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Abstract

Improving the efficiency of inference in Large
Language Models (LLMs) is a critical area of
research. Post-training Quantization (PTQ) is
a popular technique, but it often faces chal-
lenges at low-bit levels, particularly in down-
stream tasks. Quantization-aware Training
(QAT) can alleviate this problem, but it requires
significantly more computational resources. To
tackle this, we introduced Weight-Decomposed
Low-Rank Quantization-Aware Training (DL-
QAT), which merges the advantages of QAT
while training only less than 1% of the to-
tal parameters. Specifically, we introduce a
group-specific quantization magnitude to ad-
just the overall scale of each quantization group.
Within each quantization group, we use LoRA
matrices to update the weight size and direc-
tion in the quantization space. We validated
the effectiveness of our method on the LLaMA
and LLaMA2 model families. The results
show significant improvements over our base-
line method across different quantization gran-
ularities. For instance, for LLaMA-7B, our
approach outperforms the previous state-of-
the-art method by 4.2% in MMLU on 3-bit
LLaMA-7B model. Additionally, our quanti-
zation results on pre-trained models also sur-
pass previous QAT methods, demonstrating the
superior performance and efficiency of our ap-
proach.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance across a variety of natural
language processing (NLP) tasks. With the grow-
ing deployment and use of these models, quan-
tization has become an essential method for re-
ducing memory usage and enhancing computa-
tional efficiency. In LLM compression, a range of
post-training quantization (PTQ) techniques have
been developed, such as weight-only and weight-
activation quantization. These techniques generally

use a small calibration dataset and apply learning
or optimization strategies to quickly transform a
pre-trained floating-point model into a quantized
version. However, PTQ methods struggle in low-bit
quantization, especially in the downstream tasks.
Despite the potential benefits, the development of
quantization-aware training (QAT) algorithms has
been constrained. This is primarily due to the sig-
nificant data and computational resources required
for comprehensive model fine-tuning, making it a
costly endeavor.

To address the high computational expense asso-
ciated with training LLMs, the Parameter-Efficient
Fine-Tuning (PEFT) methodology has been intro-
duced. PEFT entails fine-tuning only a fraction of
the model’s parameters, as opposed to the entirety,
thereby enabling the efficient adaptation of pre-
trained models to a diverse range of downstream
applications. Notably, the Low-Rank Adaptation
(LoRA) (Hu et al., 2021) technique, which repre-
sents the current state-of-the-art in PEFT, has been
shown to achieve performance on par with fully
fine-tuned models across various downstream tasks,
without necessitating alterations to the model’s in-
ference architecture. The conventional approach
to generating a quantized model for downstream
tasks involves a two-step process: first, the floating-
point model is fine-tuned on the downstream tasks;
second, PTQ is applied to the fine-tuned model.
However, this methodology is not without its draw-
backs, as it can be cumbersome and may result in
a substantial loss of accuracy. Conversely, directly
employing QAT methods can lead to prohibitively
high computational costs due to the requirement
of end-to-end fine-tuning of all the model’s param-
eters. The objective of our research is to devise
a seamless, end-to-end process that yields a quan-
tized model with parameter-efficient fine-tuning,
thereby mitigating the aforementioned challenges
and enhancing the overall efficiency and effective-
ness of model adaptation for downstream tasks.
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Building upon these considerations, we propose
Weight-Decomposed Low-Rank Quantization-
Aware Training (DL-QAT), a novel end-to-end
method designed to enhance the efficiency and ef-
fectiveness of model quantization for downstream
tasks. DL-QAT decomposes the optimization
of quantized weights into two processes: group-
specific magnitude training and weight fine-tuning
within a predefined quantization space. By incor-
porating a magnitude term, we calibrate the over-
all scale for each quantization group, ensuring a
more precise representation of the model’s parame-
ters. Furthermore, we leverage low-rank matrices
A and B to refine the quantized weights, thereby
enhancing the model’s adaptability to the specific
requirements of the downstream tasks. To validate
the efficacy of our approach, we conducted compre-
hensive experiments on the LLaMA and LLaMA2
model families. The results demonstrate a signifi-
cant improvement over the baseline method, QA-
LoRA (Xu et al., 2023), across various quantization
granularities. Specifically, our method surpasses
QA-LoRA by +4.2% on the MMLU benchmark
(Hendrycks et al., 2020) and by +5.5% on the
LM-Eval benchmark (Gao et al., 2023). Addition-
ally, when compared to the previous state-of-the-
art LLM-QAT method (Liu et al., 2023), our ap-
proach achieves lower perplexity on the WikiText-2
dataset (Merity et al., 2016) and higher accuracy on
the LM-Eval benchmark, underscoring the superior
performance of DL-QAT. LLM-QAT requires fine-
tuning the entire model parameters, while we only
need to fine-tune less than 1% of the parameters
to achieve better results. These findings not only
highlight the effectiveness of DL-QAT in achieving
competitive accuracy levels but also emphasize its
efficiency in terms of both parameters and memory
usage. By requiring minimal parameter modifica-
tions, DL-QAT offers a compelling alternative to
traditional quantization methods, particularly for
scenarios where computational resources are lim-
ited or where the need for rapid model adaptation
is paramount.

2 Related work

Parameter-Efficient Fine-Tuning. LoRA (Low-
Rank Adaptation) is a key method in Parameter-
Efficient Fine-Tuning (PEFT), training a small
number of parameters without altering the model
inference process. To enhance its capabili-
ties, variants like AdaLoRA(Zhang et al., 2023)

and Pissa(Meng et al., 2024a) enhance rank
via Singular Value Decomposition (SVD), while
PLoRA(Meng et al., 2024b) accumulates low-rank
updates progressively. Further, studies like (Zhu
et al., 2024) and LoRA+ (Hayou et al., 2024) delve
into the update mechanisms of LoRA’s A and B
matrices. DoRA (Liu et al., 2024) proposed a
new optimization approach for LoRA, which de-
composes LoRA updates into separate magnitude
and direction updates to improve accuracy. In-
spired by this idea, we further decompose LoRA
quantization-aware training into fine-tuning the
magnitude for quantization groups and fine-tuning
the weights within the quantization space.

Quantization of LLM. Quantization has been
widely used in LLM. Based on whether training is
required, quantization can be classified into Post-
Training Quantization(PTQ) and Quantization-
Aware Training(QAT). PTQ methods requires only
a small amount of calibration data to update the
quantized weights. For instance, GPTQ (Frantar
et al., 2022) utilizes merely 128 data samples to
approximate second-order information and achieve
the quantized weight. As outliers are crucial for
LLM, considerable research is dedicated to address-
ing outlier issues. SmoothQuant (Xiao et al., 2023)
effectively shifts the quantization challenge from
activations to weights through a mathematically
equivalent transformation. QuaRot (Ashkboos
et al., 2024) employs Hadamard transformations
on the weight matrices and attention modules to
mitigate outlier effects. Compared with PTQ meth-
ods, QAT methods require more training data and
resources, but generally achieve better performance.
LLM-QAT (Liu et al., 2023) leverages data gener-
ated by pre-trained LLMs and achieves better per-
formance compared with GPTQ. However, LLM-
QAT requires significant training resources.

Methods combining LoRA and quantization.
Building upon LoRA, QLoRA(Dettmers et al.,
2024) was the first to propose a memory-efficient
fine-tuning method by quantizing the pretrained
model to low-bit and fine-tuning a high-precision
LoRA component. This approach enables effec-
tive fine-tuning of LLMs within limited memory
resources. Subsequent methods such as LoFTQ
(Li et al., 2023) and LQ-LoRA (Guo et al., 2023)
further optimized the initialization of the LoRA
component and reduced the memory required for
the quantized pretrained model. However, the
combination of a low-bit pretrained model and a
high-precision LoRA component still resulted in
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a high-precision weight after merging, which did
not improve inference speed. To address this is-
sue, QA-LoRA(Xu et al., 2023) made further im-
provements on QLoRA by learning an additional
high-precision group-wise bias for the quantized
model, effectively reducing both time and mem-
ory consumption without compromising accuracy.
However, QA-LoRA could only perform group-
wise fine-tuning, resulting in significant accuracy
degradation when the quantization granularity in-
creased.

3 Methodology

3.1 Low-Rank Adaptation and Quantization
In large language models (LLMs), a linear layer is
denoted by Y = W ·X , where W represents the
weight matrix with dimensions RCout×Cin and X is
the input with dimensions RCin×T . Here, Cout and
Cin denote the output channel and input channel,
respectively, and T represents the sequence length.
LoRA (Low-Rank Adaptation) refines the model
by introducing two low-rank matrices, A and B,
where A ∈ Rr×Cin and B ∈ RCout×r, with r being
the rank of LoRA matrix and r ≪ Cin, Cout. The
weight matrix W is then modified as:

W = W0 + αBA (1)

where W0 represents the pretrained weight matrix
that remains frozen during training, and α is a scal-
ing factor that adjusts the influence of the low-rank
adaptation.

For a given bit level n, the asymmetric weight
quantization and dequantization processes can be
described by a specific formula:

w̃ = clip

(⌊
W − b

s

⌉
,−2n−1, 2n−1 − 1

)
(2)

Wq = s ∗ w̃ + b (3)

where w̃ represents the quantized value, while W
is the original floating-point weight. The scale
s determines the step size between quantization
levels, and b is the offset applied to the weight
before scaling. The round function is denoted by
⌊·⌉, and the clip function ensures that the quantized
values stay within the range (−2n−1, 2n−1 − 1).
Dequantization involves converting the quantized
values back to floating-point weights by scaling the
quantized value with s and adding the offset b, thus
retrieving the original weight.

Quantization-Aware Training (QAT) simulates
quantization during the forward pass by substitut-
ing W with Wq, as depicted in equations 2 and 3,
and employs the Straight-Through Estimator (STE)
for gradient backpropagation to achieve the quan-
tization effect. In LoRA, rather than updating the
weight matrix W directly, the updates are applied
to the LoRA matrices A and B. As a result, the
quantization and de-quantization formula is modi-
fied accordingly:

w̃′ = clip
(⌊

W0 + αBA− b

s

⌉
,

−2n−1, 2n−1 − 1
)

(4)

W
′
q = s ∗ w̃′ + b (5)

These formulas guarantee the integration of
quantization effects into the LoRA weight updates,
enabling efficient and precise training with quanti-
zation.

3.2 Weight-Decomposed Quantization
Rather than directly substituting W with W

′
q in the

quantization formula as indicated in equation 5 for
QAT, or updating the A and B matrices along with
the quantization parameters s and b, we separate the
joint training of LoRA and quantization into two
parts: (1) group-specific magnitude training; (2)
weight fine-tuning in the pre-defined quantization
space. The quantization process is thus reformu-
lated as follows:

Wq = m ∗W ′
q

= m ∗ (W0 + αBA)q

= m ∗ (s ∗ ˜(W0 + αBA) + b)

(6)

Here, m represents a newly introduced hyper-
parameter denoting the group-specific magnitude,
which matches the number of quantization groups
and is identical in size to s. The matrix m is
initialized as a matrix of all ones. LoRA matrix
A is initialized with a random Gaussian distribu-
tion, and B is initialized as a zero matrix. The
variables s and b are initialized to map the range
(Min(W0),Max(W0)) to the endpoints of the
quantization interval. Therefore, sinit =

Max−Min
2n−1 ,

and binit =
2(n−1)·Max+(2(n−1)−1)·Min

2n−1 .
During the initial training phase, the scale fac-

tors s and the biases b are trained to ensure that
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the quantization updates commence from a well-
established quantization space. Specifically, up-
dates are applied only to s and b to obtain their
initial values s0 and b0, which are then frozen. Sub-
sequent training involves parameter optimization in
two parts: group-specific magnitude training and
weight finetuning within the predefined quanti-
zation space. The first part involves adjusting the
magnitude term m to set the scale for each quanti-
zation group, while in the second part, the A and B
matrices are fine-tuned, permitting updates to the
quantized weights within the established quantiza-
tion space.

Our proposed method, DL-QAT, ensures a har-
monious balance between the constraints imposed
by quantization and the optimization of weights to
achieve optimal model performance. By integrat-
ing the efficient fine-tuning capabilities of LoRA,
DL-QAT not only streamlines the training process
but also significantly reduces the associated com-
putational costs and resource expenditure. This
synergistic approach allows for the realization of
state-of-the-art results while maintaining a high de-
gree of efficiency, making it a compelling choice
for scenarios where both performance and resource
constraints are of paramount importance.

4 Experiments

In this section, we assess our approach using both
language generation and zero-shot few-shot tasks
with open-source models LLaMA-7B/13B (Tou-
vron et al., 2023a) and LLaMA2-7B/13B (Touvron
et al., 2023b) to demonstrate its effectiveness.

4.1 Experiment Setup

Dataset. We use Stanford-Alpaca dataset (Taori
et al., 2023) as the fine-tuning dataset. Alpaca com-
prises a dataset of 52,000 instructions and demon-
strations created by OpenAI’s text-davinci-003 en-
gine. This instructional data can be utilized to
perform instruction-tuning on language models, en-
hancing their ability to follow instructions more
effectively.
Training Details. In all experiments, a batch size
of 16 was maintained, and a constant learning rate
of 2e-4 was used. The optimizer employed was
adamw_hf, with the default LoRA rank set at 16.
For consistency with QALoRA’s settings, training
was conducted for 10,000 iterations, while other ex-
perimental results underwent 5,000 iterations. The
training iterations for learning s0 and b0 were uni-

formly set at 1000. This approach ensures fair com-
parisons and reliable results across various models
and datasets. Our experimental setup involves a
quantization simulation in which all learnable pa-
rameters are represented in bf16 format. During
inference, these quantized weights are dequantized
back to bf16 for computation. We conducted all
experiments on AMD MI-250 GPUs to maintain
consistent hardware conditions.
Evaluation Tasks. The evaluation encompassed a
broad spectrum of benchmarks. For language gen-
eration tasks, the perplexity on WikiText-2 (Merity
et al., 2016) was reported. Additionally, results on
the Massively Multitask Language Understanding
(MMLU) benchmark (Hendrycks et al., 2020) were
presented in both zero-shot and five-shot settings.
The method was also assessed on seven common
sense reasoning tasks from the EleutherAI LM Har-
ness (Gao et al., 2023) for zero-shot performance.

4.2 Results
Our evaluation spanned various quantization gran-
ularities, including group-wise and channel-wise
quantization. In group-wise quantization, we em-
ployed a standard setting with a group size of 128.
For channel-wise quantization, our experiments en-
compassed two scenarios: one with quantization
applied solely to weights, and another with quanti-
zation extended to weights, activations, and the kv
cache.

Our approach was evaluated against prior
quantization-aware LoRA-based methods, using
QA-LoRA as the benchmark. To ensure a thor-
ough comparison, we replicated the QA-LoRA al-
gorithm with a group size of 128 and channel-wise
quantization, while preserving its original LoRA
rank of 64. The results presented in Table 1 and
Table 2 demonstrate that our technique surpasses
the benchmark across different quantization bits,
granularities, and datasets. Remarkably, we noted
a +4.2% enhancement in MMLU zero-shot accu-
racy on LLaMA-7B with 3-bit group-wise quantiza-
tion, and a +5.5% increase in Common Sense QA
accuracy on LLaMA2-7B with 4-bit per-channel
quantization.

Moreover, we conducted comparisons with the
PTQ method SmoothQuant (Xiao et al., 2023) and
the QAT method LLM-QAT (Liu et al., 2023) on
the LLaMA-7B/13B models within the W4A8KV8
framework, as depicted in Table 2. Our approach
yielded lower perplexity scores compared to LLM-
QAT. In terms of common sense QA accuracy, it
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LLaMA Method Bits MMLU Common Sense Zero-Shot
0-Shot 5-Shot ARC_C ARC_E BoolQ HellaSwag OBQA PIQA Winogrande Avg

1-7B

- 16 32.1 34.6 38.2 67.3 72.9 56.3 28.4 78.2 67.1 58.3
QA-LoRA* 4 37.9 38.5 44.0 71.6 75.9 57.1 30.8 78.9 67.2 60.8

Ours 4 40.5 39.9 45.0 75.5 79.8 57.9 36.2 78.9 70.2 63.4
QA-LoRA* 3 32.2 32.9 41.7 71.6 76.9 54.6 28.0 77.6 64.9 59.3

Ours 3 36.4 33.9 41.0 73.4 78.2 55.3 34.2 78.2 67.5 61.1

2-7B

- 16 40.7 45.5 39.9 69.3 71.1 56.7 31.8 78.3 67.1 59.2
QA-LoRA* 4 42.5 44.8 42.7 71.9 77.6 56.9 32.6 79.2 68.3 61.3

Ours 4 44.6 45.0 47.2 77.8 79.3 58.1 35.6 78.5 68.5 63.6
QA-LoRA* 3 37.9 37.9 38.1 66.6 75.0 54.0 32.0 76.0 66.5 58.3

Ours 3 40.5 39.4 41.2 74.4 78.0 54.7 32.2 77.5 68.8 60.9

Table 1: Results of weight-only group-wise quantization with group_size=128 on LLaMA-7B and LLaMA2-7B.
The evaluation includes results for MMLU (both 0-shot and 5-shot settings) and Common Sense QA Zero-shot
tasks (acc is reported to maintain consistency with QA-LoRA). * indicates reproduced results.

LLaMA Method W-A-KV Wikitext2 Common Sense Zero-Shot
ppl (↓) ARC_C ARC_E BoolQ HellaSwag PIQA Winogrande Avg

1-7B

- 16-16-16 5.68 48.0 73.0 76.8 76.1 79.3 70.0 70.5
QA-LoRA* 3-16-16 16.5 38.4 51.5 64.3 64.5 73.7 60.9 58.9

Ours 3-16-16 9.2 40.1 61.8 71.2 67.2 75.9 64.0 63.4
QA-LoRA* 4-16-16 11.1 42.4 58.0 73.7 70.5 77.3 66.1 64.7
LLM-QAT 4-16-16 - 45.0 70.0 75.5 74.0 78.3 69.0 68.6

Ours 4-16-16 6.7 44.4 68.5 78.5 74.4 78.1 68.5 68.7
SmoothQuant 4-8-8 - 42.8 67.4 71.0 67.8 77.6 66.0 65.2

LLM-QAT 4-8-8 - 45.6 70.2 74.6 73.5 77.5 67.7 68.2
Ours 4-8-8 6.7 46.2 71.3 78.1 73.6 78.5 68.4 69.4

1-13B
- 16-16-16 5.09 52.6 74.5 78.1 79.2 80.0 73.6 73.0

SmoothQuant 4-8-8 - 43.3 67.4 72.5 74.3 77.1 69.5 67.4
LLM-QAT 4-8-8 - 51.9 73.6 77.5 73.6 79.1 70.6 71.6

Ours 4-8-8 5.9 48.8 74.8 80.5 77.1 80.4 70.3 72.0

2-7B

- 16-16-16 5.47 46.3 74.6 77.7 76.0 79.1 69.1 70.5
QA-LoRA* 3-16-16 13.7 36.3 48.2 70.3 66.3 74.4 63.9 59.9

Ours 3-16-16 9.4 35.9 58.9 71.1 63.6 74.8 60.2 63.7
QA-LoRA* 4-16-16 9.5 41.3 55.1 68.8 71.9 77.3 68.2 63.8

Ours 4-16-16 6.3 44.6 71.0 78.5 74.6 78.2 68.8 69.3
2-13B - 16-16-16 4.88 49.0 77.4 80.6 79.4 80.5 72.2 73.2

Ours 4-8-8 5.63 49.6 75.5 81.9 78.1 80.1 70.3 72.6

Table 2: Results of channel-wise quantization results on LLaMA-7B/13B and LLaMA2-7B/13B models. Evaluation
metrics include perplexity (ppl) on WikiText-2 and accuracy in common sense QA zero-shot tasks. Acc_norm is
reported to ensure consistency with LLM-QAT. * indicates reproduced results.

substantially surpasses SmoothQuant and LLM-
QAT. Moreover, our approach necessitates signifi-
cantly less training memory and time compared to
LLM-QAT, proving that our DL-QAT method not
only yields superior outcomes but also enhances
efficiency.

4.3 Ablation Study

To demonstrate the effectiveness of our introduced
group-specific magnitude m and our quantization
update strategy, including weight fine-tuning in
the pre-defined quantization space, we conducted
ablation experiments as shown in Table 3.

For quantization updates, we considered three
possible settings: (1) Min-Max Clipping Values:
Quantization values are uniformly distributed be-

tween the updated min(W0+αBA) and max(W0+
αBA), with clipping always performed at these dy-
namic bounds. (2) Fixed Clipping Values: The clip-
ping values are fixed by learned s0 and b0, ensuring
that W0+αBA updates within a fixed quantization
space. (3) Adaptive Clipping Values: Both s and b
are continuously trained, adaptively updating the
quantization space throughout the training process.
For the magnitude m, we explored two possible
settings: with or without the learnable magnitude
term m.

The results in Table 3 show that experiments
with the learnable magnitude m consistently out-
perform those without it. This indicates that using
m to adjust the quantization group’s magnitude
aids in adaptive scaling. Without the learnable
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Setting m Clipping bounds Learnable params LLaMA-7B
4 bit 3 bit

1 N/A MinMax A,B 69.7 67.5
2 N/A Learn then fix s, b then A,B 70.4 66.7
3 N/A Learn s, b, A,B 70.0 67.2
4 Learn MinMax m,A,B 70.4 67.2
5 Learn Learn then fix s, b then m,A,B 70.7 68.3
6 Learn Learn m, s, b, A,B 70.0 67.7

Table 3: Results with different magnitude and quantization settings on LLaMA-7B. Average acc_norm in common
sense QA zero-shot tasks is reported. With a quantization granularity of group_size=128.

LLaMA Quant config Trainable Params (M) GPU Memory (G) Training speed (s/iter)
s, b m,A,B

7B
Weight-only, g128 50 71 32.5 3.33
Weight-only, per-channel 1 41 31.8 3.24
Quant W/A/KV, per-channel 1 41 33.1 3.91

13B
Weight-only, g128 99 162 60.4 6.26
Weight-only, per-channel 2 65 58.7 6.09
Quant W/A/KV, per-channel 2 65 62.8 7.04

Table 4: Training parameter count, GPU memory usage, and training speed for LLaMA-7B/13B under different
quantization configurations with a per-GPU batch size of 16. The experiments were conducted on an AMD MI250
with 64GB of GPU memory.

magnitude m, accuracy across various bit settings
varies, with no single setting being clearly supe-
rior. However, when combined with the learnable
magnitude m, setting 2 — our proposed method
of weight fine-tuning in the pre-defined quantiza-
tion space — significantly outperforms the other
settings. This suggests that our strategy of decom-
posing the weight into two parts for updates is
effective, allowing the magnitude and weight dis-
tribution to be optimized separately, resulting in
excellent fine-tuning outcomes.

4.4 Analysis

In Table 4, we evaluate the training parameter
count, GPU memory usage, and training speed for
LLaMA-7B and 13B models. The total parame-
ters of LLaMA-7B and LLaMA-13B are 6.8G and
13.1G, respectively. For group-wise quantization,
after fixing parameters s and b, the remaining train-
able parameters m and A,B account for only 1.0%
and 1.2% of the total parameters in LLaMA-7B and
LLaMA-13B, respectively. For channel-wise quan-
tization, the training parameters constitute 0.6%
and 0.5% of the total parameters for LLaMA-7B
and LLaMA-13B, respectively. With a batch size
of 16, our simulated quantized training shows that
LLaMA 7B and 13B use a maximum of 33.1GB
and 62.8GB of GPU memory, respectively. On
the Alpaca dataset, with an AMD MI250 GPU,

LLaMA-7B can train up to 17, 669 samples per
hour, while LLaMA-13B can train up to 9, 458
samples per hour. Therefore, compared to the pre-
vious QAT methods, our approach takes only about
one-thirtieth of the time to converge the model, sig-
nificantly reducing the resources needed for train-
ing.

5 Conclusion

In this paper, we introduce Weight-Decomposed
Low-Rank Quantization-Aware Training (DL-
QAT), a novel end-to-end approach designed to im-
prove the efficiency of QAT for tasks downstream
of LLMs. DL-QAT optimizes quantized weights
through two main processes: group-specific mag-
nitude training and weight fine-tuning within a
set quantization space. By employing Low-Rank
Adaptation (LoRA) matrices, we are able to up-
date the weight magnitude and direction within
the quantization space, thereby enabling precise
adjustments to the model’s parameters. DL-QAT
achieves remarkable results by training on less than
1% of the model’s parameters, outperforming pre-
vious QAT methods across established Natural Lan-
guage Processing benchmarks. This efficiency in
parameter utilization is a testament to the effec-
tiveness of DL-QAT in achieving state-of-the-art
performance while minimizing computational over-
head.

118



References
Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-

ian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. 2024. Quarot:
Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim.
2023. Lq-lora: Low-rank plus quantized matrix de-
composition for efficient language model finetuning.
arXiv preprint arXiv:2311.12023.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos
Karampatziakis, Weizhu Chen, and Tuo Zhao. 2023.
Loftq: Lora-fine-tuning-aware quantization for large
language models. arXiv preprint arXiv:2310.08659.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint
arXiv:2305.17888.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024a.
Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint
arXiv:2404.02948.

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang,
Shaoxiang Wu, Xiaochen Wang, Peiyi Wang,
Qingxiu Dong, Liang Chen, and Zhifang Sui. 2024b.
Periodiclora: Breaking the low-rank bottleneck in
lora optimization. arXiv preprint arXiv:2402.16141.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A
strong, replicable instruction-following model. Stan-
ford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html,
3(6):7.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng
Chang, Hengheng Zhang, Zhensu Chen, Xiaopeng
Zhang, and Qi Tian. 2023. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
arXiv preprint arXiv:2309.14717.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi,
Haitz Sáez de Ocáriz Borde, Rickard Brüel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail
Yurochkin, and Justin Solomon. 2024. Asymmetry
in low-rank adapters of foundation models. arXiv
preprint arXiv:2402.16842.

119

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

