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Abstract

Large language models (LLMs) have demon-
strated prowess in a wide range of tasks. How-
ever, many LLMs exhibit significant perfor-
mance discrepancies between high- and low-
resource languages. To mitigate this challenge,
we present FuxiTranyu, an open-source mul-
tilingual LLM, which is designed to satisfy
the need of the research community for bal-
anced and high-performing multilingual capa-
bilities. The base model, FuxiTranyu-8B, fea-
tures 8 billion parameters and is trained from
scratch on meticulously balanced multilingual
data that contains 600 billion tokens cover-
ing 43 natural languages and 16 programming
languages. We also develop two instruction-
tuned models: FuxiTranyu-8B-SFT which is
fine-tuned on a diverse multilingual instruction
dataset, and FuxiTranyu-8B-DPO which is fur-
ther refined with DPO on a preference dataset
for enhanced alignment ability. Extensive ex-
periments on a wide range of multilingual
benchmarks demonstrate the competitive per-
formance of FuxiTranyu against existing multi-
lingual LLMs, e.g., BLOOM-7B, PolyLM-13B,
and Mistral-7B-Instruct. Both neuron and rep-
resentation interpretability analyses reveal that
FuxiTranyu achieves consistent multilingual
representations across languages. To promote
further research into multilingual LLMs, we
release both the base and instruction-tuned Fux-
iTranyu models together with 58 pre-training
checkpoints at HuggingFace1 and Github.2

1 Introduction

A well-pretrained base model is crucial for fa-
cilitating research and applications of large lan-
guage models. However, training a base LLM from
scratch typically demands a substantial amount of
data and significant computational resources, pos-
ing a barrier to the development of new LLMs. The

*Corresponding author.
1https://huggingface.co/TJUNLP/FuxiTranyu-8B
2https://github.com/tjunlp-lab/FuxiTranyu

majority of LLMs are usually tailored to specific
languages such as English (Touvron et al., 2023a,b)
or Chinese (Bai et al., 2023), neglecting the grow-
ing demand for multilingual capabilities, especially
from low-resource languages. While certain LLMs
like Mistral models (Jiang et al., 2023a) demon-
strate multilingual capabilities, their coverage is
limited, restricting the exploration in massively
multilingual settings.

Recent efforts have been dedicated towards miti-
gating such language-specific constraints through
supervised fine-tuning, as exemplified by Okapi
(Lai et al., 2023). However, as highlighted by the
alignment hypothesis in LIMA (Zhou et al., 2024),
the knowledge of LLMs is predominantly derived
from pre-training, while supervised fine-tuning pri-
marily aligns model behavior to instructions, which
is a narrow subset of the pre-training data. This
makes fine-tuning less effective for boosting multi-
lingual abilities when pre-training is dominated by
a few languages.

Other initiatives have focused on pre-training
multilingual LLMs, such as BLOOM (Scao et al.,
2022a) and PolyLM (Wei et al., 2023). Never-
theless, these efforts are hindered by their perfor-
mance, which does not measure up to that of cur-
rent trending LLMs. BLOOM suffers from out-
dated training data, while PolyLM is undermined
by imbalanced language distribution, with English
data accounting for approximately 70% and Chi-
nese for ~20%, potentially leading to insufficient
learning of under-represented languages. Previous
studies (Xu et al., 2024) disclose three traits of mul-
tilingual LLMs caused by imbalanced language
resources: cross-lingual inconsistency, distorted
linguistic relationships, and unidirectional transfer
between high- and low-resource languages, empha-
sizing the need for balanced data distribution.

Recently introduced multilingual LLMs, e.g.,
Aya 23 models (Aryabumi et al., 2024), have
demonstrated remarkable performance on multiple
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LLMs Pre-training Tokens Languages Base
Model Available

Pretraining
Checkpoints Available

BLOOM-7B1 (Scao et al., 2022a) 300B 46 NLs + 13 PLs ✓ ✓
Aya 23-8B (Aryabumi et al., 2024) Unknown 23 NLs × ×
PolyLM-13B (Wei et al., 2023) 638B 18 NLs ✓ ×
FuxiTranyu-8B 606B 43 NLs + 16 PLs ✓ ✓

Table 1: Comparison between trending multilingual large language models and FuxiTranyu, where NL stands for
natural language while PL for programming language.

multilingual benchmarks. They are derived from
the CommandR series of models3 by performing
supervised fine-tuning. However, only the weights
of Aya 23 have been released, with its base model
remaining undisclosed.

In this work, we present FuxiTranyu, a fam-
ily of multilingual LLMs supporting 43 natural
languages and 16 programming languages. The
FuxiTranyu initiative aims to mitigate the afore-
mentioned challenges of multilingual LLMs. The
base model comprises 8 billion parameters and
has been trained from scratch using approximately
600 billion multilingual tokens. To ensure bal-
anced learning across all supported languages, we
have manually controlled the sampling ratio of pre-
training data for different languages, striving for as
balanced distribution as possible. In line with our
commitment to advancing research in multilingual
LLMs, we have also released 58 pre-training check-
points, resonating with the efforts of LLM360 (Liu
et al., 2023). Table 1 compares FuxiTranyu with
currently available multilingual LLMs from differ-
ent perspectives.

In addition to the base model, we develop two
instruction-tuned models: FuxiTranyu-8B-SFT,
fine-tuned on a collected high-quality multilingual
instruction dataset, and FuxiTranyu-8B-DPO, fur-
ther tuned on preferences with DPO for enhanced
alignment ability.

Our evaluations focus on knowledge, capabil-
ity and alignment dimensions categorized by Guo
et al. (2023). Evaluation results on multilingual dis-
criminative tasks such as multilingual ARC, Hel-
laSwag, and MMLU (Lai et al., 2023), XWino-
grad (Muennighoff et al., 2022; Tikhonov and
Ryabinin, 2021), XCOPA (Ponti et al., 2020), XS-
toryCloze (Lin et al., 2021), and multilingual gen-
erative tasks including WMT and IWSLT transla-
tion benchmarks (Bojar et al., 2016; Cettolo et al.,
2017) and XL-Sum summarization benchmark
(Hasan et al., 2021), demonstrate FuxiTranyu’s
superior performance compared to BLOOM-7B1

3https://cohere.com/command

and PolyLM-13B, as detailed in Section 5. The
instruction-tuned models, FuxiTranyu-8B-SFT
and FuxiTranyu-8B-DPO, also outperform Llama-
2-Chat-7B, Mistral-7B-Instruct-v0.1, BLOOMZ-
7B1, PolyLM-MultiAlpaca-13B on translation and
summarization benchmarks.

To further understand the multilingual capabil-
ities of FuxiTranyu models, we have conducted
neuron- and representation-level analysis, reveal-
ing that FuxiTranyu-8B learns more language-
agnostic representations compared to BLOOM-
7B1 (Scao et al., 2022a), which can be attributed
to the balanced pre-training data. However, lan-
guages with extremely limited resources, such as
Bengali and Tamil, are allocated with fewer neu-
rons. Additionally, different layers and compo-
nents of FuxiTranyu-8B handle multilingual text
differently, with deep layers being more language-
specific and the importance of attention and MLP
components varying across layers.

2 Related Work

Recent advanced LLMs (Touvron et al., 2023a,b;
Dubey et al., 2024; Bai et al., 2023; Yang et al.,
2024; Young et al., 2024; Jiang et al., 2023a; Team
et al., 2024a,b) have excelled in NLP and cross-
modal tasks, sparking increased research on multi-
lingual LLMs (Scao et al., 2022a; Chowdhery et al.,
2022; Wei et al., 2023), which aim at broader lan-
guage support. There are three main approaches
to building multilingual LLMs: pre-training from
scratch, continual pre-training, and post-training
(e.g., supervised fine-tuning and reinforcement
learning from human feedback).

Pre-training from scratch, like PaLM
1&2 (Chowdhery et al., 2022; Anil et al.,
2023), BLOOM (Scao et al., 2022a), and
PolyLM (Wei et al., 2023), leverages extensive
training corpora from diverse sources, enabling
the incorporation of new knowledge. However,
pre-training poses a variety of challenges, such as
the need for vast computing resources, which can
hinder the development of new multilingual LLMs.
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Additionally, it also suffers from the curse of
multilinguality (Conneau et al., 2019; Chai et al.,
2022; Dubey et al., 2024; Gurgurov et al., 2024),
where the performance of individual languages
deteriorates as the number of languages increases.
On the other hand, continual pre-training, like
Aurora-M (Nakamura et al., 2024), LLaMAX (Lu
et al., 2024), is more efficient but risks catastrophic
forgetting of previously learned knowledge.

Supervised fine-tuning (SFT) often leverages
multilingual instruction data or incorporates trans-
lation tasks to address data scarcity (Shen et al.,
2023a; Lai et al., 2023; Wang et al., 2022). How-
ever, both continual pre-training and SFT rely heav-
ily on high-quality, diverse datasets, which are
often limited to many languages. Reinforcement
Learning from Human Feedback (RLHF) is increas-
ingly used to align models with human preferences
(Shen et al., 2023b). In multilingual LLMs, multi-
lingual RLHF data are used to train multilingual re-
ward models (Chen et al., 2024). However, RLHF
typically relies on human-annotated data, which
can be expensive and time-consuming to collect,
especially for under-resourced languages. While
these methods can achieve impressive performance,
they can also be computationally expensive and
may not generalize well to unseen languages.

3 Pretraining

We elaborate on the sources and domains of our
pre-training data and the efforts we have made in
the pre-processing stage in Section 3.1. Next, we
discuss the details of our FuxiTranyu architecture
in Section 3.2. We present the strategy we used to
determine which languages should be supported by
the FuxiTranyu series of models in Appendix A,
the details of our tokenizer training in Appendix B,
and the pre-training settings in Appendix C.1.

3.1 Data Collection

The quantity, diversity, and quality of data have
proven the most crucial factors determining the per-
formance of a pre-trained base model (Hoffmann
et al., 2022; Touvron et al., 2023a,b). In pursuit of
these objectives, we collect a substantial volume
of multilingual data to ensure there are enough to-
kens for pre-training, in line with scaling laws. Our
data collection encompasses a broad spectrum of
domains, including public web documents, ency-
clopedic content, reports, books, scientific articles,
and codes. To ensure the quality of the collected

Figure 1: Languages and domains distribution in the
pre-training data of FuxiTranyu.

corpora, we have employed heuristic quality filters,
learned quality filters, and deduplication processes.
The composition of the pre-training data mixture is
illustrated in Figure 1, and we will delve into the
specifics of data collection and pre-processing in
the remaining of this section.

A significant portion of our multilingual data
comprises web documents, a common approach in
open-sourced LLMs (Touvron et al., 2023a; Bai
et al., 2023; Cai et al., 2024; Young et al., 2024).
We opt to utilize CulturaX (Nguyen et al., 2023),
a filtered subset of OSCAR (Ortiz Su’arez et al.,
2020; Suárez et al., 2019) (itself a subset of Com-
mon Crawl) and mC4 (Raffel et al., 2020) datasets.
To improve quality and diversity, we supplement
these with data from ROOTS (Laurençon et al.,
2022), MultiUN (Eisele and Chen, 2010; Chen
and Eisele, 2012), and OpenSubtitles (Lison and
Tiedemann, 2016), focusing on languages in our
language list. Additionally, we incorporate data
from encyclopedias, reports, books, and articles,
drawing inspiration from Phi series models (Gu-
nasekar et al., 2023) that achieve strong results
using high-quality textbooks. We have collected
approximately 500GB of article data from Seman-
tic Scholar (S2ORC) (Lo et al., 2020), and around
10GB of Chinese books from the Fudan Cbook
dataset.4 We also source multilingual book data
from Project Gutenberg, though it forms a small
portion of the final corpus.

Additionally, we collect 535GB of code data
from open-source datasets, primarily from Star-
coder data,5 a subset of the Stack dataset (Kocetkov

4https://github.com/FudanNLPLAB/CBook-150K
5https://huggingface.co/datasets/bigcode/

starcoderdata
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et al., 2022) used to train the StarCoder model (Li
et al., 2023). We also include a subset of Github
code from the RedPajama dataset.6

At the filtering stage, we primarily employ three
methods similar to prior works (Scao et al., 2022a;
Almazrouei et al., 2023; Bai et al., 2023; Young
et al., 2024). The initial filtering phase uses heuris-
tic rules to exclude undesired documents. This
involves filtering out documents containing black-
listed URLs or words, such as stop words or flagged
words. Subsequently, we filter documents based
on statistical information, including the ratio or the
number of repeated n-gram characters or words,
as well as the document length. Following this,
we apply a learned quality filter method based on
specific metrics, such as perplexity. In line with
the approach taken in BLOOM (Scao et al., 2022a),
we utilize KenLM (Heafield, 2011) to compute the
perplexity of the documents and subsequently filter
out those exceeding a predefined threshold.

Upon completion of the quality filter stage, sig-
nificant efforts are dedicated to data deduplica-
tion, as previous studies have emphasized its im-
portance for LLM performance (Lee et al., 2022).
We employ MinHash for fuzzy-match deduplica-
tion. However, due to the memory-intensive nature
of deduplication, processing the entire dataset at
once on a server with limited memory is unfeasi-
ble. Yet, processing only a portion of the data will
not achieve complete deduplication. To address
this challenge, we apply a strategy of multi-turn
micro-deduplication. We split large documents into
chunks and store them in a chunk pool. In each turn,
we randomly select chunks from the pool, assemble
them back into documents, and perform dedupli-
cation on these assembled documents. After pro-
cessing, the deduplicated documents are again split
into chunks and reintegrated into the pool. This
process is repeated multiple times until the number
of filtered-out documents drops below 1%. This ap-
proach is used for high-resource languages, while
low-resource languages are processed in memory
due to their smaller dataset size. In the case of code
data, we also utilize the MinHash algorithm for
data deduplication. Specifically, we leverage the
implementation from the bigcode project.7

6https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T

7https://github.com/bigcode-project/
bigcode-dataset/blob/main/near_deduplication/
minhash_deduplication.py

3.2 Model Architecture

The architecture of FuxiTranyu has been crafted
using a modified GPT-2 style framework, draw-
ing inspiration from successful open-source LLMs
such as BLOOM, LLaMA, and Qwen. Our modifi-
cations are as follows:
• Untied Embeddings. We opt to separate the

weights of the input and output embeddings to
enhance performance, despite the resulting in-
crease in total model parameters and memory
usage.

• Linear Bias. In contrast to prior approaches
(Chowdhery et al., 2022; Touvron et al., 2023a),
we choose not to eliminate the linear bias of the
linear projection layers in self-attention and feed-
forward layers.

• Position Encodings. To extend the model’s abil-
ity to handle long context, we adopt RoPE (Su
et al., 2021), replacing the original absolute or
relative position embedding method utilized in
T5 (Raffel et al., 2020). RoPE has demonstrated
promising results in managing long context situa-
tions and has been widely employed in LLMs
(Touvron et al., 2023a; Inc., 2023; Bai et al.,
2023).

• Normalization. Given the significance of pre-
training stability in training large LMs with a
substantial number of tokens, we implement pre-
normalization due to its superior stability com-
pared to post-normalization (Xiong et al., 2020).
Furthermore, we incorporate the widely used
RMSNorm (Zhang and Sennrich, 2019; Jiang
et al., 2023b) to enhance training efficiency.

• Activation Function. While SwiGLU (Shazeer,
2020) has been a popular choice for activation
functions due to its performance improvements
(Scao et al., 2022b), it introduces an additional
linear function into the activation process, result-
ing in a 50% increase in parameters in the feed-
forward layer. Considering this, we decide to use
the GeLU (Hendrycks and Gimpel, 2016) activa-
tion function. GeLU has been shown to achieve
similar performance to SwiGLU, as reported in
(Scao et al., 2022b).

4 Post-training

To develop a model capable of following instruc-
tions and engaging in conversational interactions
with humans, we have adopted the instruction fine-
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tuning and reinforcement learning (RL) approach
outlined in Ouyang et al. (2022).

During the instruction fine-tuning phase, we cu-
rate a diverse and high-quality open-source instruc-
tion dataset. Given the abundance of instruction-
following datasets that have demonstrated excep-
tional alignment results with various models, man-
ually selecting and fine-tuning the mixture rates for
each dataset becomes a challenging task. Conse-
quently, we opt to designate a primary dataset and
supplement it with additional datasets. In this con-
text, we select the OpenHermes 2.5 data collection
(Teknium, 2023) as our base dataset, which is com-
posed of multiple datasets covering a wide range
of instructions and yielding excellent results when
fine-tuned with Mistral-7B-v0.1. We make modifi-
cations to the original OpenHermes 2.5 dataset by
replacing Airoboros 2.2 with Airoboros 3.2.8 Ad-
ditionally, we incorporate the Aya dataset (Singh
et al., 2024) to enhance the multilingual capabil-
ities of our base model. We filter out the instruc-
tions where language is not included in our pre-
training language list. To bolster the model’s pro-
ficiency in Chinese, we include the COIG-CQIA
(Bai et al., 2024), ruozhiba-gpt4,9 and in-house Chi-
nese multidisciplinary instruction data as supple-
mentary datasets. To enhance math and coding abil-
ities, we use the dart-math-hard (Tong et al., 2024)
and Magicoder-Evol-Instruct 10(Luo et al., 2023)
datasets. The involved languages in the supervised
fine-tuning stage can be found in Appendix C.2.

In the RL training stage, we opt to use DPO
(Rafailov et al., 2023) as our RL algorithm instead
of RLHF (Ouyang et al., 2022; Schulman et al.,
2017), as it requires less GPU memory than RLHF,
which utilizes PPO as the RL algorithm. We use
UltraFeedback (Cui et al., 2023) for the DPO train-
ing, since this dataset focuses on general alignment
ability and has been successfully utilized by Zephyr
(Tunstall et al., 2023) to train the DPO model.

We detail the settings of post-training in Ap-
pendix C.2.

5 Experiments

We conducted extensive experiments to evalu-
ate the capabilities of FuxiTranyu (both the base

8https://huggingface.co/datasets/jondurbin/
airoboros-3.2

9https://huggingface.co/datasets/hfl/ruozhiba_
gpt4

10https://huggingface.co/datasets/ise-uiuc/
Magicoder-Evol-Instruct-110K

model and instruction-tuned models) under the
multilingual setting. We compared FuxiTranyu
against strong baselines, including both English-
centric and multilingual models. For English-
centric models, we used Llama-2 (Llama-2-7B,
Llama-2-chat-7B) (Touvron et al., 2023b) and
Mistral (Mistral-7B-v0.1, Mistral-7B-instruct-v0.1)
(Jiang et al., 2023a) as baseline. For multi-
lingual models, we compared FuxiTranyu with
BLOOM (BLOOM-7B1, BLOOMZ-7B1) (Scao
et al., 2022a; Muennighoff et al., 2022), PolyLM
(PolyLM-13B, PolyLM-MultiAlpaca-13B) (Wei
et al., 2023), and LLaMAX2 (LLaMAX2-7B,
LLaMAX2-7B-Alpaca) (Lu et al., 2024).11 We
used the LM Evaluation Harness framework (Gao
et al., 2023) for all evaluation experiments.

Discriminative Tasks For evaluating discrimina-
tive tasks, we used ARC (Clark et al., 2018), Hel-
laswag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2020), XWinograd (Tikhonov and Ryabinin,
2021), XCOPA (Ponti et al., 2020), and XSto-
ryCloze (Lin et al., 2021) datasets. Specifically
for the multilingual evaluation, we utilized the mul-
tilingual version of ARC, HellaSwag and MMLU
datasets (Lai et al., 2023) and selected 15 languages
for the evaluation (ar, bn, de, en, es, fr, hu, id, it,
pt, ru, sk, ta, vi, zh). For XWinograd, XCOPA,
and XStoryCloze datasets, we utilized all of the
languages provided in the datasets.

Generative Tasks We evaluated the performance
towards generative tasks, especially in translation
and summarization tasks. For the translation task,
we employed WMT14 in en-fr translation direc-
tion (Bojar et al., 2014), WMT16 in en-de and
en-ro translation directions (Bojar et al., 2016) and
IWSLT 2017 (Cettolo et al., 2017) in en-ar transla-
tion direction for measuring the translation perfor-
mance in our models and benchmark models. For
the summarization task, we used XL-Sum (Hasan
et al., 2021) dataset. We selected 15 languages for
the evaluation (ar, en, es, fr, gu, hi, id, mr, pt, ru, sr,
ta, uk, vi, zh).

5.1 Base Model Evaluation

First, we report the experiment results of our base
models vs. baseline models. We focus on evaluat-
ing the capabilities of LLMs towards discrimina-
tive tasks. Evaluation results are shown in Table 2.

11LLaMAX series models are continual pre-trained on the
Llama-2 model to support beyond 100 languages.
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Models m-ARC m-Hellaswag m-MMLU XWinograd XCOPA XStoryCloze
(25-shot) (10-shot) (5-xhot) (5-shot) (0-shot) (0-shot)

Llama-2-7B 35.5 48.6 35.4 78.0 58.9 55.6
Mistral-7B-v0.1 40.7 54.5 46.7 80.5 55.8 57.2

BLOOM-7B1 31.8 43.4 27.1 70.0 56.9 58.2
PolyLM-13B 30.6 46.0 26.4 73.4 58.9 56.4

LLaMAX2-7B 33.1 50.3 26.7 76.9 54.5 58.8

FuxiTranyu-8B 32.7 51.8 26.6 76.1 60.5 58.9

Table 2: Average performance of FuxiTranyu-8B base model compared to BLOOM-7B1, PolyLM-13B, Llama-2-7B,
Mistral-7B-v0.1, and LLaMAX2-7B on mutlilingual discriminative and generative tasks.

Models m-ARC m-Hellaswag m-MMLU XWinograd XCOPA XStoryCloze Translation Summarization
(25-shot) (10-shot) (5-shot) (5-shot) (0-shot) (0-shot) (BLEU, 0-shot) (ROUGE, 0-shot)

Llama-2-Chat-7B 36.4 46.3 36.0 74.8 55.9 56.5 22.1 4.6
Mistral-7B-Instruct-v0.1 36.3 45.5 39.0 74.0 54.5 53.4 19.1 2.2

BLOOMZ-7B1 31.2 38.0 25.8 64.0 53.3 49.8 14.7 4.4
PolyLM-MultiAlpaca-13B 28.6 39.1 25.9 70.9 59.9 57.0 - -

LLaMAX2-Alpaca-7B 38.7 52.5 35.4 77.4 56.6 62.0 29.1 0.3

FuxiTranyu-8B-SFT 32.8 49.2 26.9 74.7 61.2 57.4 28.3 9.2
FuxiTranyu-8B-DPO 34.2 47.9 27.4 69.1 61.8 57.6 26.8 7.1

Table 3: Average performance of FuxiTranyu-8B instruct and chat models compared to BLOOMZ-7B1, Llama-2-
Chat-7B, and Mistral-7B-Instruct-v0.1 on mutlilingual discriminative and generative tasks.

Our model achieves the best performance on the
XCOPA and XStoryCloze tasks. For other tasks,
our model is significantly better than multilingual
models like BLOOM-7B and PolyLM-13B. When
compared to LLaMAX2-7B, the evaluation results
of our model are almost comparable, with no sig-
nificant difference from the evaluation results of
LLaMAX2-7B. But compared with English-centric
models, our model is still worse than Llama-2-7B
and Mistral-7B-v0.1 due to the limited training data
used for English.

5.2 Instruction-Tuned Model Evaluation

We further compared our instruction-tuned models
with other instruction-tuned models. We evaluated
these models on both discriminative and generative
tasks. Results are shown in Table 3. On discrim-
inative tasks, our models achieve the best result
on XCOPA. For m-Hellaswag, XWinograd, and
XStoryCloze, our models outperform the English-
centric models but slightly underperform the mul-
tilingual models compared with LLaMAX2-7B.
Our models still underperform in m-ARC and m-
MMLU tasks due to the limited training data used.

In generative tasks, our models excel on the sum-
marization task, outperforming all baseline models.
For the translation task, our models outperform the
English-centric models but slightly underperform
the multilingual model like LLaMAX2-Alpaca-7B.

More details of our evaluations are discussed in
Appendix D, where we report the results for each
language tested.

6 Analysis and Interpretability

We further conducted an interpretability analysis of
FuxiTranyu to provide a deep understanding of the
underlying mechanisms driving its multilingual ca-
pabilities. To ensure a comprehensive analysis and
consistency with prior research, we investigated
our models from both the neuron (Wu et al., 2023;
Shi et al., 2024; Leng and Xiong, 2024; Zhang
et al., 2024; Tang et al., 2024; Liu et al., 2024;
Kojima et al., 2024) and representation (Conneau
et al., 2020; Tiyajamorn et al., 2021; Chang et al.,
2022; Rajaee and Pilehvar, 2022; Xu et al., 2023;
Dong et al., 2024; Xie et al., 2024) perspectives.
Specifically, our neuron analysis explores the im-
portance of different neurons to the multilingual
abilities of the model, while the representation anal-
ysis examines the characteristics of multilingual
representations learned by the model. Here, we
first introduce the details and results of our neu-
ron analysis, while the representation analysis is
discussed in Appendix E.1.

6.1 Neuron Analysis

Neurons in a neural network are the basic compu-
tational units of the model. Different inputs may
fire neurons in different regions, leading to varied
outputs. This computational process can be un-
derstood from another perspective: different sets
of neurons in the model hold varying degrees of
importance for the inputs, thus producing differ-
ent responses and outputs. To better understand

1504



why models generate specific outputs for specific
inputs in a multilingual context, we aim to reveal
the model’s internal mechanisms by evaluating the
importance of neurons. Specifically, we assess the
importance of different neurons for various linguis-
tic inputs to determine which neurons play a key
role in processing particular languages.

We draw on the approach of assessing parame-
ter sensitivity in model pruning, where the basic
idea is that a parameter is considered sensitive or
important if removing it, by setting the represen-
tation produced by that parameter to zero, signifi-
cantly affects the loss function (Zhang et al., 2024).
Specifically, the model can be represented as a pa-
rameter set θ = [θ1,θ2, . . . ,θn], where θi ∈ Rd

is the i-th neuron in the model. Let hi denote the
representation produced by neuron θi. The impor-
tance of neuron θi, denoted as Φ(i), is defined as
the change in the loss function L before and after
setting representation hi to zero. Formally, Φ(i)
can be estimated as follows:

Φ(i) = |∆L(hi)| = |L (H,hi = 0)− L (H,hi)|
(1)

where H is the representation produced by a neuron
other than θi in the same structure as the θi.

Calculating the importance of each neuron in the
model using the aforementioned method is very
time-consuming, as it requires traversing each neu-
ron. However, based on prior studies, we can sim-
plify these calculations using a Taylor expansion,
as shown in Equation (2):

Φ(i) = |L(H,hi = 0)− (L(H,hi = 0)

+
∂L(H,hi)

∂hi
hi +R1(hi))|

(2)

After ignoring the term R1(hi), the neuron
importance evaluation function is simplified to
∂L(H,hi)

∂hi
hi, which is the product of the gradient

and the representation. This enables parallel com-
putation of each neuron’s importance.

Furthermore, to measure the significance of a
specific parameter set α = [θl,θl+1, . . . ,θk] ⊆ θ,
we compute the importance of each neuron in the
set using the following equation:

Φ(α) =
k∑

i=l

Φ(i) (3)

where Φ(α) denotes the importance of the pa-
rameter set α. The set α can represent a com-
ponent or a layer of the model, with the neuron
indices in α generally being continuous.

6.2 Neuron Analysis Setup

We chose the Flores-200 dataset (Costa-jussà et al.,
2022) to evaluate the importance of neurons. By
selecting the languages ar, bn, es, fr, id, pt, ta,
vi, zh, en, de, hu, it, ru, and sk, we analyzed the
significance of different model components and
layers in response to various linguistic inputs.

6.3 Neuron Analysis Results

We analyzed the varying importance of different
layers across diverse language inputs, as shown in
Figure 4 (Appendix E.2). Our findings indicate that
universally, shallow layers exhibit low significance
while deep layers demonstrate great importance.
Notably, languages such as bn and ta exhibit a
notably diminished importance in deep layers com-
pared to others, aligning with our evaluation results
where these languages perform poorly. This dis-
crepancy may stem from their relatively limited
representation learning in the pre-training data.

We then analyzed the significance of various
components across different language inputs, de-
picted in Figure 5 (Appendix E.2), with 8 com-
ponents per layer. Our findings mirror previous
conclusions: components in shallow layers exhibit
low importance, whereas those in deep layers show
high significance. Moreover, a more detailed obser-
vation reveals that MLP components hold greater
importance in shallow layers, whereas attention
components are more critical in deep layers.

7 Conclusion

In this paper, we have presented FuxiTranyu to ad-
dress the need for open-source multilingual LLMs.
Along with the base model, FuxiTranyu-8B, we
also present instruction-tuned models fine-tuned
on multilingual supervised fine-tuning and prefer-
ence data, FuxiTranyu-8B-SFT and FuxiTranyu-
8B-DPO. Evaluations on multilingual benchmarks
show FuxiTranyu outperforms previous multilin-
gual and monolingual LLMs. Furthermore, inter-
pretability analyses underscore the efficacy of the
multilingual capabilities embedded in FuxiTranyu.
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A Supported Languages in FuxiTranyu

Our language selection strategy primarily stems
from two distinct perspectives: the availability of
pre-training data and geographical considerations.
We initially approach language selection from the
perspective of available pre-training data. Given
that the majority of our pre-training data is sourced
from web documents, e.g., CulturaX, we determine
the languages for pre-training FuxiTranyu based
on the statistical information derived from Cul-
turaX. We select the top 21 languages based on
the number of available tokens in descending order.
Subsequently, we manually incorporate Asian lan-
guages, encompassing those from Southeast Asia,
West Asia, and Central Asia, resulting in a total of
43 languages. The complete list can be found in
Table 4.

In terms of programming languages, we initially
consider all 13 languages included in BLOOM
(Scao et al., 2022a), such as Java, JavaScript, and
Python. Additionally, we include three program-
ming languages (SQL, Assembly, and Visual Ba-
sic) due to their high popularity, as indicated by the
TIOBE index.12 The complete list of programming
languages is provided in Table 5.

B Tokenization

We implement the Byte-level Byte-Pair Encoding
(BBPE) algorithm using the Hugging Face tok-
enizer library. Our tokenizer is initiated from GPT-
2’s tokenizer, incorporating both pre-tokenization
and post-tokenization processes. Notably, we opt
not to split numbers into digits. In line with the
approach outlined in BLOOM (Scao et al., 2022a),
we expand the vocabulary size to 250,680 to accom-
modate multilingual scenarios, thereby mitigating
the risk of over-segmentation in low-resource lan-
guages.

For training the tokenizer, we randomly sam-
ple 1 million documents for each language from
our collected data. It’s worth noting that for lan-
guages with a total document count being less than
1 million, we utilize all available documents in the
training data for the tokenizer.

Following the approach used in BLOOM, we
also evaluate the performance of our tokenizer us-
ing the fertility metric. To assess its efficacy, we
conduct a comparative analysis with the Llama-2
and BLOOM tokenizers. This evaluation involves

12https://www.tiobe.com/tiobe-index/

computing fertility on the same set of documents
across different languages. Results are presented
in Figure 2, which indicate that the FuxiTranyu
tokenizer is more efficient than the others in most
languages. Based on our evaluations and inter-
pretability analysis, we believe that the fertility of
the tokenizer positively correlates with the model’s
performance in specific languages. In the fertility
test, we observe that Bengali (bn), Hindi (hi), and
Tamil (ta) exhibit high fertility, indicating lower to-
kenization efficiency in these languages compared
to others. Consequently, the performance and im-
portance of neurons of these languages in our base
model are also suboptimal. Further details are dis-
cussed in Section 6.3.

C Training Details

C.1 Pre-training Details

The training procedure for the FuxiTranyu model
adheres to the standard autoregressive language
model framework, utilizing the next-token predic-
tion loss as detailed in (Brown et al., 2020). To
enhance pre-training efficiency, we employ a doc-
ument packing method similar to that described
in (Raffel et al., 2020). This involves randomly
shuffling documents, merging them, and then trun-
cating them into multilingual chunks that adhere to
a maximum context length of 4096 tokens during
the pre-training phase.

To mitigate memory consumption and further
improve training efficiency, we leverage ZeRO-2
(Rajbhandari et al., 2020) and Flash-Attention V2
(Dao, 2024) technologies. For optimization, the
standard AdamW optimizer (Loshchilov and Hut-
ter, 2017) is utilized with hyper-parameters set to
β1 = 0.9, β2 = 0.95, and ϵ = 10−8. We employ
the cosine learning rate scheduler, starting with a
maximum learning rate of 3e-4 and decaying to a
minimum of 10% of the maximum rate. Notably,
after encountering divergence issues when training
approximately 241 billion tokens, we reduced the
maximum learning rate to 1e-4 to match with the
learning rate used in BLOOM, given the multilin-
gual context of both models.

Our FuxiTranyu-8B model is trained using the
Megatron-LM (Shoeybi et al., 2019) framework
on a setup of 32 A800 GPUs, processing a total
of 606 billion tokens. The training utilizes FP16
mixed precision to ensure stability. Detailed train-
ing parameters and configurations are provided in
Table 6.
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ISO-931 Language Language Family ISO-931 Language Language Family

ar Arabic Afro-Asiatic ky Kyrgyz Turkic
bg Bulgarian Indo-European lo Lao Kra-Dai
bn Bengali Indo-European ms Malay Austronesian
ca Catalan Indo-European my Burmese Sino-Tibetan
cs Czech Indo-European nl Dutch Indo-European
de German Indo-European pl Polish Indo-European
el Greek Indo-European pt Portuguese Indo-European
en English Indo-European ro Romanian Indo-European
es Spanish Indo-European ru Russian Indo-European
fa Persian Indo-European sv Swedish Indo-European
fi Finnish Uralic ta Tamil Dravidian
fr French Indo-European tg Tajik Indo-European
he Hebrew Afro-Asiatic th Thai Kra-Dai
hi Hindi Indo-European tk Turkmen Turkic
hu Hungarian Indo-European tl Filipino Austronesian
id Indonesia Austronesian tr Turkish Turkic
it Italian Indo-European uk Ukrainian Indo-European
ja Japanese Japanic ur Urdu Indo-European
kk Kazakh Turkic uz Uzbek Turkic
km Khmer Austroasiatic vi Vietnamese Austroasiatic
ko Korean Koreanic zh Chinese Sino-Tibetan
ku Kurdish Indo-European

Table 4: The list of 43 natural languages supported by FuxiTranyu.

Language Size (GB) Ratio (%) Language Size (GB) Ratio (%)

Java 96 17.94 Go 26 4.86
JavaScript 70 13.08 SQL 11 2.06
Python 63 11.77 Rust 9.1 1.70
PHP 59 11.02 Ruby 7.9 1.48
C 53 9.90 Scala 5.1 0.95
C++ 52 9.72 Lua 3.0 0.56
C# 48 8,97 Assembly 1.6 0.30
TypeScript 29 5.42 Visual Basic 1.5 0.28

Table 5: The list of 16 programming languages covered in FuxiTranyu, including the sizes and ratios of each
language.

C.2 Post-Training Details

The instruction datasets collected do not cover all
languages used during pre-training. For the current
version of FuxiTranyu, we provide support for the
following languages: Arabic, Bengali, Burmese,
Chinese, Dutch, English, Filipino, Finnish, French,
German, Greek, Hindi, Hungarian, Indonesian, Ital-
ian, Japanese, Korean, Kyrgyz, Malay, Persian, Pol-
ish, Portuguese, Russian, Spanish, Swedish, Tamil,
Thai, Turkish, Ukrainian, Urdu, and Vietnamese.

During the instruction tuning phase, we executed
the fine-tuning process on 8 A800 80GB GPUs,
leveraging the TRL framework for instruction fine-
tuning and DPO training. Throughout both stages,
we employed the ChatML format13 for the chat
template, and designated <PAD> as the pad token.
We used AdamW (Loshchilov and Hutter, 2017)

13https://github.com/openai/openai-python/blob/
release-v0.28.0/chatml.md

optimizer, complemented by a cosine learning rate
scheduler. The maximum sequence length was set
to 4096 for both stages.

In the SFT stage, we configured the maximum
learning rate to 2e-5, with a warmup phase span-
ning 10% of the total steps. The global batch size
was set to 512, and the model was trained for 2
epochs. To optimize memory usage, we enabled
Flash-Attention V2 (Dao, 2024), ZeRO stage 2
(Rajbhandari et al., 2020), and gradient checkpoint-
ing. Additionally, we employed NEFTune (Jain
et al., 2023), which introduces noise to embedding
weights to enhance the final performance of our
instruction-tuned model.

In the subsequent DPO training stage, we ad-
hered to the latest hyper-parameters specified for
reproducing the results of Zephyr, as provided by
the alignment-handbook.14 The beta value for DPO

14alignment_handbook2023
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Figure 2: Fertility test results of the tokenizers for FuxiTranyu, Llama-2, and BLOOM.

Pre-Training SFT DPO

# Params 8B Learning Rate 2e-5 Learning Rate 5e-7
Hidden Size 4,096 Warmup Ratio 10% Warmup Ratio 10%
Intermediate Size 16,384 Batch Size 512 Batch Size 512
Heads 32 Epochs 2 Epochs 1
Layers 30 NEFTune ✓ beta 0.01
FlashAttn V2 ✓ FlashAttn V2 ✓ FlashAttn V2 ✓
Training Tokens 606B # Instances 1M # Instances 61.1k
Position Embed 4,096
Vocab Size 250,752
Learning Rate 3e-4 → 1e-4
Batch Size 2M → 4M
Context Length 4,096

Table 6: Model size and hyper-parameters. We append 72 dummy tokens to the vocabulary to make the embedding
size be divisible by 128.

was set to 0.01, and the training took 1 epoch on
UltraFeedback. The maximum learning rate was
set to 5e-7, with a warmup phase covering 10% of
the total training steps. Similar to the SFT stage,
the global batch size was maintained at 512, and we
activated Flash-Attention V2 and gradient check-
pointing to optimize memory usage. To accommo-
date the policy and reference model within memory
constraints, we utilized ZeRO stage 3 for the policy
model and omitted ZeRO for the reference model.

D Detailed Evaluation Results

We provide detailed evaluation results for each lan-
guage in this section. First, we present the results
for all 15 tested languages on the multilingual ARC
in Table 7, comparing base models and instruction-
tuned models. In base models, the results show that
our models perform better in 1 of the 15 tested lan-

guages for the ARC task. In instruction-tuned mod-
els, our models outperforms in ar and vi languages.
We speculate that our models still underperformed
on this task due to the relatively small amount of
training data used.

Next, we present the results for all 15 tested lan-
guages on multilingual HellaSwag in Table 8, com-
paring base models and instruction-tuned models.
Despite our FuxiTranyu-8B model being trained
on only about 600B tokens, it achieves remark-
able performance. Comparing base models, our
models outperforms other models in ar, bn, hu,
and vi languages. Our model still lag behind com-
pared with Mistral-7B-v0.1, but outperform other
baseline models, except sk language. The SFT
and RL-trained models, FuxiTranyu-8B-SFT and
FuxiTranyu-8B-DPO, also deliver promising re-
sults across all languages, even competing with
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powerful monolingual LLMs like Llama-2-7B and
Mistral-7B-v0.1, with English and Spanish as an
exception.

We report results on multilingual MMLU in Ta-
ble 9. Our models still underperform baseline mod-
els for all languages. It is in line with the number of
training tokens utilized in the pre-training process.

Results on XWinograd are depicted in Table 10.
In base models, although our models still underper-
formed compared to Mistral-7B-v0.1, they outper-
forms previous multilingual LLMs like BLOOM-
7B1 and PolyLM-13B across all languages. No-
tably, our FuxiTranyu SFT and DPO models
achieve better results in Chinese.

Results on XCOPA and XStoryCloze are shown
in Table 11 and Table 12. For XCOPA, our base
models achieve better results in sw, ta, tr, and vi.
When compared to instruction-tuned models, our
models achieve better results in more languages,
specifically in it, ta, th, tr, and vi. On the XSto-
ryCloze task, our base models achieve better results
in three languages: ar, my, and ru. However, for
instruction-tuned models, our models outperform
other baseline models only in my.

We present our evaluation results for generative
tasks in Table 13 and Table 14. On the XL-Sum
task, our models significantly outperform all base-
line models across all evaluated languages, demon-
strating the potential of our models on summa-
rization task, particularly in a multilingual context.
For the translation tasks in WMT14, WMT16, and
IWSLT2017, our models excel in the en-ro and en-
de translation directions. However, they still lag
behind other baseline models in the ro-en, de-en,
fr-en, ar-en, and en-ar translation directions. This
indicates that our models perform significantly bet-
ter for out-of-English translation directions. Al-
though our models underperformed in the en-fr and
en-ar directions compared to LLaMAX2-Alpaca,
they still achieve notably better results than other
models.

E Additional Analysis and
Interpretability

E.1 Representation Analysis

Language models encode textual symbols into high-
dimensional representations with rich semantic in-
formation. For a multilingual language model, due
to parameter sharing mechanisms, it encodes tex-
tual symbols from different languages into a uni-
fied representation space. Furthermore, through

multilingual joint training, the model learns multi-
lingual representations, which encode the intrinsic
characteristics of languages and the relationships
between different languages. Here, we explore the
multilingual characteristics of the model from the
perspective of the multilingual representations it
learns. Specifically, we calculate the similarity of
representations across different languages.

To quantitatively evaluate the similarity between
different language representations, we choose co-
sine similarity for its simplicity and effectiveness.
To mitigate the impact of semantic differences on
our analysis, we collect multilingual text data from
open-source parallel corpora. For a language l, we
input its corresponding text data into the model and
collect text representations from the last token of
each respective text. We then compute the average
of these text representations to obtain the language
representation vl for language l. Finally, we calcu-
late the similarity between two language represen-
tations as sim(l1, l2) =

v⊤
1 v2

∥v1∥∥v2∥ . It’s important to
note that we extract language representations and
compute similarity across each layer of the model.

E.1.1 Analysis Setup
We selected the Flores-200 dataset (Costa-jussà
et al., 2022) as our parallel data source, which in-
cludes 2009 sentences for each language. For the
explored languages, we chose en, zh, de, fr, es, ru,
it, pt, nl, pl, ja, vi, cs, tr, hu, el, sv, ro, uk, and
hi, based on their highest language proportions in
our pre-training data. For comparison, we also ana-
lyzed the BLOOM-7B1 model (Scao et al., 2022a).
For this model, we considered en, zh, fr, es, ru, pt,
nl, pl, ja, vi, cs, tr, hu, el, sv, ro, uk, hi, fi, and th.

E.1.2 Results
Figure 3 illustrates the similarities distribution of
multilingual representations in the intermediate lay-
ers of two models, with languages ordered accord-
ing to the amount of language resources. It is ap-
parent that for the BLOOM-7B, lower multilingual
representation similarities tend to occur between
the top 10 languages with higher resource avail-
ability and the bottom 10 languages with lower
resource availability. In contrast, our model learn
more consistent multilingual representations for all
the languages we explored. This indicates that our
model possesses a higher degree of multilingual
balance, which is also reflected in our multilingual
evaluation results and pre-training corpus.

Furthermore, we calculate the average similar-
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Figure 3: Similarity distribution of multilingual representations in the intermediate layers of BLOOM-7B1 and
FuxiTranyu-8B, with languages sorted based on their percentages in the pre-training data.

ity for each layer of the two models, as shown in
Figure 6 (Appendix E.2). For our model, it can be
observed that there is a significant increase in simi-
larity from the embedding layer to layer 0, reach-
ing a very high level. As the depth of the model
increases, the similarity continues to rise, indicat-
ing that the model learns richer multilingual align-
ment information in these layers. Subsequently,
there is a sharp decrease in similarity from layer
28 to layer 29, suggesting that language-specific
multilingual representations in the final layer are
learned to predict the diverse multilingual vocab-
ulary. For BLOOM-7B1, the trend of similarity
changes across layers is similar, initially increas-
ing and then decreasing, but the changes are more
gradual in magnitude.

E.2 Detailed Analysis Results
We present the varying importance of different lay-
ers across diverse language inputs in Figure 4. Fig-
ure 5 shows the significance of various compo-
nents across different language inputs, with 8 com-
ponents per layer. Furthermore, we calculate the
average similarity of multilingual representations
across model layers, as shown in Figure 6.
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Figure 4: Importance of model layers across various language settings.
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Figure 5: Importance of model components across various language settings.

Figure 6: Averaged similarity distribution of multilingual representations for each layer of BLOOM-7B1 and
FuxiTranyu-8B, with “emb” denoting the embedding layer.
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Models ar bn de en es fr hu id

Base Model

Llama-2-7B 24.9 24.2 37.0 52.5 42.1 43.1 31.7 36.1
Mistral-7B-v0.1 30.5 23.4 43.1 60.0 52.5 47.7 38.7 39.0
BLOOM-7B1 31.4 26.2 27.3 40.0 38.1 36.7 25.9 36.0
PolyLM-13B 27.3 22.4 32.8 41.8 33.2 32.7 23.6 32.8

LLaMAX2-7B 24.4 24.1 35.1 48.7 38.7 38.8 31.6 31.4
FuxiTranyu-8B 31.5 25.8 36.0 38.3 35.3 35.5 32.0 33.3

Instruction-tuned Model

Llama-2-Chat-7B 26.2 23.9 39.8 53.6 43.0 42.5 32.4 35.4
Mistral-7B-Instruct-v0.1 23.3 24.3 42.5 49.7 45.2 46.5 34.1 30.0

BLOOMZ-7B1 31.2 26.2 25.4 42.7 37.2 37.6 22.8 35.9
PolyLM-MultiAlpaca-13B 27.4 18.4 30.5 38.2 32.9 32.8 18.6 30.2

LLaMAX2-7B-Alpaca 32.4 27.9 42.2 53.5 45.9 44.2 35.6 38.6
FuxiTranyu-8B-SFT 31.1 26.3 33.9 38.9 35.4 36.3 31.5 35.1
FuxiTranyu-8B-DPO 33.3 27.4 35.1 39.3 38.0 37.0 33.7 36.9

Models it pt ru sk ta vi zh

Base Model

Llama-2-7B 40.7 41.8 36.9 29.5 25.0 30.7 36.2
Mistral-7B-v0.1 49.9 47.2 42.1 37.1 25.9 31.3 42.8
BLOOM-7B1 29.0 38.6 27.5 24.9 24.2 33.7 37.3
PolyLM-13B 32.0 34.0 32.8 23.3 25.8 29.2 34.9

LLaMAX2-7B 36.5 37.4 33.6 30.8 24.1 28.7 32.6
FuxiTranyu-8B 34.1 36.3 34.7 27.1 24.1 32.4 34.9

Instruction-tuned Model

Llama-2-Chat-7B 41.5 43.3 39.9 29.6 26.9 31.5 37.1
Mistral-7B-Instruct-v0.1 43.3 45.0 39.5 31.1 25.8 26.8 37.7

BLOOMZ-7B1 27.5 38.7 25.5 22.5 24.2 33.5 37.0
PolyLM-MultiAlpaca-13B 32.6 32.7 32.5 20.3 20.5 28.8 32.5

LLaMAX2-7B-Alpaca 42.8 42.7 39.4 36.4 25.5 33.7 39.2
FuxiTranyu-8B-SFT 33.6 35.2 32.2 29.0 23.5 32.5 36.8
FuxiTranyu-8B-DPO 36.8 37.1 33.8 29.1 25.1 33.7 37.4

Table 7: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B, PolyLM-
13B, and LLaMAX2-7B models on multilingual ARC (25-shot).
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Models ar bn de en es fr hu id

Base Model

Llama-2-7B 33.7 28.7 54.0 78.9 60.4 59.1 40.7 48.5
Mistral-7B-v0.1 40.9 31.1 61.1 83.4 67.3 66.5 47.9 53.2
BLOOM-7B1 43.3 32.8 32.4 62.1 56.7 56.6 30.1 49.5
PolyLM-13B 39.6 28.4 49.5 71.3 55.8 54.8 29.3 50.1

LLaMAX2-7B 43.3 32.3 53.8 75.4 59.0 58.1 44.1 51.0
FuxiTranyu-8B 46.7 33.0 56.2 69.2 60.9 60.8 48.2 52.7

Instruction-tuned Model

Llama-2-Chat-7B 31.4 28.3 50.7 78.6 58.1 57.0 39.0 44.5
Mistral-7B-Instruct-v0.1 31.2 28.7 52.2 70.1 58.1 57.6 39.8 38.1

BLOOMZ-7B1 39.5 31.5 33.1 46.6 48.7 45.7 29.8 42.0
PolyLM-MultiAlpaca-13B 34.0 25.7 40.7 66.0 43.5 43.1 26.7 40.0

LLaMAX2-7B-Alpaca 44.7 33.4 56.8 77.3 62.3 61.4 45.9 53.2
FuxiTranyu-8B-SFT 45.1 31.9 53.4 64.9 57.5 57.9 45.1 49.2
FuxiTranyu-8B-DPO 45.2 33.1 51.4 57.1 55.0 55.2 45.5 48.7

Models it pt ru sk ta vi zh

Base Model

Llama-2-7B 56.0 56.7 49.9 39.2 28.4 45.7 48.7
Mistral-7B-v0.1 63.0 65.1 58.2 46.6 29.0 47.1 57.2
BLOOM-7B1 40.8 56.0 32.5 29.8 29.4 48.3 51.2
PolyLM-13B 51.4 53.7 48.7 30.1 28.0 46.8 52.0

LLaMAX2-7B 56.1 56.8 51.1 47.8 30.0 47.2 49.3
FuxiTranyu-8B 58.4 59.3 54.4 43.7 29.9 51.3 52.9

Instruction-tuned Model

Llama-2-Chat-7B 53.7 54.0 47.6 36.4 28.8 41.2 45.1
Mistral-7B-Instruct-v0.1 54.6 55.8 49.6 37.4 27.7 36.1 45.9

BLOOMZ-7B1 40.3 37.3 33.1 29.6 29.5 40.6 42.6
PolyLM-MultiAlpaca-13B 40.8 42.4 40.0 27.1 25.2 38.2 53.5

LLaMAX2-7B-Alpaca 58.7 59.4 53.5 50.3 30.0 49.3 51.9
FuxiTranyu-8B-SFT 55.2 55.9 51.2 41.1 29.5 48.7 51.3
FuxiTranyu-8B-DPO 52.9 54.7 51.0 41.1 29.9 48.7 49.3

Table 8: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B, PolyLM-
13B, and LLaMAX2-7B models on multilingual HellaSwag (10-shot).
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Models ar bn de en es fr hu id

Base Model

Llama-2-7B 29.0 27.5 38.8 46.0 39.9 39.6 33.3 37.0
Mistral-7B-v0.1 35.8 32.2 51.7 60.7 53.7 53.5 46.8 46.9
BLOOM-7B1 27.5 28.2 28.1 25.3 28.9 27.4 26.9 26.9
PolyLM-13B 26.7 26.3 26.1 27.2 26.9 27.2 26.4 24.9

LLaMAX2-7B 25.5 26.2 27.0 28.3 27.0 26.7 26.9 26.8
FuxiTranyu-8B 26.3 25.5 27.6 27.1 27.1 27.5 26.4 26.2

Instruction-tuned Model

Llama-2-Chat-7B 28.5 27.0 39.5 47.4 40.8 40.3 34.9 35.8
Mistral-7B-Instruct-v0.1 29.9 29.2 42.2 51.9 44.3 44.0 39.3 36.5

BLOOMZ-7B1 24.4 25.9 25.6 22.7 27.1 27.7 26.1 26.3
PolyLM-MultiAlpaca-13B 25.9 26.6 26.2 25.9 26.5 26.3 25.2 25.4

LLaMAX2-7B-Alpaca 30.0 30.4 36.4 43.0 37.2 36.9 47.6 35.5
FuxiTranyu-8B-SFT 26.2 26.8 27.5 28.2 28.1 27.6 26.0 25.9
FuxiTranyu-8B-DPO 27.3 27.8 27.7 28.2 27.9 27.3 26.8 26.6

Models it pt ru sk ta vi zh

Base Model

Llama-2-7B 38.5 38.7 35.7 33.1 27.2 32.8 33.9
Mistral-7B-v0.1 52.7 53.4 49.8 45.4 29.7 41.5 46.0
BLOOM-7B1 25.7 25.3 26.2 26.1 26.6 28.1 29.1
PolyLM-13B 27.5 24.5 26.3 27.4 26.4 25.3 26.8

LLaMAX2-7B 27.0 26.9 27.0 26.6 26.2 26.8 26.1
FuxiTranyu-8B 27.1 26.8 27.7 26.0 26.3 26.3 26.0

Instruction-tuned Model

Llama-2-Chat-7B 39.7 40.2 36.8 33.7 27.0 32.7 35.2
Mistral-7B-Instruct-v0.1 42.5 43.4 41.6 37.8 27.7 34.0 40.1

BLOOMZ-7B1 25.8 22.8 25.4 26.3 26.7 26.3 27.2
PolyLM-MultiAlpaca-13B 25.9 26.2 26.2 25.5 25.5 25.7 26.1

LLaMAX2-7B-Alpaca 37.5 35.7 32.6 33.0 28.4 33.6 33.4
FuxiTranyu-8B-SFT 26.2 25.9 27.9 26.6 27.0 26.4 26.8
FuxiTranyu-8B-DPO 28.6 27.1 28.2 26.7 26.8 26.7 28.0

Table 9: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B, PolyLM-
13B, and LLaMAX2-7B models on multilingual MMLU (5-shot).
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Models fr pt zh en ru jp

Base

Llama-2-7B 81.9 74.9 74.4 90.4 72.1 74.0
Mistral-7B-v0.1 81.9 80.6 80.0 90.6 72.4 77.5
BLOOM-7B1 71.1 76.8 74.4 82.2 56.8 58.5
PolyLM-13B 73.5 74.9 76.6 84.6 65.1 65.7
LLaMAX-7B 77.1 76.8 75.4 87.8 69.8 74.4

FuxiTranyu-8B 78.3 77.2 76.8 85.4 66.4 72.4

Instruction-tuned Model

Llama-2-Chat-7B 79.5 71.9 62.9 88.3 67.6 70.7
Mistral-7B-Instruct-v0.1 77.1 71.5 74.0 89.8 70.5 67.5

BLOOMZ-7B1 68.7 65.4 71.0 83.5 53.7 56.4
PolyLM-MultiAlpaca-13B 71.1 72.2 73.6 83.9 67.9 65.2

LLaMAX-7B-Alpaca 81.9 76.8 72.2 88.3 71.8 73.7
FuxiTranyu-8B-SFT 75.9 76.4 75.2 83.7 68.3 68.7
FuxiTranyu-8B-DPO 77.1 67.3 66.7 73.9 62.9 66.5

Table 10: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B1,
PolyLM-13B, and LLaMAX2-7B models on XWinograd (5-shot).

Models et ht it id qu sw ta th tr vi zh

Base

Llama-2-7B 48.6 50.6 65.8 62.4 51.4 52.2 53.4 56.4 54.8 63.0 65.0
Mistral-7B-v0.1 47.0 51.4 65.8 58.2 48.6 51.2 53.8 57.0 56.8 58.8 65.2
BLOOM-7B1 48.2 50.8 52.8 69.8 50.8 51.6 59.2 55.4 51.2 70.8 65.2
PolyLM-13B 49.8 50.4 66.0 70.2 50.4 51.8 55.0 58.6 57.8 70.8 67.0
LLaMAX-7B 49.2 52.6 52.6 53.8 51.4 54.0 58.0 57.2 53.0 53.0 63.4

FuxiTranyu-8B 49.2 51.2 71.4 69.6 49.6 55.4 60.0 58.0 62.4 72.8 65.8

Instruction-tuned Model

Llama-2-Chat-7B 47.8 51.4 67.0 62.4 50.8 52.2 50.6 54.8 55.6 61.6 61.2
Mistral-7B-Instruct-v0.1 48.2 51.2 65.4 54.0 49.2 54.6 55.2 53.2 52.2 53.2 63.4

BLOOMZ-7B1 49.2 51.4 51.8 58.2 52.2 53.2 54.6 54.4 53.0 55.8 52.8
PolyLM-MultiAlpaca-13B 47.8 50.4 65.0 70.0 51.0 52.4 55.6 59.0 59.8 73.4 74.8

LLaMAX-7B-Alpaca 51.2 54.2 61.0 57.2 52.4 55.0 57.0 56.4 55.4 55.4 67.6
FuxiTranyu-8B-SFT 49.4 51.8 71.6 66.8 50.6 53.0 62.0 60.8 63.6 73.6 69.6
FuxiTranyu-8B-DPO 49.6 51.2 75.6 69.2 48.6 52.6 63.0 59.0 65.6 74.6 70.6

Table 11: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B1,
PolyLM-13B, and LLaMAX2-7B models on XCOPA (0-shot).
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Models ar es eu hi id my ru sw te zh

Base

Llama-2-7B 49.6 67.4 50.4 53.7 59.3 48.1 62.9 50.5 54.3 59.5
Mistral-7B-v0.1 53.1 69.0 51.2 55.4 59.2 48.7 66.7 51.6 54.1 63.3
BLOOM-7B1 58.6 66.1 57.2 60.6 64.5 49.0 52.7 53.9 57.4 61.9
PolyLM-13B 56.5 65.6 51.6 48.8 63.9 47.3 64.1 49.3 53.7 63.3

LLaMAX2-7B 58.8 65.3 54.5 58.2 60.6 52.2 61.2 57.2 59.3 60.8
FuxiTranyu-8B 59.2 66.1 52.1 59.4 63.8 56.9 67.6 49.0 52.5 62.1

Instruction-tuned Model

Llama-2-Chat-7B 50.1 67.1 51.0 54.4 60.2 48.8 65.3 52.1 53.7 62.4
Mistral-7B-Instruct-v0.1 47.1 63.3 50.0 49.8 52.3 47.6 62.3 49.6 51.8 59.7

BLOOMZ-7B1 47.9 51.0 48.6 50.8 51.0 47.4 46.9 50.4 54.0 50.0
PolyLM-MultiAlpaca-13B 57.2 66.0 51.2 49.0 65.3 47.2 65.5 48.4 53.1 66.8

LLaMAX2-7B-Alpaca 60.4 70.6 54.8 62.1 66.5 53.8 67.4 60.1 59.3 65.3
FuxiTranyu-8B-SFT 57.6 65.4 51.4 56.8 61.5 54.7 63.7 49.8 53.3 59.4
FuxiTranyu-8B-DPO 60.2 64.9 49.8 58.1 62.3 54.6 63.7 49.0 52.2 61.0

Table 12: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B1,
PolyLM-13B, and LLaMAX2-7B models on XStoryCloze (0-shot).

Models ar en es fr gu hi id mr pt ru sr ta uk vi zh

Llama-2-Chat-7B 0.5 11.0 11.0 9.8 0.5 0.2 6.1 0.2 8.9 2.8 3.2 0.8 2.3 10.1 1.0
Mistral-7B-Instruct-v0.1 0.1 11.0 3.0 3.4 0.3 0.2 3.1 0.6 3.2 0.4 2.1 0.2 0.3 4.6 0.6

BLOOMZ-7B1 0.3 7.6 13.7 13.1 0.4 0.0 1.2 0.0 13.1 0 1.7 0.0 0.0 15.4 0.0
LLaMAX2-7B-Alpaca 0.0 1.7 0.5 0.7 0.0 0.0 0.3 0.0 0.2 0.0 0.5 0.1 0.1 0.2 0.0
FuxiTranyu-8B-SFT 1.9 11.8 16.3 16.6 0.7 1.6 17.8 2.1 17.5 6.4 6.1 1.3 5.3 27.7 5.6
FuxiTranyu-8B-DPO 2.8 9.5 11.1 11.0 0.9 2.4 10.7 3.2 12.3 6.5 4.0 2.8 5.3 18.3 5.6

Table 13: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B1, and
LLaMAX2-7B models on XL-Sum (0-shot).

Models WMT16 (EN-RO) WMT16 (RO-EN) WMT16 (EN-DE) WMT16 (DE-EN)
BLEU CHRF BLEU CHRF BLEU CHRF BLEU CHRF

Llama-2-Chat-7B 17.18 44.20 31.43 58.00 20.01 48.31 35.41 60.78
Mistral-7B-Instruct-v0.1 13.66 41.47 24.58 53.04 19.41 49.25 30.19 58.27

BLOOMZ-7B1 1.88 20.09 11.35 36.22 3.76 23.27 22.30 46.69
LLaMAX2-7B-Alpaca 24.52 51.94 36.02 60.85 26.31 53.95 37.05 61.90
FuxiTranyu-8B-SFT 25.64 53.07 34.96 61.33 27.03 56.4 35.91 61.55
FuxiTranyu-8B-DPO 24.8 53.06 32.9 59.97 25.57 56.42 33.52 60.43

Models WMT14 (EN-FR) WMT14 (FR-EN) IWSLT2017-AR-EN IWSLT2017-EN-AR
BLEU CHRF BLEU CHRF BLEU CHRF BLEU CHRF

Llama-2-Chat-7B 24.97 52.34 34.49 60.89 12.51 36.18 1.15 17.73
Mistral-7B-Instruct-v0.1 24.24 52.08 31.40 59.50 9.13 32.64 0.31 13.31

BLOOMZ-7B1 17.73 41.02 31.07 56.03 25.25 47.64 4.58 25.05
LLaMAX2-7B-Alpaca 32.86 59.53 36.00 61.64 29.76 52.68 10.47 40.27
FuxiTranyu-8B-SFT 32.82 59.57 34.07 61.1 28.83 52.79 7.15 31.14
FuxiTranyu-8B-DPO 31.98 59.64 32.27 60.19 27.05 51.5 6.5 29.41

Table 14: Performance of FuxiTranyu-8B models compared to Llama-2-7B, Mistral-7B-v0.1, BLOOM-7B1, and
LLaMAX2-7B models on WMT14, WMT16, and IWSLT2017 (0-shot).
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