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Abstract

Retrieval-augmented generation (RAG) com-
bines knowledge from domain-specific sources
into large language models to ground answer
generation. Current RAG systems lack cus-
tomizable visibility on the context documents
and the model’s attentiveness towards such doc-
uments. We propose RAGViz, a RAG diag-
nosis tool that visualizes the attentiveness of
the generated tokens in retrieved documents.
With a built-in user interface, retrieval index,
and Large Language Model (LLM) backbone,
RAGViz provides two main functionalities:
(1) token and document-level attention visu-
alization, and (2) generation comparison upon
context document addition and removal. As
an open-source toolkit, RAGViz can be eas-
ily hosted with a custom embedding model
and HuggingFace-supported LLM backbone.
Using a hybrid ANN (Approximate Nearest
Neighbor) index, memory-efficient LLM infer-
ence tool, and custom context snippet method,
RAGViz operates efficiently with a median
query time of about 5 seconds on a moderate
GPU node.1

1 Introduction

Large language models (LLMs), such as GPT-4
(ope, 2024), have revolutionized the field of arti-
ficial intelligence with their impressive language
understanding and generation capabilities devel-
oped through extensive pretraining on large-scale
textual data.

A key limitation of using pretrained LLMs for
zero-shot answer generation is their lack of ac-
cess to domain-specific knowledge, as these mod-
els rely solely on parametric memory. The fixed
knowledge derived from parametric memory often
leads to hallucinations. To address this issue, Lewis

1Our code is available at https://github.com/
cxcscmu/RAGViz. A demo video of RAGViz can be found at
https://youtu.be/cTAbuTu6ur4.

et al. (2020) introduces retrieval-augmented gener-
ation (RAG), a technique that leverages retrieval
mechanisms to incorporate non-parametric mem-
ory, typically derived from documents retrieved
from domain-specific data stores.

Various systems have been developed to deliver
RAG services. For instance, OpenAI Assistants
(OpenAI, 2024) and Pinecone Assistant (Cordeiro
et al., 2024) are "chat-with-your-files" products that
use retrieved documents as context for a chatbot.
While these RAG systems offer state-of-the-art per-
formance in grounded answer generation, they lack
explainability regarding the efficacy of the context
documents they use to produce those answers.

Some existing tools have been developed to
improve language model explainability, such as
BertViz (Vig, 2019), an open-source Python tool
that provides attention visualizations for trans-
former models. Although such tools effectively
analyze input token importance, they lack a cus-
tomizable approach for analyzing the interaction
between retrieved context documents and language
generation.

In this paper, we propose RAGViz, a diagnostic
tool designed to analyze LLM attention mecha-
nisms on the retrieved documents that provide con-
text to ground LLM answer generation. RAGViz’s
novelty lies in its focus on the interaction be-
tween the retrieval pipeline and the language model.
RAGViz offers attention visualizations based on
different levels of scoring: both cumulative atten-
tion scores on documents and individual token at-
tention scores selected by the user. Along with
document toggling, RAGViz enables users to qual-
itatively assess the effectiveness of retrieved doc-
uments and determine whether they contribute to
hallucinations.

RAGViz’s system primarily relies on CPU nodes,
with the exception of a GPU node that hosts the
LLM inference server. The system entry point is a
web node that hosts the frontend as static content
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(a) LLM generation for the query What is the tallest mountain in the world? The highlighted text shows the selected tokens for
attention visualization. The first generation uses both documents and the second generation uses only the second document.

(b) Initial attention visualization with both context documents. (c) Attention visualization after removal of the first document.

Figure 1: Attention visualization on the selected token sequence when using the document toggling feature.

and routes queries to the main CPU node. This
node forwards the query to worker nodes for doc-
ument retrieval, builds the context, and sends the
request to the GPU node for LLM inference. The
generated answer and associated attention scores
are then returned as an HTTP response to the fron-
tend.

RAGViz achieves efficiency through its dis-
tributed architecture and optimized LLM inference,
partitioning large datasets across multiple nodes
for parallel processing and faster retrieval. It uses
fast inference libraries for low-latency LLM output
generation. Additionally, RAGViz is customizable,
allowing integration with any retrieval pipeline or
attention-based language model architecture sup-
ported by HuggingFace (Wolf et al., 2020), offering
flexibility for diverse research needs.

2 RAGViz Features and Use Cases

This section first examines the innovative features
of RAGViz and outlines its key benefits. Then, a
few potential use cases are explored to demonstrate
how RAGViz can be valuable to researchers and
domain experts.

2.1 Features

RAGViz’s system includes a few key features. One
is the attention visualization on retrieved docu-
ments. RAGViz uses token highlighting to visu-
alize the attentiveness of any generated token se-
quence to input tokens, as shown in Figure 1b. The
level of attentiveness is measured by the attention
score across all layers of the LLM and visualized
by color magnitude. A cumulative document-level
attention score is displayed to showcase the atten-
tiveness of the generation output to each retrieved
passage.

RAGViz also offers a drag-to-select user inter-
face. By simply dragging and selecting, users can
easily inspect the cumulative attention of any token
sequence, as demonstrated in Figure 1a.

In addition to attention visualization, RAGViz
provides document toggling functionality. By tog-
gling, users can select tokens and documents to
omit when constructing the answer generation con-
text. The newly generated answer will be shown
side-by-side with the original answer to provide a
comparative analysis of how adding or removing
tokens and documents affects the LLM output. An
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example of the attention visualization changes after
removing a document is in Figures 1b and 1c.

Furthermore, RAGViz offers the ability to select
a custom number of context documents. Users can
enter the number of relevant document snippets to
retrieve from the dataset. RAGViz also includes
API key authentication, as it implements middle-
ware functions on top of HTTP requests to ensure
that requests are properly authenticated.

2.2 Benefits
Through the features described, RAGViz provides
several key advantages.

Firstly, RAGViz enables precise document effi-
cacy diagnosis through attention-based visualiza-
tions. By examining how LLMs allocate attention
across different retrieved context documents during
generation, users can assess the quality and rele-
vance of the retrieval process. This helps identify
which document contributes meaningfully to the
generated output and which may lead to irrelevant
or hallucinated information.

Secondly, the system’s multi-level attention vi-
sualizations offers flexibility for users to inspect
attentiveness at various levels of granularity. With
its intuitive drag-to-select interface, users can an-
alyze attention not only at the token level but also
at the phrase or sentence level. This allows for a
deeper exploration of how specific sections of the
text influence the model’s output.

Another significant advantage of RAGViz is its
ability to support iterative experimentation with
document context. Through its document toggling
functionality, users can modify the input context
by adding or removing specific documents, and
then compare the resulting generation side-by-side.
This iterative approach helps in understanding how
changes to the context impact the final output, using
attention scores as a heuristic for evaluation.

In addition, RAGViz simplifies comparative
analysis by displaying original and modified out-
puts alongside their corresponding attention scores.
This side-by-side visualization allows users to ob-
serve how variations in input documents affect the
generation, providing valuable insights into the in-
teraction between retrieval and generation.

RAGViz enhances retrieval precision testing by
allowing users to adjust the number of documents
retrieved for a query. This feature enables diag-
nostic testing to determine whether fewer or more
documents are necessary for the model to generate
accurate and well-grounded responses.

RAGViz is also private and secure. Its basic API
key authentication functionality restricts access and
ensures that datasets and models are protected.

2.3 Example Use Cases

RAGViz presents several use cases for researchers
and developers working with RAG pipelines. We
highlight a few of these use cases.

One use case is to analyze the interpretability of
attention mechanisms within large language mod-
els. A key need in RAG systems is to understand
how context is leveraged to produce grounded re-
sults. RAGViz provides a novel tool that enables
researchers to explore the distribution of attention
across different parts of the retrieved snippets, offer-
ing insight into how context documents influence
the generation process.

Another application is to design and evalu-
ate new retrieval mechanisms tailored to RAG.
The ability to visualize attention on documents
in RAGViz provides researchers with a powerful
method to iterate and refine the retrieval process,
facilitating the development of more effective re-
trieval strategies to better support LLMs in ground-
ing their outputs.

RAGViz serves as a valuable tool for debug-
ging RAG pipelines, particularly in diagnosing the
sources of hallucinations. RAGViz can help dif-
ferentiate between hallucinations caused by the
retrieved documents or those stemming from the
LLM’s internal parameters. For instance, if a hal-
lucination occurs when the model shows a high
concentration of attention on specific context doc-
uments, it is likely that the source of the error lies
within the retrieved data. Conversely, if the atten-
tion is not focused on any particular document, the
issue may originate from the model’s own paramet-
ric memory.

Additionally, RAGViz enables domain experts
to assess the effectiveness of various data stores
for RAG-based systems. By visualizing the atten-
tion levels on documents retrieved from different
data stores, users can evaluate which data stores
are most suitable for addressing domain-specific
queries, offering critical insights into the alignment
between the data store and the model’s generation.

2.4 Examples

In this section, we showcase how RAGViz can help
debug RAG pipelines by identifying hallucinations
from parametric and non-parametric memory.
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(a) Initial generation with respect to the query What is HTML?
that includes unnecessary HTML tag information.

(b) Response generated after the document snippet below is
removed. The response is more focused and concise.

(c) A document with HTML tag information that the LLM is attending on to generate the first response.

Figure 2: A demo of RAGViz showcasing RAGViz’s ability to identify and debug external hallucinations.

Figure 3: Visualization for query Why do pigs fly?. The
highlighted generation is not grounded by any context
documents, demonstrating internal hallucination.

Consider the query What is HTML?. The gener-
ated outputs and RAGViz visualizations for such
query are shown in Figure 2. Users might utilize
this query to gain an understanding of HTML and

can use RAGViz to identify the context document
providing the LLM with unwanted information,
such as the HTML tag syntax. Figure 2 shows
that the tag syntax in the generation is being in-
fluenced by a document that mentions the HTML
tag, indicating that the hallucination is caused by
external (non-parametric) memory. After removing
this document and regenerating, the new output
becomes substantially more focused on describing
the concept of HTML rather than the specifics of
syntax.

Figure 3 displays an example of internal hallu-
cination. RAGViz’s attention visualization reveals
that the generated phrase "physical structure" is not
grounded by any retrieved documents but stems
from the LLM’s internal (parametric) memory. In
this way, RAGViz provides qualitative insights into
why different parts of the output were generated.

3 System Architecture

This section introduces RAGViz’s system architec-
ture and its query pipeline. The system has four
main components: the ANN (Approximate Nearest
Neighbor) index for dense retrieval, the backend
server, the LLM inference server, and the frontend
user interface. These components are implemented
separately to allow for configurability. RAGViz’s
system is originally designed for use with a job
scheduler like SLURM (Yoo et al., 2003).
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Figure 4: High-level view of RAGViz’s system architecture. The arrows within nodes represent the model use
or filesystem reads. The arrows between nodes represent REST API calls. Queries are routed to each of the
approximate nearest neighbor search REST servers and then reranked by the context building backend server.

3.1 Dense Retrieval

In dense retrieval, queries and documents are en-
coded into high-dimensional feature vectors, also
known as embeddings. A similarity search using
metrics like cosine similarity or inner product is
then performed to determine the nearest neighbors
of a particular query vector. Significant research
efforts have focused on various Approximate Near-
est Neighbor Search (ANNS) indexing algorithms
(Liu et al., 2004), which reduce search time by ap-
proximating the exact K-Nearest Neighbor search
(KNNS).

For large-scale datasets, storing the embeddings
and hosting an index for ANNS is often unfeasible
on a single machine. RAGViz solves this by using
a distributed system, where partitions of the set of
embeddings are individually indexed and stored on
the SSDs of separate nodes, represented in Figure
4 as worker CPU nodes 1 through i. The worker
nodes each hosts a REST API that accepts query
embeddings and returns the approximated top-k
nearest neighbors in the form of dataset indices.

3.2 Context Builder

These REST API servers receive requests from the
context-building backend server, which handles
all the logic for constructing the language model
context. Its responsibilities include loading the
embedding model, managing backend logic, and
storing the full corpus. This context builder is rep-
resented in Figure 4 as the main CPU node. Once
queries are received and processed by authentica-

tion middleware, they are encoded into embeddings
and routed to all worker nodes to perform ANNS.
The top documents retrieved from the index at each
worker CPU node are then reranked to return the
final top k nearest neighbors of the query in the
whole dataset.

Once these documents are retrieved, a snippeting
technique is applied to extract the portion of the
document relevant to the query. RAGViz provides
two document snippeting methods: naive first and
sliding window. The naive first method represents
a document by its first 128 tokens. The sliding win-
dow method embeds windows of 128 tokens from
the document into vectors and uses the window
whose encoded vector has the highest similarity
with the query to represent the corresponding doc-
ument. Figure 5 shows a diagram of the sliding
window method. This method increases latency
in exchange for better document representation,
based on the assumption that embedding similarity
is correlated with relevance. After snippeting, the
document context is routed to an LLM inference
server.

3.3 Generation and Attention Output

RAGViz’s system requires a node with access to
GPUs, represented in Figure 4 in green, to run LLM
inference tasks. As a first prototype, RAGViz’s
system uses two model libraries. vLLM (Kwon
et al., 2023) is a library for fast LLM inference.
vLLM is used in RAGViz to efficiently generate
text from a prompt created by combining the doc-

324



Figure 5: A demonstration of sliding window snippet-
ing with a window size of 5 and a stride of 2. The
sliding window method chooses the snippet with the
highest inner product similarity. Conversely, the naive
first method always selects the first window shown in
green.

ument context and the query. Since vLLM does
not support attention output, the system then uses
the HuggingFace model library (Wolf et al., 2020)
to pass both input tokens (document context and
query) and output tokens (text generated by vLLM)
through the language model and retrieve attention
scores. These scores are averaged across all heads
and layers for the document window to calculate
cumulative document-level attention scores.

3.4 Frontend User Interface
The frontend user interface is adapted from Search
with Lepton (Jia et al., 2024) and uses the Next.JS
framework (Rauch, 2017). The frontend is built
and exported as static files, which are hosted on
an Apache web server (Fielding and Kaiser, 1997).
The frontend utilizes a form to collect query infor-
mation and other parameters to route to the main
backend node.

Once the attention scores are received from the
backend, they are stored in React states for use in
the attention visualization. As users drag to select
output tokens, the system stores a React state that
lists the selected token indices. For every output

token, the frontend sums the corresponding docu-
ment token attentions and highlights the relevant,
high-attention tokens in the document. The fron-
tend also provides buttons for toggling document
inclusion and routes new queries with updated sets
of documents to a rewrite endpoint.

4 Experiment

This section introduces the chosen configurations
of RAGViz’s system demonstration and presents
efficiency evaluations.

4.1 Datasets and Settings

RAGViz’s demonstration is configured with the
following systems:

Dataset: RAGViz has been tested with
ClueWeb22 (Overwijk et al., 2022) and The Pile
(Gao et al., 2020). ClueWeb22 is a 10-billion-
document dataset collected from information-rich
webpages. RAGViz uses the 80 million English
documents in Category B, which includes the
most frequently visited webpages. The Pile is a
dataset primarily used for language model train-
ing. RAGViz uses the Pile CC training split, which
includes filtered HTML pages from the Common
Crawl (Foundation, 2007). The Pile is used for
the demonstration of RAGViz because of its open-
source flexibility.

Embedding model: We experimented with
Anchor-DR (Xie et al., 2023), an embedding model
trained on a contrastive learning task that matches
anchor text (text referencing information from
linked pages) to those linked pages.

ANNS system: RAGViz uses DiskANN (Ja-
yaram Subramanya et al., 2019), an efficient graph-
based memory-SSD (Solid State Drive) hybrid in-
dexing ANNS system that maintains state-of-the-
art performance in terms of latency and recall.
DiskANN allows RAGViz’s worker nodes to uti-
lize SSDs to reduce memory consumption when
serving the index.

Language model: RAGViz uses Llama-2-
7b (Touvron et al., 2023), an open-source lan-
guage model developed by Meta. Llama-2-7b is
lightweight and is supported by both vLLM and
HuggingFace. The output token limit is set to 100
tokens for faster performance.

The system demonstration was hosted and eval-
uated with the hardware listed in Table 3.
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Function Median latency (s) 95th percentile latency (s)
Embedding model and tokenizer 0.1415 0.1609
Single approximate nearest neighbor search call 0.0654 0.0713
Total ANN search and rerank time 0.0709 0.0769
Fetching documents from embedding indices 0.6092 1.0476
Naive first snippeting 9.1099e-4 1.1354e-3
Model generation from vLLM 1.4571 2.3269
Forward pass for attention outputs 1.1862 1.7459
Total query time 5.3923 7.1314

Table 1: Latency benchmarking. Latency was measured by executing 50 small general knowledge queries on a
RAGViz system that uses the Pile-CC dataset as the data store. The queries have roughly 11 tokens on average.

Metric Similarity Latency (s)
Naive first 0.97463 9.1099e-4
Sliding window 0.97498 8.3699

Table 2: Comparison between snippeting methods. Av-
erage inner product similarity was measured between
normalized query and document snippet vectors from
executing 50 small general knowledge queries. Latency
is measured by the median latency of these queries.

Node Num CPU Cores CPU Memory
Main 1 40 GB
Worker 12 85 GB
Web* 24 384 GB
GPU 1 40 GB

Node CPU Type
Main Intel® Xeon® E5-2640 v3
Worker Intel® Xeon® E5-2630 v3
Web* 2nd Gen Intel® Xeon® Scalable
GPU 1 Intel® Xeon® E5-2620 v4

Node Num GPUs CUDA Memory
GPU 1 48 GB

Node GPU Type
GPU Nvidia RTX A6000

Table 3: Resources used in our experiments. *Web node
is shared by multiple systems outside of RAGViz.

4.2 Efficiency Evaluation

We benchmarked the overall efficiency of RAGViz,
comparing the two snippeting techniques it offers.
Table 1 shows that the system provides reasonable
query latency when using the naive first snippeting
method, with most of the latency stemming from
LLM generation and the forward pass.

The sliding window technique offers a slight
improvement in context relevance, as measured by
the inner product. However, it leads to a significant
increase in latency, as shown in Table 2. The minor
relevance improvement makes it difficult to justify
the substantial tradeoff in latency.

5 Conclusion

RAGViz is a powerful diagnostic tool for analyz-
ing and improving RAG pipelines by providing
detailed visualizations of attention mechanisms at
various levels. Its attention-driven insights help
users better understand the relationship between
retrieved documents and language model outputs,
making it invaluable for identifying hallucinations
and enhancing retrieval efficacy.

As an open-source tool under the MIT license,
RAGViz is available for research and development.
We plan to support custom models in the future,
allowing users to evaluate their own language mod-
els within the RAG pipeline. Additionally, we aim
to improve usability by containerizing services for
more efficient deployment and resource manage-
ment. We will also unify the LLM inference pro-
cess to use one inference library, leading to further
improvements in speed and resource utilization.

6 Limitations

While RAGViz provides valuable visualizations of
attention scores between generated and retrieved
tokens, it assumes that higher attention scores in-
dicate greater relevance and influence during gen-
eration. Further research is needed to evaluate the
relationship between attention scores and model
interpretability to fully determine RAGViz’s effec-
tiveness in improving RAG system explainability.

Currently, RAGViz supports only a single lan-
guage model for generation tasks, limiting its abil-
ity to offer comparative insights across models.
Adding support for multiple models could offer
a more controlled framework for comparative anal-
ysis, enhancing the tool’s diagnostic capabilities.
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