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Abstract

We present ClaimLens, an automated fact-
checking system focused on voting-related fac-
tual claims. Existing fact-checking solutions
often lack transparency, making it difficult for
users to trust and understand the reasoning be-
hind the outcomes. In this work, we address
the critical need for transparent and explainable
automated fact-checking solutions. We propose
a novel approach that leverages frame-semantic
parsing to provide structured and interpretable
fact verification. By focusing on voting-related
claims, we can utilize publicly available vot-
ing records from official United States congres-
sional sources and the established Vote seman-
tic frame to extract relevant information from
claims. Furthermore, we propose novel data
augmentation techniques for frame-semantic
parsing, a task known to lack robust annotated
data, which leads to a +9.5% macro F1 score on
frame element identification over our baseline.

1 Introduction

The proliferation of misinformation and disin-
formation in today’s digital landscape has high-
lighted the urgent need for effective and efficient
fact-checking solutions. Manual fact-checking
is time consuming and is often too slow to stop
the early spread of misinformation. Automated
fact-checking methods have emerged as a promis-
ing approach to combating the spread of false in-
formation. Early approaches formulated queries
for databases (Wu et al., 2014) and knowledge
graphs (Ciampaglia et al., 2015); however, with
the strength of large language models, most of the
existing systems rely on machine learning mod-
els (Nielsen and McConville, 2022; Wang, 2017;
Thorne et al., 2018; Aly et al., 2021) which suf-
fer from a critical limitation: a lack of trans-
parency and explainability. To alleviate this prob-
lem, some systems have incorporated an explana-
tion element (Yao et al., 2023) which generates

explanations for their predictions. But these post-
hoc explanations can result in the model justify-
ing incorrect predictions or hallucinating facts to
justify a correct prediction. The opacity of these
models can lead to a trust deficit, making it difficult
for users–particularly journalists, researchers, and
policymakers–to understand the reasoning behind
the fact-checking outcomes. This limitation is par-
ticularly concerning in high-stakes domains, such
as journalism, healthcare, and finance, where the
credibility of fact-checking results is paramount.

Recent works towards automating fact-checking
are primarily focused on fake news/misinformation
detection (Nielsen and McConville, 2022; Wang,
2017) and fact verification (Thorne et al., 2018;
Aly et al., 2021). Fake news detection is generally
defined as the identification of news containing non-
factual statements, often with malicious intention
to mislead the public (Zhou and Zafarani, 2020).
This is typically done by building models which
look at a combination of features such as linguistic
cues, user statistics, and news sources, without nec-
essarily determining the truthfulness of the state-
ments. Fact verification is the process of verifying
whether a particular claim is true or false given a
piece of evidence (Zeng et al., 2021). Fact verifi-
cation methods assume that the piece of evidence
is given. However, this is not always the case for
real-world claims which are often self-contained
and lack supporting evidence. Thus, to fact-check
a claim, it is necessary to couple fact verification
with an effective evidence retrieval method.

In this work, we explore the use of frame-
semantics (Fillmore and Baker, 2009)—a struc-
tured method of extracting important segments
from a sentence—in evidence retrieval and fact
verification, in order to produce an end-to-end au-
tomated, explainable fact-checking system. Frame-
semantic parsing (Gildea and Jurafsky, 2002) is
the process of automatically identifying semantic
frames (frame identification) and frame elements
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(argument identification) within text. Semantic
frames are structured events, concepts, or scenarios
containing frame elements (FEs) which describe
different roles or entities related to the frame. Se-
mantic frames provide a structured framework for
performing and explaining natural language pro-
cessing tasks and has been previously used for
knowledge extraction (Søgaard et al., 2015), ques-
tion answering (Gildea and Jurafsky, 2002), and
event detection (Spiliopoulou et al., 2017).

This study focuses on voting-related factual
claims, as it is a domain where a large amount
of structured, trustworthy data are available in the
form of voting records. To do this, we utilize the
Vote frame defined in Arslan et al. (2020). Given
a particular voting-related claim, we subject it to
argument identification to extract the Agent, Issue,
and Position FEs, which correspond to the voter,
what they are voting on, and what their position
is, respectively. (An example claim with its FEs
can be found in Figure 1.) The truthfulness of
the claim can be verified by corroborating or refut-
ing the extracted FEs using a database of public
voting records, specifically the United States Con-
gressional voting records in our system.

The database contains a large number of bills
and their descriptions, as well as many congress
members and their voting records on the bills. The
extracted Agent FEs and Issue FEs are matched
with the congress members and bills in the database.
While finding the corresponding congress member
given an Agent FE is straightforward using a simple
keyword search, matching an Issue FE with bills is
considerably more challenging. In this work, we an-
alyze several text search approaches for matching
Issue FEs to their respective bills. To evaluate these
search methods, we collected a new dataset (details
in Section 3.2) of voting-related claims from Politi-
Fact fact-checks and their corresponding bills from
the content of the fact-checks.

To perform the frame-semantic parsing, we use
the system described in Devasier et al. (2024) for
frame identification and build on the work in Zheng
et al. (2023) for argument identification. To over-
come the limited data for the Vote frame in Arslan
et al. (2020), we developed two strategies for data
augmentation, including FE interleaving and FE
permutation (detailed in Sections 3.3.1 and 3.3.2,
respectively). FE interleaving takes two annotated
sentences with the same frame and swaps combi-
nations of FEs between the two sentences to create

Figure 1: Frame-semantic parse using the Vote frame
on a voting-related claim.

new ones. FE permutation uses a single annotated
sentence to create new sentences by reordering the
FEs in the original sentence.

While voting-related claims is a limited scope,
this work can be applied using any frame, given
there is sufficient data available, and we plan to
expand this work in the future into a few other
feasible domains, e.g., verifying claims related
to OECD countries using public datasets on their
GDPs, crime rates, education rankings, and so on.

We summarize our contributions below.
• We developed the first system for fact verifica-

tion using frame-semantics, available at https:
//idir.uta.edu/claimlens/fact-check.

• We proposed novel data augmentation techniques
for frame-semantic parsing, a task that has lim-
ited available data due to its annotation difficulty,
and we provided detailed evaluations on the tech-
niques’ utility using the Vote frame.

• We developed a novel dataset which maps voting-
related fact-checks to their corresponding bills
and performed a detailed analysis on matching
extracted voting issues with their respective bills
using several semantic similarity models. This
dataset and all source code is available at https:
//github.com/idirlab/claimlens.

2 Methodology

2.1 Agent Lookup
Mapping a claim’s Agent FE to a specific congress
member is necessary to verify the voting records of
the person mentioned in the claim. For this process,
we use SQL queries to find congress members who
have names similar to each word in the Agent FE. If
there is a conflict where two results are found with
the same name, we pick the more recent congress
member. There are several challenges that appear
with this stage of the system. First, claims often use
nick names, such as “Sleepy Joe” (used by some
to refer to Joe Biden) or “Meatball Ron” (referring
to Ron DeSantis by some). To address this, we
extracted two lists of commonly used nicknames
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of political figures from Wikipedia (Wikipedia con-
tributors, 2024a,b) as mappings for congress mem-
bers. These lists are not comprehensive, but should
be sufficiently robust. Similarly, many congress
members use or are referred to by shortened names
(Joe instead of Joseph) or different preferred names
(Ted Cruz instead of Rafael Edward Cruz). To
address this, we utilize the list of congress mem-
bers’ preferred names along with a list of common
preferred names for undocumented instances.

2.2 Semantic Bill Search

Finding the bill described by the extracted Issue FE
is a difficult task as the Issue FE can be an abstract
topic (e.g., “gun control”), a specific action or bill
(e.g., “Inflation Reduction Act of 2022”), or the
result of a particular bill (e.g., “preventing women
from getting abortions”). Furthermore, it is often
the case that bills themselves do not mention collo-
quial terms used to describe such bills, e.g, the bill
STOP School Violence Act of 2018 which would
expand access to guns in schools. For these rea-
sons, it is important that evidence retrieval cannot
rely solely on keyword search. To support these
features, we utilize semantic search to match the
semantic meaning of Issue FEs with bills.

2.3 Vote-Claim Alignment

Determining whether a claim is refuted or sup-
ported by a given evidence is yet another difficult
task due to two primary challenges. First, the sys-
tem cannot simply match the vote and the Position
FE since bills may take a positive/negative stance
on an issue, e.g., banning/legalizing it. Second, de-
termining whether a claim is supported or refuted
by a vote on a bill requires a strong understanding
of the bill and its potential implications.

3 Datasets

3.1 United States Congress Dataset

To build our dataset of bills and voting records, we
collected and parsed all bills, votes, and congress
members from the official US voting records. Our
collected voting records include 12,677 congress
members from 1789 until 2024, 271,871 bills from
1973 until 2024, and 6,745,285 votes on 7,055 bills
from 1990 until 2023. We only retain the last vote
cast on each bill to ensure that our records reflect
the congress member’s final stance on a bill. To
enable efficient searching for congress members

Dataset # Train # Test

Bill Match 0 79
Vote Frame 75 21
Vote GPT Negatives 81 24
Vote FE Permutation 290 73
Vote FE Interleaved 3,154 2,808
Vote FE HC Interleaved 1,697 2,808

Table 1: Statistics of model training/evaluation datasets.
HC indicates that all augmentations have a high linguis-
tic acceptability (CoLA score >0.95).

and votes, we store the voting records locally in an
SQLite database.

3.2 Bill Matching Evaluation Set

We collected 1,552 fact-checks which mentioned
some form of “vote” from PolitiFact. From this set
of fact-checks, we manually extracted 193 claims
containing the Vote frame. Each PolitiFact fact-
check includes a list of sources used in the fact-
checking process. We use these sources to con-
struct a new evaluation dataset for the bill matching
model by collecting any URLs to a congressional
rollcall or bill for each fact-check. This resulting
dataset consists of 79 voting-related factual claims
and their corresponding bills used to fact-check
them, and it enables the evaluation of bill matching
systems by mapping factual claims to relevant bills.

3.3 Frame-Semantic Parsing Dataset

Typically, frame-semantic parsing models are
trained using the FrameNet (Fillmore and Baker,
2009) dataset; however, since this study is limited
to voting claims, we only used the Vote frame sam-
ples annotated by Arslan et al. (2020). This dataset
is labeled “Vote Frame” in Table 1.

Because the Vote frame dataset has a limited
number of samples, we chose to augment the
dataset with additional samples to enable more ro-
bust model training. We developed two strategies
to increase the diversity of training data for iden-
tifying frame elements (argument identification)
without the need to manually annotate new sen-
tences, as detailed below. Because the Vote dataset
had very few negative samples, we used GPT-3.5 to
generate additional sentences which contain some
form of vote without evoking the Vote frame (Vote
GPT Negatives in Table 1).
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3.3.1 Frame Element Interleaving

Inspired by computer vision techniques, such as
CutMix (Yun et al., 2019), and continual learn-
ing (Parisi et al., 2019), we interleave sentences
which evoke the same frame by creating new data
by swapping FEs between them. Since FEs share
semantic roles within a sentence, we hypothe-
size that this interleaving of sentences enables our
model to be more robust to sentence context. For
example, consider two sentences with Agent A1

and Issue I1, and Agent A2 and Issue I2, respec-
tively. We create two new sentences with Agent
A1 and Issue I2, and Agent A2 and Issue I1. This
means that for any two sentences with n intersect-
ing frame elements, we can create 2n − 2 new sen-
tences. Table 1 shows the resulting dataset (Vote
FE Interleaved) statistics.

Furthermore, we also experimented with remov-
ing low quality sentences which could be produced
by simply stitching two sentences together. To do
this, we used a RoBERTa-based (Liu et al., 2019)
model finetuned on the CoLA dataset (Warstadt
et al., 2018) which predicts the linguistic accept-
ability of a sentence. We used 0.95 as the positive-
class threshold to determine high quality sentences.
We refer to this subset of samples as Vote FE HC
Interleaved in Table 1.

3.3.2 Frame Element Permutation

Our practical evaluations found that our frame-
semantic parsing model (Section 4.1) tends to over-
fit to the order in which frame elements appear in
a sentence. For example, the model was unable to
correctly identify the Time frame element in the
sentence “In 2002, Joe Biden voted for the Iraq
War” while it was able to identify it in the sentence
“Joe Biden voted for the Iraq War in 2002”. To
help the model learn different orders of frame ele-
ments in a given sentence, we generated additional
sentences using every permutation of the frame el-
ements in a given sentence. This means that if a
sentence has k frame elements, we generate 2k − 1
additional samples. The resulting samples of this
augmentation are referred to as Vote FE Permuta-
tion in Table 1. To generate these permutations,
we prompted GPT-3.5 to rewrite a given sentence
while retaining the same meaning and FEs. De-
tailed results of this process can be found in Ta-
ble 4.

Joe Biden voted for the Iraq WarJoe Biden voted for the Iraq War

BERT Encoder

Issue: The matter which the Agent ... either
votes for or votes against.

Joe Biden voted for the Iraq War

Joe Biden voted for the Iraq War Agent: The conscious entity ... that performs
the voting decision on an Issue.

Agent
start

Agent
end

Issue
start

Issue
end

Joe Biden voted for the Iraq War

Linear Classifier

Figure 2: This figure shows the argument identification
step of our frame-semantic parsing model. Each frame
element is encoded separately with the input sentence
and passed to the model. The embeddings are classified
into start and end positions for the frame element.

4 Models

4.1 Frame-Semantic Parsing Model

To identify voting-related claims by identifying
Vote frames, we utilize the frame-semantic parsing
system described in (Devasier et al., 2024). The
frame identification component follows a generate-
then-filter approach, initially generating candidate
targets based on their lemma. A learned classifier
then filters these candidates, retaining only those
likely to evoke a frame. This two-step method
ensures a balance between coverage and precision,
first casting a wide net and subsequently refining
the selection based on learned patterns.

Our argument (FE) identification model uses an
approach similar to AGED (Zheng et al., 2023).
AGED defines the FE identification task as a text
span identification task wherein a classifier is used
to predict the start and end tokens for each FE.
Deviating from AGED’s approach, we treat each
frame-FE pair as a unique input sample, as shown
in Figure 2, rather than passing all frame elements
in at the same time. This allows the model to indi-
vidually learn each FE and does not assume that the
annotations are complete for all FEs, which may
be the case due to the data augmentation process.

4.1.1 Frame Element Partitioning
The output of the FE identification model consists
of start and end token probabilities for each frame
element. To determine the optimal spans, we evalu-
ate all possible combinations of the predicted FEs.
Unlike the greedy algorithm used by AGED, which
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Model Frame Acc FE Acc FE F1M
Random baseline 0.488 0.254 0.074
Most frequent baseline 0.974 0.372 0.060

Baseline w/o GPT neg. 0.974 0.853 0.613
Baseline 0.981 0.827 0.537

w/ FE itl. 0.998 0.851 0.681
w/ HC FE itl. 0.993 0.854 0.641
w/ FE perm. 0.962 0.845 0.637
w/ FE itl. + FE perm. 0.998 0.875 0.630
w/ HC FE itl. + FE perm. 0.990 0.889 0.708

Table 2: Evaluation of frame-semantic parsing models.
Frame element interleaving and permutation augmenta-
tions are indicated by itl. and perm., respectively.

selects spans with the highest scores, we maximize
the total prediction score across all spans. Thus, it
mitigates the risk of suboptimal selections inherent
in the greedy approach.

4.1.2 Ablation Study
We perform an ablation study on our frame-
semantic parsing system by training the model with
each augmentation for 20 epochs and use the best
performing checkpoints for each resulting model.
To evaluate the overall performance across the test
set we use accuracy for both frame and argument
identification. Because of the imbalanced class dis-
tribution, we also evaluate the performance for each
FE using macro-averaged F1 score. The results of
these experiments can be found in Table 2.

First, we found that using GPT negative samples
slightly improved the frame identification part of
the model, though it led to lower FE accuracy and
macro F1 score. Second, We found that each of
our augmentation methods increased the macro F1
over both baselines. FE interleaving contributed
the most to the performance gain on frame and
argument identification, likely due to the volume
of data generated (40x the original training set),
though there was very little change in FE accuracy.
Limiting the FE interleaving to only sentences with
high CoLA scores showed less improvement. Only
using FE permutation slightly improved the perfor-
mance on FE macro F1 score. Finally, combining
the two strategies improved the system the most,
with high-CoLA interleaving performing the best.

4.2 Bill Search Model

As discussed in Section 2.2, we utilize semantic
search to find bill descriptions which have the high-
est semantic similarity. We experimented with mod-
els trained on two types of similarity metrics, co-

Model Recall @ 10

Dataset Max Baseline 0.5676

msmarco-distilbert-base-tas-b* 0.1760
msmarco-MiniLM-L-6-v3△ 0.1689
msmarco-roberta-base-v3△ 0.1630
msmarco-distilbert-base-v4△ 0.1444
msmarco-roberta-base-ance-firstp* 0.1160
msmarco-distilbert-base-dot-prod-v3* 0.1134

BM25Okapi 0.0475
* Models tuned for dot product
△ Models tuned for cosine similarity

Table 3: Evaluation of different semantic search models.

sine similarity and dot product.
To establish a baseline, we also implemented

a traditional keyword search model using Okapi
BM25, which ranks documents based on term fre-
quency and inverse document frequency, adjusted
for document length. We evaluated the models us-
ing Recall at 10, a metric that indicates the whether
the top 10 results contains the correct bill.

The results, summarized in Table 3, demonstrate
that all semantic search approaches outperform the
BM25 baseline. Notably, models optimized for
cosine similarity generally achieve better perfor-
mance compared to those optimized for dot product.
However, an exception is the DistilBERT-TAS-B
model (Hofstätter et al., 2021), which, despite be-
ing tuned for dot product, showed the best results.

4.3 Claim Alignment Model

To verify claims by aligning them with relevant
legislative votes, we retrieve a list of bills related
to a given issue and analyze the associated voting
records. Ideally, expert human judgment would
be employed for this verification process; however,
Large Language Models (LLMs) provide a practi-
cal and scalable alternative. In this step, we utilize
LLMs to determine the alignment between the con-
tent of the bills, the implications of voting for or
against them, and the stance of the claim.

The primary function of the LLMs in this con-
text is to parse the language and nuances of the
bills and votes, determining whether they support
or contradict the given claim. This involves un-
derstanding the bill’s content, the consequences of
different voting outcomes, and the position stated
in the claim. Furthermore, our system is designed
to generate explanations for each alignment deci-
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Figure 3: An important bill found by our bill search
model on the demo claim. The alignment for this bill is
“Refutes” based on the LLM’s prediction.

Figure 4: Results of our agent lookup function based on
the Agent “Marsha Blackburn”.

sion, providing users with transparent reasoning
behind the conclusions drawn by the LLMs.

We conducted a qualitative assessment to com-
pare the performance of several LLMs, includ-
ing Claude 3 (Opus, Sonnet, and Haiku variants),
Llama 3 (70B), GPT-3.5, GPT-4, and GPT-4o. The
evaluation criteria focused on the models’ agree-
ment with human judgment. Our findings indi-
cated that GPT-4 and GPT-4o, along with Claude
3 Opus, consistently demonstrated a higher con-
cordance with human evaluations than the other
models tested. Given the comparable performance
and a favorable cost-to-performance ratio, we se-
lected GPT-4o for our implementation. We have
included the specific prompt used in Appendix A.3.

5 Demonstration

In this section, we demonstrate the functionality of
our system using the fact-checked claim, “Marsha
Blackburn voted against a military pay raise,” as
cited in (Greenberg, Jon, 2018). The demonstration
showcases the key components of our system, from
claim analysis to evidence retrieval and alignment.

First, the system analyzes the semantic structure
of the claim to identify the key elements, specifi-
cally the Agent (Marsha Blackburn) and the Issue
(military pay raise), as illustrated in Figure 1. The
Agent lookup process involves retrieving informa-
tion about the relevant congress member, including

their unique identifier, an image, and a brief biog-
raphy from Wikipedia, as shown in Figure 4.

Next, the system searches for legislative bills
related to the identified Issue. It retrieves the vot-
ing records of the specified congress member on
these bills. For each relevant bill, the system com-
putes the alignment between the claim and the vote,
utilizing the methodology discussed in Section 4.3.

Figure 3 shows one of the resulting bills from our
bill search model including the bill title/identifier, a
summary of the bill, the congress member’s vote on
the bill, and the alignment of the claim to the bill. In
this example, Marsha Blackburn voted for the De-
partment of Defense Appropriations Act of 2016,
which specifically includes provisions for military
personnel. For this bill, our claim alignment model
determined that this vote refutes the claim because
“The bill summary indicates that the Department
of Defense Appropriations Act, 2016 provides ap-
propriations for Military Personnel, which would
generally include funding for military pay raises.
Marsha Blackburn’s vote was ‘Aye’, meaning she
voted in favor of this bill. Therefore, the claim that
‘Marsha Blackburn voted against military pay raise’
is incorrect as per this voting record.”

6 Conclusion and Future Work
In this work we introduced ClaimLens, the first
system which utilizes frame-semantic parsing for
explainable, automated fact-checking. Addition-
ally, we outlined important challenges and detailed
our methods to solve them, namely on semantic
bill search and vote-claim alignment. We also con-
structed and released our US congress database
and our annotated bill matching evaluation set. Fur-
thermore, we introduced and evaluated two novel
data augmentation techniques for frame-semantic
parsing which significantly improve the model’s
performance. These achievements lay the founda-
tion for explainable, automated fact-checking with
frame-semantics.

In a future study, we aim to expand the scope of
the fact-checking capabilities using other frames
in (Arslan et al., 2020). One such example is the
Occupy_rank frame which is about Items occu-
pying a certain Rank within a hierarchy. For ex-
ample, consider the claim “The U.S. has the 6th
highest poverty rate among OECD countries.” Us-
ing this frame, we could extract “The U.S.” as the
Item, “6th” as the Rank, “poverty rate” as the Di-
mension, and “OECD countries” as the Compari-
son_set. Then, a query could be formed to deter-
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mine whether the claim is true.
We also plan to investigate alternatives to LLMs

for vote-claim alignment due to speed demands for
our system. Specifically, we would like to repre-
sent this as a textual entailment task to utilize the
vast research available on textual entailment meth-
ods. Finally, we would also like to apply our data
augmentation techniques to the original FrameNet
dataset to evaluate of the generalizability of our
augmentation techniques.
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Limitations

One primary limitation of ClaimLens is its han-
dling of coreference resolution for identifying the
Agent Frame Element (FE). The system currently
does not support resolving pronouns like "he" or
"she," focusing only on self-contained claims that
explicitly mention agents. This limitation restricts
the system’s ability to accurately process claims
involving indirect references.

Additionally, while our database includes all roll
call votes for each bill, the system only considers
the final vote. This simplification may omit im-
portant legislative details, such as amendments or
preliminary votes, potentially affecting the accu-
racy of fact-checking. Furthermore, when multiple
individuals are associated with the same Agent FE,
the system defaults to the most recent congress
member, which may not accurately reflect histori-
cal actions.

Another limitation of the database is that it re-
quires additional work to maintain up-to-date vot-
ing records. While this doesn’t cause significant
problems to the deployment of the system, addi-
tional resources are required to automatically mon-
itor the congressional API for new bills, congress

Frame Element Order Old Samples New Samples

Agent, Position, Issue 45 70
Position, Issue, Agent 1 37
Agent, Issue 35 35
Issue, Agent 0 32
Issue, Position, Agent 0 26
Issue, Agent, Position 1 16
Agent, Issue, Position 0 15
Issue, Position, Agent, Time 0 8
Frequency, Agent, Position, Issue 0 7
Time, Agent, Position, Issue 1 7
Agent, Side, Support_rate 4 7
Agent, Position, Issue, Time 4 6
Agent, Position, Issue, Frequency 2 6
Support_rate, Agent, Side 0 6
Agent, Frequency, Position, Issue 2 5
Time, Position, Issue, Agent 0 5
Position, Issue, Frequency, Agent 0 5
Side, Agent, Support_rate 0 5
Position, Issue, Time, Agent 0 5
Frequency, Position, Issue, Agent 0 5
Issue, Agent, Frequency 0 4
Issue, Position, Frequency, Agent 0 4
Position, Issue, Agent, Frequency 0 4
Time, Agent, Issue 2 4
Support_rate, Side, Agent 0 4

Table 4: Detailed statistics of results from FE permuta-
tion augmentation.

members, and votes, if real-time information is
critical.

Finally, the system currently does not incorpo-
rate claim metadata, such as the date when the
claim was made. This limitation may be impact
time-sensitive claims, as the context and accuracy
of a claim can change over time.

Ethics Statement

We acknowledge the potential impact of automated
fact-checking systems on public discourse and
democracy. ClaimLens is designed to be a tool that
supports, rather than replaces, human judgment in
fact-checking. We encourage users, particularly
journalists, researchers, and policymakers, to use
the system as a supplementary resource rather than
a definitive authority. We are also mindful of the
system’s limitations and actively work to prevent
its misuse, such as the dissemination of misleading
information.

A Supplementary Materials

A.1 Detailed UI Information

Figure 5 shows the initial page prompting the user
for an input claim to fact-check.

318

https://doi.org/10.1145/3395046
https://doi.org/10.1145/3395046
https://doi.org/10.1145/3395046


Figure 5: This is the input field to fact-check a claim. Once a claim is entered, the “check” button will run the
system on the claim.

A.2 Detailed Augmentation Statistics

Table 4 contains the detailed results of the frame
element permutation algorithm in Section 3.3.2.

A.3 Model Prompts

We use the following prompt with the Description,
Vote Type and Claim filled in as a prompt to the
LLM:

Given the following factual claim, bill
summary, and vote on the bill, evaluate
whether the content of the bill summary
and the voting record align with the
given claim. You may consider factors
such as the main objectives of the bill
and unintended or implicit consequences.
Your task is to determine if the informa-
tion provided in the bill summary and
the voting record supports or refutes
the given factual claim. Return your
explanation and one of the following
labels in JSON format.

Bill Summary: {Summary}

Vote: {Vote Type}

Claim: {Claim}

Labels:

Supports - The vote on this bill directly
or indirectly supports the claim.

Refutes - The vote on this bill explicitly
refutes the claim.

Inconclusive - The vote on this bill does
not provide enough information to sup-
port or refute the claim.

Irrelevant - The vote on this bill is not
relevant to the claim at all.
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