · · · , L

h
(l)
t = σ(w

(l)
t,inh

(l−1)
t ),∀l = 1, · · · , L

h
(0)
t = xt

where win denotes the parameter between layers,
and wout is the parameter for computing each
layer’s output. α(l) is a multiplicative weight across
the all fairness cost Rfair of each layer, such that

Rfair(Ft(w)) =
L∑

l=0

α
(l)
t Rfair(f(w

(l)
t )).
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During the online training, win and wout are up-
dated by Online Gradient Descent by being re-
garded as an individual expert. The multiplicative
weight is updated by

α
(l)
t+1 ←− α

(l)
t e−ϵRfair(f(w

(l)
t )) (20)

α
(l)
t+1 ←−

α
(l)
t+1∑L

l=0 α
(l)
t+1

.

where we set α1 = 1
1+L . Let ϵ > 0 and all risk

Rfair(f(w
(l)
t )) is non-negative. Set ϕt =

∑L
l=0 α

(l)
t

and Z
(l)
t =

α
(l)
t
ϕt

. The sum of multiplicative weights
becomes

ϕt+1 =

L∑

l=0

α
(l)
t+1 =

L∑

l=0

α
(l)
t e−ϵRfair(f(w

(l)
t ))

= ϕt

L∑

l=0

Z
(l)
t e−ϵRfair(f(w

(l)
t ))

≤ ϕt

L∑

l=0

Z
(l)
t

(
1− ϵRfair(f(w

(l)
t ))

+ ϵ2Rfair(f(w
(l)
t ))2

)

(∵ e−x ≤ 1− x + x2,∀x ≥ 0)

= ϕt

(
1− ϵ

L∑

l=0

Z
(l)
t Rfair(f(w

(l)
t ))

+ ϵ2
L∑

l=0

Z
(l)
t Rfair(f(w

(l)
t ))2

)

(
∵

L∑

l=0

Z
(l)
t =

L∑

l=0

α
(l)
t

ϕt
=

ϕt

ϕt
= 1

)

≤ ϕt exp
(
−ϵ

L∑

l=0

Z
(l)
t Rfair(f(w

(l)
t ))

+ ϵ2
L∑

l=0

Z
(l)
t Rfair(f(w

(l)
t ))2

)

(∵ 1 + x ≤ ex)

= ϕt exp
(
−ϵZtRfair(f(wt))) + ϵ2ZtRfair(f(wt)))

2
)

(
∵ denote

L∑

l=0

Z
(l)
t Rfair(f(w

(l)
t )) = ZtRfair(f(wt))

)

Note that ϕ1 = L+1 before the normalization and
let At = exp

(
−ϵZtRfair(f(wt))) + ϵ2Zt

)
, then

at the time step T ,

ϕT ≤ ϕT−1At−1 ≤ ϕT−2At−2At−1

≤ · · · ≤ ϕ1Π
T−1
t=1 At ≤ ϕ1Π

T
t=1At (21)

Then Eq.(21) becomes

ϕT ≤ (L+ 1) exp
(
−ϵ

T∑

t=1

ZtRfair(f(wt)))

+ ϵ2
T∑

t=1

ZtRfair(f(wt)))
2
)
.

For any expert l∗, by Eq.(20), the mul-
tiplicative weight at time T is α

(l∗)
T =

exp
(
−ϵ∑T

t=1Rfair(f(w
(l∗)
t ))

)
, while it is less

than or equal to the sum of the weight, ϕT . Then,

α
(l∗)
T = exp

(
−ϵ

T∑

t=1

Rfair(f(w
(l∗)
t ))

)
≤ ϕT

≤ (L+ 1) exp
(
−ϵ

T∑

t=1

ZtRfair(f(wt)))

+ ϵ2
T∑

t=1

ZtRfair(f(wt)))
2
)
.

Taking the logarithm of both sides, we get

− ϵ

T∑

t=1

Rfair(f(w
(l∗)
t ))

≤ ln(L+ 1)− ϵ

T∑

t=1

ZtRfair(f(wt)))

+ ϵ2
T∑

t=1

ZtRfair(f(wt)))
2

Dividing by ϵ for both sides, we get

T∑

t=1

ZtRfair(f(wt)))−
T∑

t=1

Rfair(f(w
(l∗)
t ))

≤ ln(L+ 1)

ϵ
+ ϵ

T∑

t=1

ZtRfair(f(wt)))
2 (22)

The left-hand side refers to the cumulative loss
between Hedge and a single expert. In our fairness-
aware training, Rfair(f(w

(l)
t )) ≤ 1 since it is a

fairness measure. Then, (22) becomes

RegretHedge
T

(
Rfair(F(w))

)

=

T∑

t=1

ZtRfair(f(wt)))−
T∑

i=1

Rfair(f(w
(l∗)
t )

≤ ln(L+ 1)

ϵ
+ ϵ

T∑

t=1

Zt
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=
ln(L+ 1)

ϵ
+ Tϵ

(
set ϵ = k

√
ln(L+ 1)

T

)

=
k + 1

k

√
T ln(L+ 1) (23)

G Implementation Details

In this paper, we utilize three different NLP
datasets: Wikipedia Talk (Thain et al., 2017;
Wulczyn et al., 2017) and Chat Toxicity (Lin
et al., 2023) datasets for toxicity classification, and
NELA-2018 dataset (Nørregaard et al., 2019) for
misinformation detection. Toxicity classification
is prone to bias, particularly as documents contain-
ing sexuality-related terms are often misclassified
as toxic, resulting in an increased false positive
rate. For the NELA-2018 dataset (Nørregaard et al.,
2019), the sensitive attribute raising fairness con-
cerns is the political leaning, either left or right, as
indicated in (Park et al., 2022). All datasets are
divided into 60%, 20%, and 20% splits for training,
validation, and testing, respectively.

For preprocessing, we utilize tokenization and
vectorization techniques to convert the raw text data
into numerical representations suitable for machine
learning models. We employ the SpaCy English to-
kenizer for tokenization, as discussed in (Honnibal
and Montani, 2017), and the Doc2Vec model (Le
and Mikolov, 2014) for vectorization, transforming
the tokenized text into fixed-length feature vectors.

We conduct extensive experiments to validate
the feasibility of our proposed Fairness-Aware On-
line PU learning as well as offline learning. Two
different PU approaches, uPU and nnPU are imple-
mented for three different classifiers, linear, MLP,
and LSTM, where MLP consists of two hidden lay-
ers with 128 nodes in each layer in offline learning
and 64 nodes in online learning. For LSTM, the hid-
den size is determined as 128. For both offline and
online learning, we vary λf ∈ {10−2, 10−1, 100}
and report when the accuracy is the best. The sur-
rogate function used for PU risk estimators is dou-
ble hinge loss ℓ(z) = max(−z,max(0, 12 − 1

2z)),
where z = y · f(x). In the offline setting, the train-
ing runs 50 epochs with an Adam optimizer and
learning rate lr = 0.001. The batch size is 1024,
and the hyperparameter in offline learning λr is
10−4.

In the online setting, we conduct extensive ex-
periments with the fixed total number of rounds
T = 200. Naturally, the batch size in online

learning is equal to the number of incoming sam-
ples at each round, i.e. b = N/T where N is
the total number of training samples. We vary
the hyperparameter β by letting the initial step
size η1 = b/(β ·

√
1) be the level of learning rate

η1 ∈ {10−2, 10−1, 100} for linear and MLP clas-
sifier, and η1 ∈ {102, 101, 100} for LSTM, while
λr = 0.01 is fixed following (Zhang et al., 2021).
In both offline and online learning, we run 10 ex-
periments for each case to obtain the mean and
standard deviation.

H Analysis in state-of-the-art PU methods
(Robust-PU)

We also consider applyting Robust-PU learning
(Zhu et al., 2023), which is a state-of-the-art in PU
learning literature.

Robust-PU generates weights for each sample
by measuring ‘hardness’ recognizing easy posi-
tive samples and reliable negative samples. The
positive-unlabeled samples are trained by weighted
supervised learning,

Rrobust = Ep[w
T
p ·ℓ(f(X))]+Eu[w

T
n ·ℓ(−f(X))]

(24)
where wp and wn denote weights for easy posi-
tive samples and reliable negative samples, respec-
tively.

However, the assumption and mechanism in
Robust-PU face significant challenges when ap-
plied to NLP datasets. Specifically, the ambigu-
ity, context-dependence, and inherent noisiness of
text data make it difficult to meet the requirements
for reliable negative sample selection and accurate
hardness measurement. These factors collectively
hinder Robust-PU’s performance in NLP, neces-
sitating further adaptations and refinements to ad-
dress the unique challenges of textual data.

We validate the effectiveness in Robust-PU in
tabular dataset, and ineffectiveness in NLP dataset.
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