“ AutoTrain:
No-code training for state-of-the-art models

Abhishek Thakur
Hugging Face, Inc.
abhishek@huggingface.co

Abstract

With the advancements in open-source mod-
els, training(or finetuning) models on custom
datasets has become a crucial part of devel-
oping solutions which are tailored to specific
industrial or open-source applications. Yet,
there is no single tool which simplifies the
process of training across different types of
modalities or tasks. We introduce # AutoTrain
(aka AutoTrain Advanced)—an open-source,
no code tool/library which can be used to train
(or finetune) models for different kinds of
tasks such as: large language model (LLM)
finetuning, text classification/regression, to-
ken classification, sequence-to-sequence task,
finetuning of sentence transformers, visual
language model (VLM) finetuning, image clas-
sification/regression and even classification
and regression tasks on tabular data. # Au-
toTrain Advanced is an open-source library
providing best practices for training models
on custom datasets. The library is available
at https://github.com/huggingface/autotrain-
advanced. AutoTrain can be used in fully local
mode or on cloud machines and works with
tens of thousands of models shared on Hug-
ging Face Hub and their variations.

Demo screencast: YouTube
1 Introduction

With recent advancements in open-source and open-
access state-of-the-art models, the need for stan-
dardized yet customizable training of models on
downstream tasks has become crucial. However, a
universal open-source solution for a diverse range
of tasks is still lacking. To address this challenge,
we introduce * AutoTrain (also known as Auto-
Train Advanced).

AutoTrain is an open-source solution which of-
fers model training for different kinds of tasks such
as: large language model (LLM) finetuning, text
classification/scoring, token classification, training
custom embedding models using sentence trans-
formers (Reimers and Gurevych, 2019), finetuning

for visual language models (VLMs), computer vi-
sion tasks such as image classification/scoring, ob-
ject detection and even tabular regression and clas-
sification tasks. At the time of writing this paper, a
total of 22 tasks: 16 text-based, 4 image-based and
2 tabular based have been implemented.

The idea behind creating AutoTrain is to allow
a simple interface for training models on custom
datasets without requiring extensive knowledge
of coding. AutoTrain is intended for not just no-
coders but also for experienced data scientists and
machine learning practioners. Instead of writing
complex scripts, one can focus on gathering and
preparing your data and let AutoTrain handle the
training part. AutoTrain Ul is shown in Figure 1.

When talking about model training, there are
several problems which arise:

Complexity of hyperparameter tuning: Finding
the right parameters for tuning models can only be
done by significant experimentations and expertise.
Improperly tuning the hyperparameters can result
in overfitting or underfitting.

Model validation: A good way to make sure the
trained models generalize well, is to have a proper
valiation set and a proper way to evaluate with
appropriate metrics. Overfitting to training data can
cause the models to fail in real-world scenarios.

Distributed training: Training models on larger
datasets with multi-gpu support can be cumber-
some and requires significant changes to codebase.
Distributed training requires additional complex-
ity when it comes to synchronization and data han-
dling.

Monitoring: While training a model, its crucial
to monitor losses, metrics and artifacts to make
sure there is nothing fishy going on.

Maintenance: With ever-changing data, it may
be necessary to retrain or fine-tune the model on
new data while keeping the training settings con-
sistent.

We introduce the open source AutoTrain Ad-

419

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 419—423
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/huggingface/autotrain-advanced
https://github.com/huggingface/autotrain-advanced
https://youtu.be/2O0jHC99S0k

auto LMD Accelerators: 0
No running jobs
Hugging Face User @ .
Project Name
abhishek v
autotrain-5ad0y-bfwik
Task @
LLM SFT v Base Model
Hardware @
meta-llama/Meta-Llama-3-8B-Instruct
Local/Space v
Parameter Mode @ Dataset Source
Basic v Local
& Logs Training Data
[® Documentation @

’:Ei‘ FAQs Upload Training File(s)

() GitHub Repo
Column Mapping

text:

text

Start Training

Parameters
JSON

Chat template Mixed precision Optimizer

none v 16 v adamw_torch v

PEFT/LoRA Scheduler Unsloth

Custom true v linear v false v

Batch size Block size Epochs

2 1024 3

Gradient accumulation Learning rate Model max length

4 0,00003 2048

Target modules

all-linear

Figure 1: A screenshot of the AutoTrain User Interface (UI)

vanced library to address many of these problems.

2 Related work

In recent years, many AutoML solutions have been
developed to automate the training process of ma-
chine learning models. Some notable solutions in-
clude:

AutoML Solutions AutoSklearn (Feurer et al.,
2015), which is an open-source AutoML toolkit
built on top of the popular scikit-learn library. Au-
toSklearn uses Bayesian optimization to automate
the process of model selection and hyperparameter
tuning.

AutoCompete (Thakur and Krohn-Grimberghe,
2015), which won the Codalab AutoML GPU chal-
lenges, builds a framework for tacking machine
learning competitions. The code is, however, not
open source.

Axolotl (Cloud, 2024) is a CLI tool for finetun-
ing LLMs.

AutoKeras (Jin et al., 2023), developed on top of
Keras offers functionalities for various tasks such
as image classification, text classification, and re-
gression

Many other closed-source solutions have also
been developed by Google, Microsoft, and Ama-
zon. However, all these solutions have some limi-
tations. They are either not open-source, or if they
are, they can only handle a limited number of tasks.

Many of these solutions are also not no-code, mak-
ing them inaccessible to non-coders.

With AutoTrain, we provide a single interface
to deal with many different data format, task, and
model combinations, which depending on user’s
choices is also closely connnected to Hugging Face
Hub which enables download, inference and shar-
ing of models with the entire world. Moreover, Au-
toTrain supports almost all kinds models which are
compatible with Hugging Face Transformers (Wolf
et al., 2019) library, making it a unique solution to
support hundreds of thousands of models for fine-
tuning, including the models which require custom
code.

3 Library: AutoTrain Advanced

The AutoTrain Advanced python library provides a
command line interface (CLI), a graphical user in-
terface (GUI/UI) and python SDK to enable train-
ing on custom datasets. The datasets can be upload-
ed/used in different formats such as zip files, CSVs
or JSONLs. We provide documentation and walk-
throughs on training models for different task and
dataset combinations with example hyperparam-
eters, evaluation results and usage of the trained
models. The library is licensed as Apache 2.0 li-
cense and is available on Github, ! making it easy
for anyone to adopt and contribute.

Uhttps://github.com/huggingface/autotrain-advanced

420

The design of the library has been made keep-
ing in mind both professionals and amateurs who
would like to finetune model but don’t know where
to start and don’t want to invest time setting up
a separate environment for each of their finetun-
ing tasks. The library lies on the shoulders of gi-
ants such as Transformers (Wolf et al., 2019), Hug-
ging Face Datasets (Lhoest et al., 2021), Accelerate
(Gugger et al., 2022), Diffusers(von Platen et al.,
2022), PEFT (Mangrulkar et al., 2022), TRL (von
Werra et al., 2020) and other libraries created by
Hugging Face.

AutoTrain uses (Paszke et al., 2019) as the
main backend for training the models. For tabular
datasets, models from (Van der Walt et al., 2014)
and (Chen and Guestrin, 2016) are used as pre-
ferred models.

3.1 Component of the AutoTrain Advanced
library

There are 3 main components in the AutoTrain
Advanced library:

Project Configuration: manages the configura-
tion of the project and allows users to set up and
manage their training projects. Here, one can spec-
ify various settings such as the type of task (e.g.,
Ilm finetuning, text classification, image classifi-
cation), dataset, the model to use, and other train-
ing parameters. This step ensures that all necessary
configurations are in place before starting the train-
ing process.

Dataset Processor: handles the preparation and
preprocessing of datasets. It ensures that data is
in the right format for training. This component
can handle different types of data, including text,
images, and tabular data. Dataset processor does
cleaning and transformation of dataset, saves time
and reduces the potential for errors. A dataset once
processed can also be used for multiple projects
without requiring to be processed again.

Trainer: is responsible for the actual training
process. It manages the training loop, handles the
computation of loss and metrics, and optimizes
the model. The Trainer also supports distributed

training, allowing you to train models on multiple -

GPUs seamlessly. Additionally, it includes tools

for monitoring the training progress, ensuring that

everything is running smoothly and efficiently.

S}

3.2 Installation & Usage

Using AutoTrain is as easy as pie. In this section
we focus briefly on installation and LLM finetuning
task. However, the same can be applied to other
tasks keeping in mind the dataset format which is
provided

Installation AutoTrain Advanced can be easily
installed using pip.

$ pip install autotrain-advanced

It has to be noted that the the pip installation
doesnt install pytorch and users must install it on
their own. However, a complete package with all
the requirements is also available as a docker im-
age.

$ docker pull
huggingface/autotrain-advanced:latest

Usage AutoTrain Advanced offers CLI and UL
CLI is based on a AutoTrain Advanced python
library. So, users familiar with python can also use
the python sdk. To start the Ul as shown in Figure 1,
one can run the autotrain app command:

$ autotrain app

An example of running training in Ul is shown
in Figure 2.

Training can also be started using a config file
which is in yaml format and the autotrain cli. An ex-
ample config to finetune llama 3.1 is shown below:

task: 1lm:orpo
base_model: meta-llama/Meta-Llama-3.1-8B

3 project_name: autotrain-llama

N

log: tensorboard
backend: local

data:

path: HuggingFaceH4/no_robots

train_split: train

valid_split: null

chat_template: zephyr

column_mapping:
text_column: chosen
rejected_text_column: rejected
prompt_text_column: prompt

/ params:

block_size: 1024
model_max_length: 8192
max_prompt_length: 512
epochs: 3

batch_size: 2

lr: 3e-5

peft: true
quantization: int4

auto D Accelerators: 1
Running job PID(s): 439
Hugging Face User @ '

Project Name

Success!
Monitor your job locally / in logs

abhishek v
autotrain-zmfm7-z6s0b
Task @
LEMISET M Base Model
Hardware @
meta-llama/Meta-Llama-3.1-8B-Instruct
Local/Space v
Parameter Mode @ Dataset Source
Basic v Hugging Face Hub
Hub dataset path
= Logs

HuggingFaceH4/no_robots

[Documentation

Train split Valid split (optional)

’34 FAQs train

) GitHub Repo
Column Mapping

text:

messages

Stop Training

Parameters
JSON

Chat template Mixed precision Optimizer

zephyr v fpte v | adamw_torch v

PEFT/LORA Scheduler Unsloth

Custony true v linear v false v

Batch size Block size Epochs

2 1024 3

“accumulation Learning rate Model max length

0,00003 2048
iodules

© all-linear

Figure 2: Finetuing an LLM in AutoTrain Ul

target_modules: all-linear
padding: right

optimizer: adamw_torch
scheduler: linear
gradient_accumulation: 4
mixed_precision: fpl6

hub:
username: ${HF_USERNAME}
token: ${HF_TOKEN}
push_to_hub: true

The above config file shows how a
1llama-3.1-8B model from the Hug-
ging Face hub can be finetuned on

HuggingFaceH4/no_robots dataset which is
also available on Hugging Face Hub. If the user
wants to use a local dataset and model, they can
do that too by following the documentation. In
this specific case, a local dataset can be provided
as a JSONL file. To start the training, autotrain
-config command is used:

$ autotrain --config config.yml

The training process starts tensorboard (Abadi
et al., 2015) which can be used to monitor the train-
ing and metrics and generated during the training
process. The users can also monitor the training
logs in terminal if they started the training using
the CLI or in the Ul logs section.

The trained model, depending on user’s choice,
can also be pushed to Hugging Face Hub, thus mak-
ing it accessible to hundreds of thousands of users
across the world. The trained models are also com-

patible with major inference providers (hugging-
face, aws, google cloud, etc.) which makes deploy-
ment and consumption easy for both coders and
non-coders.

4 Conclusion

In this paper, we introduce AutoTrain (aka Auto-
Train Advanced), which is an open source, no-code
solution for training (or finetuning) machine learn-
ing models on a variety of tasks. AutoTrain ad-
dresses common challenges in the model training
process, such as dataset processing, hyperparam-
eter tuning, model validation, distributed training,
monitoring, and maintenance. By automating these
tasks, AutoTrain ensures that users can efficiently
build high-performing models without needing ex-
tensive coding knowledge or experience. Addition-
ally, AutoTrain supports a diverse range of tasks,
including llm finetuning, text classification, image
classification, and regression, and even tabular data
classification/regression, thus, making it a versatile
tool for various applications.

Limitations

AutoTrain tries to generalize the training process
for a given model - dataset combination as much
as possible, however, there might be situations in
which custom changes might be required. For ex-
ample, AutoTrain doesnt provide support for sam-
ple weights, model merging, or ensembling yet.

422

We are gathering issues faced by users and imple-
menting them to address these limitations.

Acknowledgements

We thank the many contributors to the Hugging
Face open source ecosystem. We also thank the
different teams at Hugging Face: the open-source
team, the infrastructure team, the hub team, fron-
tend and backend teams and others.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16.
ACM.

Axolotl AI Cloud. 2024. Axolotl: A tool for stream-
lining fine-tuning of ai models. https://github.
com/axolotl-ai-cloud/axolotl. Accessed:
2024-08-06.

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter.
2015. Efficient and robust automated machine learn-
ing. In Advances in Neural Information Processing
Systems 28 (2015), pages 2962-2970.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate:
Training and inference at scale made simple, ef-
ficient and adaptable. https://github.com/
huggingface/accelerate.

Haifeng Jin, Frangois Chollet, Qingquan Song, and Xia
Hu. 2023. Autokeras: An automl library for deep
learning. Journal of Machine Learning Research,
24(6):1-6.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A commu-
nity library for natural language processing. arXiv
preprint arXiv:2109.02846.

423

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Abhishek Thakur and Artus Krohn-Grimberghe. 2015.
Autocompete: A framework for machine learning
competition.

Stefan Van der Walt, Johannes L Schonberger, Juan
Nunez-Iglesias, Francois Boulogne, Joshua D
Warner, Neil Yager, Emmanuelle Gouillart, and Tony
Yu. 2014. scikit-image: image processing in python.
PeerJ, 2:€453.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pe-
dro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, Dhruv Nair, Sayak Paul, William Berman,
Yiyi Xu, Steven Liu, and Thomas Wolf. 2022. Dif-
fusers: State-of-the-art diffusion models. https:
//9ithub.com/huggingface/diffusers.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lam-
bert, and Shengyi Huang. 2020. Trl: Transformer
reinforcement learning. https://github.com/
huggingface/trl.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://github.com/axolotl-ai-cloud/axolotl
https://github.com/axolotl-ai-cloud/axolotl
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
http://jmlr.org/papers/v24/20-1355.html
http://jmlr.org/papers/v24/20-1355.html
https://aclanthology.org/2021.emnlp-demo.21/
https://aclanthology.org/2021.emnlp-demo.21/
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1507.02188
http://arxiv.org/abs/1507.02188
https://peerj.com/articles/453/?report=reader&utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_1&utm_medium=TrendMD
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://github.com/huggingface/trl
https://github.com/huggingface/trl

