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Abstract

This paper presents BattleAgent, a detailed
emulation demonstration system that combines
the Large Vision-Language Model (VLM) and
Multi-Agent System (MAS). This novel system
aims to emulate complex dynamic interactions
among multiple agents, as well as between
agents and their environments, over a period
of time. The emulation showcases the current
capabilities of agents, featuring fine-grained
multi-modal interactions between agents and
landscapes. It develops customizable agent
structures to meet specific situational require-
ments, for example, a variety of battle-related
activities like scouting and trench digging.
These components collaborate to recreate
historical events in a lively and comprehensive
manner. This methodology holds the potential
to substantially improve visualization of
historical events and deepen our understanding
of historical events especially from the
perspective of decision making. The data and
code for this project are accessible at https://
github.com/agiresearch/battleagent. The demo
is accessible at https://drive.google.com/file/d/
1I5B3KWiYCSSP1uMiPGNmXlTmild-MzRJ/
view?usp=sharing.

1 Introduction

An agent is defined as a system that has the abil-
ity to perceive its surroundings and make informed
decisions based on these perceptions to achieve spe-
cific objectives (Xi et al., 2023). Recent progress in
large language models (LLMs) (Zhao et al., 2023;
Fan et al., 2023) has demonstrated impressive rea-
soning capabilities (Huang and Chang, 2022; Jin
et al., 2024), indicating their potential to serve as
the foundation for agents. Additionally, the devel-
opment of large Vision Language Models (VLM)
(Zhang et al., 2024) has facilitated the creation of
various agent applications that support multi-modal
information interaction (Durante et al., 2024; Xie
et al., 2024b). When combined with external tools,

either physical or virtual, these agents employ LLM
or VLM as their reasoning backbone to determine
how tasks should be addressed, how tools should be
utilized, and what information should be retained in
memory. This enhancement equips agents to man-
age an array of natural language processing tasks
and engage with their environment using language.

Numerous agent applications have been created
using LLM and VLM, with a focus on improving
reasoning (Du et al., 2023; Chan et al., 2023; Sun
et al., 2023; Liang et al., 2023), production capa-
bilities (Hong et al., 2023; Liu et al., 2023a; Ge
et al., 2023a; Yang et al., 2023; Mei et al., 2024;
Ge et al., 2023b), gaming (Gong et al., 2023; Xu
et al., 2023; Lan et al., 2023; Hu et al., 2024), and
social simulation (Pang et al.; Zhou et al., 2024;
Sreedhar and Chilton, 2024; Xie et al., 2024a; Hua
et al., 2023), among others. WarAgent (Hua et al.,
2023) is the pioneering LLM-based MAS simula-
tion of historical events, examining the behaviors of
systems at the macro level, such as nations and gov-
ernments, rather than the micro-level simulation of
detailed and dynamic events occurring during bat-
tles or individual experiences in such dynamic time
periods. Therefore, BattleAgent, building on the
foundation laid by WarAgent in historical event
simulation, investigates the potential of LLM and
VLM for detailed historical situation recovery and
the exploration of individual experiences within the
simulation.

To emulate such a complex scenario, our emula-
tion incorporates the following three key features:
Enhanced 2-D Realism Features: BattleAgent
emulates detailed interactions within environments,
including terrain engagement, temporal progres-
sion, and interactions between agents.
Immersive Multi-agent Interactions: It integrates
MAS to facilitate dynamic interactions among
agents in battle emulations, accurately reflecting
the historical milieu and the intricacies of military
engagements, from strategic maneuvers to logisti-
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Figure 1: Demonstration of the emulated Battle of Crécy, 1346: Troop formations and movements depicting the
positions of the English and French forces during the historical engagement, with key locations and leaders marked.

Image adjusted from https://the-past.com/feature/the-battle-of-crecy-26-august-1346/

cal considerations and communication dynamics.
Dynamic Agent Structure: The framework in-
troduces adaptable agent configurations and multi-
modal interactions. The system can “self improvise”
its structure to fork, merge, and prune agents to con-
tinuously maintain the emulation effectiveness. It
boasts the capability to autonomously adjust its
architecture to optimize emulation fidelity.

The contributions of our study to historical anal-
ysis and society can be summarized as follows:
Connection and resonance with the past: Help-
ing to prevent future conflicts by learning from the
detailed analysis of past mistakes and human costs.
This platform fosters empathy and a deeper con-
nection to the past by humanizing the experiences
of those involved in historical battles.
Educational tool for understanding history: Pro-
viding an educational tool to help people under-
stand the intricacies of history and the harsh re-
alities of historical events. Its immersive and in-
teractive platform can foster empathy and a more
nuanced perspective on the past, making it a valu-
able resource for students and history enthusiasts.
Potential as a next-generation game engine: Pro-
viding a fully automated process to create immer-
sive and dynamic historical emulations, making it
a potential next-generation game engine. By using
LLM-based agents and VLM-based agents, it can

generate detailed and realistic environments, char-
acters, and events, offering a unique and engaging
gaming experience.

2 Emulation Setting

This section outlines the emulation framework and
setting for our research demonstration. We com-
mence with an exposition of the historical context
of the four significant European battles that our em-
ulation seeks to emulate: the Battle of Crécy, the
Battle of Agincourt, the Battle of Poitiers, and the
Battle of Falkirk. Each battle has been selected for
its notable use of cold weapons and the strategic
bipartite confrontations that characterized warfare
during their respective periods. Building upon the
historical context, we elaborate on the configura-
tion of agents and their designated roles within our
emulation framework.

2.1 Agent Definition

Each agent represents an army. Decisions and
strategies of the agent will be made based on the
general information in the army profile, which in-
cludes the following aspects: (1) ID: The ID of a
agent is represented by a hash code that is generated
to uniquely identify each agent within the emula-
tion sandbox. This is necessary due to the dynamic
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agent structure employed in our emulation, which
allows for the creation of additional agents beyond
the initial (two) agents as the emulation progresses.
The use of a hash code ensures that each agent can
be accurately identified and tracked throughout the
course of the emulation. (2) Military Command
Structure: This involves the hierarchical organiza-
tion and leadership dynamics within each military
faction. (3) Morale and Discipline: An assess-
ment of the troops’ psychological readiness, their
discipline levels, and overall morale. (4) Military
Strategy: The overarching tactical approaches and
plans employed by each side in the conflict. (5)
Military Capability: An inventory of the weapons
and defense tools at each side’s disposal. (6) Force
size and composition: This aspect includes the
total number of soldiers and their composition in-
cluding information about the types of troops, their
roles, and their proportions in the overall force.
(7) Location: The current location of the agent is
represented by its coordinates. These coordinates
provide a precise indication of the agent’s position
within the sandbox environment, allowing for ac-
curate tracking and analysis of its movements and
interactions with other agents and the environment.

2.2 Action Space

Our emulation framework contains an action space
with 51 distinct actions. Agents within the emula-
tion have the flexibility to select any combination
of these actions at each decision point. The actions
available in the action space are organized into six
categorically distinct groups: (1) Reposition. This
category includes actions that involve the move-
ment of an army or a subsection thereof to a dif-
ferent location: Reposition Forces, Create Decoy
Units (2) Preparation. Actions in this group are
geared towards readying forces for an impending
attack: Deploy Longbows, Rally Troops, Employ
Artillery, Use of Gunpowder Weapons, Resupply
Archers, Destroy Enemy Morale, Deploy Archers
in Flanking Positions, Organize Night Raids, Orga-
nize Raiding Parties, Digging trenches (3) Attack.
This group encapsulates a variety of common attack
strategies, such as skirmishing, ambushing, besieg-
ing, cavalry charges, and direct firing, among oth-
ers: Initiate Skirmish, Charge Cavalry, Ambush En-
emy, Launch Full Assault, Archery Duel, Siege Tac-
tics, Hand-to-Hand Combat, Counterattack, Con-
duct Reconnaissance, Direct Artillery Fire, Engage
in Siege Warfare, Execute Flanking Maneuvers,
Use Cavalry for Shock Tactics, Employ Archers

Strategically (4) Defense. Encompasses actions
such as shielding, fortification, and the creation of
obstacles: Construct Defenses, Prepare Defenses,
Develop Counter-Siege Measures, Form Defensive
Shields, Establish Defensive Fortifications, Fortify
Rear Guards, Fortify Position, Create Obstacles for
Enemy Cavalry, Form Defensive Pike Formations,
Set Traps (5) Observation. Focused on gathering
information about the surrounding area and the cur-
rent situation of the enemy: Scout Enemy Position,
Gather Intelligence, Intercept Enemy Supplies, Es-
tablish Communication Lines (6) Retreat. Actions
related to strategic withdrawal in the face of ad-
verse conditions: Retreat and Regroup, Tactical
Retreat, Plan Feigned Retreat

3 Emulation Sandbox

In our emulation framework, we concentrate on
a relatively straightforward scenario: a bipartite
battle. The process begins with (1) setting up the
geographical context for the entire scenario, both
textual description as well as a visual map, and (2)
define the two initial opposing agents, each repre-
sents the army of one country. This section will
introduce the emulation process: we first present an
overview of the sandbox emulation process from a
high-level perspective and then delve into the de-
tails of the process. This includes how time and
location are represented and processed, how agent
actions are determined, and how the results of these
actions are computed.

3.1 General Sandbox Emulation Process

Here we provide a very simple and crude overview
of the emulation sandbox. We initiate the emula-
tion based on historical map which contain infor-
mation about geography as well as the position of
the armies. The following represents a high-level
overview of the steps involved in the emulation
process: Step 1: Each agent starts by observing
its surroundings and gathering information. This
observation process involves text-based description
of overall environment which are inputted to the
agent by prompt as well as direct visual informa-
tion taking the map as input. Step 2: Based on
the gathered information, each agent decides on its
actions, such as preparing for battle (e.g., digging
trenches, reinforcing troops), collecting further in-
formation, or making organizational changes to dy-
namically split armies into smaller units or merge
armies with other allied armies. Step 3: For every
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Figure 2: Battlefield interaction (a) Battlefield environment, (2) Quantized time management, (c) Agent-environment
interaction, and (d) Agent and enemy agent interaction.

15-minute interval in the emulation sandbox, agent
information such as their locations and properties
and corresponding visual change in map is updated
according to the actions taken by all agents. Step
4: An objective LLM-based observer computes the
impact of agent actions especially casualty loss in
agent. Step 5: The process then loops back to Step
1, with agents continuing to observe, make deci-
sions, and act based on the updated information
and evolving battlefield situation.

3.2 Time and Space in Sandbox

In order to accurately emulate the dynamics of
historical battles, it is crucial to effectively manage
the time and space within the sandbox environment.
In this section, we introduce our approach to time
and space management in the sandbox.

Quantized Time Management The battlefield
environment is characterized by continuous dy-
namic changes. Therefore, to emulate these dynam-
ics while preserving the discrete decision-making
process in our agent-based emulation, we employ
a time quantization approach. Specifically, we dis-
cretize the continuous flow of time (Matsuoka et al.,
2001; Al Rowaei et al., 2011) into 15-minute in-
tervals in sandbox. For each quantized time block,
agents have the flexibility to either maintain their
current action or adapt their actions.

Coordinate Generation based on Map We ob-
tain the initial map of the battlefield from histori-
cal documents (Kiffer, 2019; Curry, 2000). These
agents take both textual description of the map as
well as the visual map as input (for agents with
multi-modal LLM as backbones). Thus we need to
generate the coordinates from the original image
for description. We use one army position as the
reference point, designated as the (0,0) position.
We then use a scale of 10 yards as one unit of the
coordinate system. The coordinates of key land-
scapes on the map such as villages and castles and
their distances with each other and with agents are
estimated and provided.

3.3 Action Planning

At each discrete time point, an agent has the ability
to choose from a multitude of potential actions. In
this part, we will outline four common types of ac-
tions that agents typically engage in: location move-
ment, dynamic agent structure, interaction with the
landscape, and interaction with other agents. These
actions require a range of strategic considerations
that agents must take into account when making
decisions in the context of the battlefield.

Location Movement In the context of location
movement, an agent possesses the capability to tra-
verse to a different location for strategic purposes.
This may involve moving closer to enemy agents
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to initiate an attack, or distancing itself from poten-
tial threats. In terms of the mechanics of location
movement, the agent will generate the coordinates
of its intended final destination, which it aims to
reach within the subsequent 15-minute timeframe.

Dynamic Agent Structure The battlefield envi-
ronment is highly dynamic and fluid, with a multi-
tude of situations arising unpredictably. To address
this complexity, we propose a dynamic agent struc-
ture (Liu et al., 2023b; Han et al., 2024) that enables
agents to adapt their organizational configurations
according to the current situation. Our proposed
dynamic agent structure supports several adaptive
mechanisms, as shown in Figure 3:

Figure 3: Dynamic agent structure.

Fork: An agent may decide to fork another au-
tonomous agent for a specific task, splitting its
forces and allocating resources to address multiple
objectives simultaneously. Merge: In scenarios
where an agent is under significant pressure but
chooses to continue fighting, it may merge with
the closest allied agent to consolidate forces and
enhance its resilience. Prune: In cases where an
agent is overwhelmed or retreats from the battle-
field, the dynamic agent structure accommodates
this change by pruning it from the active force.

Each newly created agent will inherit profile in-
formation of the country army that it belongs to,
but also includes more granular and unique infor-
mation: (1) Initial mission assigned when being
created (2) Current location represented by coor-
dinates (3) The number of soldiers at its disposal
(4) The type of soldiers under its command. These
properties are subject to evolution over time. For
instance, the number of soldiers associated with an
agent may fluctuate as soldiers joining the agent,
thereby increasing its forces, or from soldiers being
killed or wounded in battle, leading to a decrease
in its forces. The current location of the agent may
also change as it navigates the battlefield, and its
initial mission may adapt in response to shifting
circumstances and strategic considerations.

Interaction with Landscape Environment To
accurately emulate battle dynamics, it is crucial for
agents to be able to interact with the physical sur-
roundings as shown in Figure 2 (c), such as rivers,
forests, villages, and other features. For exam-
ple, when encountering a river, agents may build
a bridge to cross it; when encountering a forest,
agents might choose to hide within it to ambush
enemies; and when encountering a village, agents
could decide to circumvent it. To facilitate these
interactions, it is essential to maintain a relative
distance between agents and specific locations on
the map, as well as between agents themselves.

Interaction with Other Agents Given the obser-
vation agents make about their surrounding situa-
tions, agents will make decisions regarding whether
and when to engage in interactions with other
agents, particularly those identified as enemies, as
depicted in Figure 2 (d). The specific nature and
timing of these interactions are not predetermined;
rather, they are initiated by the agents themselves.
For instance, when an enemy agent is within close
proximity, an agent may opt to engage in combat or
launch an attack. The outcome of these interactions
between agents is contingent upon various factors,
such as the number of soldiers at their disposal and
the types of weapons they possess.

3.4 Casualty Evaluation by Observer

In the event that one agent initiates an aggressive
action towards another, hereafter referred to as
the target agent, both parties may sustain casualty
losses. The loss is evaluated by an objective evalu-
ator supported by GPT-4, which can be seen as an
observer. The observer determines the casualties
based on several factors: (1) Current information
of the agents, including their force size, force com-
position, and command architecture. (2) The ac-
tions undertaken by the agents, including the action
name and a more detailed description of the action
generated alongside the action name by the agent.
For example, “Deploy Longbows: Deploying long-
bows in coordination with nearby friendly forces
to initiate a skirmish against the nearest enemy
cavalry unit and disrupt their advance.” (3) The
location and relative distance between the agents,
as well as relevant landscape information surround-
ing them. (4) Objective information about the spe-
cific weapon utilized, including weapon parame-
ters, such as range and damage.
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Evaluation aspect Description
Final battle casualty Comparison with historical data, focusing on the final casu-

alty figures for both armies
Human analysis on location
movement

Assessment of the dynamic structure of agents and their
movement on the battlefield as a whole

Human analysis of agent ac-
tion

Evaluation of the reasonableness of the actions conducted
by the agents.

Table 1: Three aspects of evaluation and demonstration.

Battle Model France/Scotland England

Casualties Historical
Casualties Casualties Historical

Casualties
Crécy Claude-3 19.2k ± 8.3k 10k - 30k 7.7k± 2.5k 100 - 300

GPT-4 10.1k±2.5k 3.8k± 2.0k
GPT-4-vision 14.0k ± 2.5k 4.5k ± 2.0k

Agincourt Claude-3 27.5k ± 5.0k 4k - 10k 5.7k ± 0.1k 0.1k - 1.5k
GPT-4 5.3k ± 0.4k 2.8k ± 0.1k
GPT-4-vision 8.3k ± 0.1k 2.9k ± 0.1k

Poitiers Claude-3 10.1k ± 2.3k 5k - 7k 3.6k ± 1.3k 40
GPT-4 6.8 k ± 1.0k 1.9k ± 0.7k
GPT-4-vision 4.8k ± 1.8k 2.3k ± 0.5k

Falkirk Claude-3 5.4k ± 0.4k 2k 8.1k ± 1.6k 2k
GPT-4 2.2k ± 1.0k 1.9k± 0.7k
GPT-4-vision 2.0k ± 1.3k 1.9k ± 0.9k

Table 2: Casualties in historical battles predicted by different models with mean and standard deviation

4 Experiment

The primary objective of these experiments is to in-
vestigate the extent to which agents based on LLMs
and VLMs can reasonably emulate historical bat-
tles, which are characterized by a high degree of
complexity and dynamism. We conduct experi-
ments on 4 distinct historical scenarios, namely the
Battle of Crécy, the Battle of Agincourt, the Battle
of Falkirk, and the Battle of Poitiers. The experi-
ments are performed using 3 strong language mod-
els and vision-language models: Claude-3-opus
(Anthropic, 2024), GPT-4-1106-preview (Achiam
et al., 2023), and GPT-4-vision (OpenAI, 2023).
For each scenario and each language model, we ex-
ecute the emulation 5 times using the same setting
to account to randomness, continuing until the ca-
sualty figures for both armies converge, or in other
words, reach a state of stability.

We employ three evaluation metrics as described
in Table 1. The final battle casualty metric quan-
titatively assesses whether the simulation’s final
prediction of losses aligns with historical records.
Given the challenge of directly evaluating the va-
lidity or authenticity of the simulation process due
to the typical scarcity of detailed historical docu-
mentation, we rely on evaluating the final casualty

results. Table 2 presents a comparison of the em-
ulated casualties and historical casualties for all
experiments, with more detailed results provided
in Appendix A.2. The evaluation of location move-
ment and agent actions is based on human analy-
sis and visualization, with example visualizations
available in Appendix A.1 and Appendix A.3 re-
spectively. In general, we observed that current
LLMs exhibit a limited understanding of distance,
which affects location movement decisions.

5 Conclusions and Future Work

In this study, we have demonstrated the potential of
LLM and VLM to support highly complex and dy-
namic simulations of historical battles. Our emula-
tion sandbox provides a comprehensive evaluation
of the emulated battles, including a comparison of
casualty figures with historical data and a human
analysis of the strategies and tactical maneuvers
employed by both armies. We believe that our
work can also provide new pedagogical methods
for students and researchers interested in histori-
cal analysis. By simulating historical battles and
presenting the results in an interactive and intuitive
way, students can gain a deeper understanding of
the complexities and dynamics of warfare.
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Limitations

The present study has illustrated the potential of
Large Language Models (LLMs) and Visual Lan-
guage Models (VLMs) in facilitating intricate and
dynamic simulations of historical battles. However,
as a pioneering work in complex situational event
simulation, there are several areas that warrant im-
provement and further development.

Firstly, the current evaluation methods are con-
strained. Quantitative evaluation is predominantly
limited to casualty counts, particularly at the con-
clusion of battles. For other aspects, such as the
decisions made by agents and their movements,
the analysis is heavily reliant on manual methods.
Therefore, there is a need for additional evalua-
tion metrics to comprehensively establish the ef-
fectiveness of these dynamic simulations. Such
metrics would enable a more thorough assessment
of the accuracy and reliability of the simulation
results and help identify areas for enhancement.

Secondly, the current scope of our simulation
is restricted to different types of battles beyond
barpitite medieval battles. Future work should
aim to extend these simulations to a more diverse
range of scenarios. This expansion will allow for
a more robust evaluation of the versatility of our
approach and its applicability to a broader spectrum
of historical battles.

Thirdly, the current system does not integrate
expert systems for various components of the sim-
ulation, such as information gathering for observa-
tion and casualty estimation. Incorporating such
systems would enhance the accuracy and realism of
the simulation results, while LLMs would continue
to be responsible for decision-making processes.

In summary, our future work aims to extend and
refine our approach to provide even more realistic
and comprehensive simulations of historical battles.
This will involve capturing the complexities and
dynamics of warfare and offering valuable insights
into the strategies and tactics employed by both
armies.
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A More Experiment Result

A.1 Human analysis on location movement

Figure. 4 illustrates the general agent location dynamics of a single emulation of the Battle of Crécy using
GPT-4. The English army is represented by red symbols, while the French army is represented by blue
symbols. The sizes of the symbols are normalized to correspond to the number of soldiers contained in
each agent. Different line types represent different types of agents.

Figure 4: All agent movement and dynamic agent structure on battlefield.

At a glance,
we can observe
that as the emu-
lation progresses,
both armies are
gradually split
into smaller
teams, especially
the English army.
In particular,
some longbow-
men tend to
maintain a safe
distance from
the enemy for
extended periods,
using their long-
bows to inflict
casualties from
afar. As time
progresses, the advantage of the French army’s larger number of soldiers is diminishing over time,
particularly in the case of the heavy cavalry and heavy knights. This is likely due to the effectiveness of
the English longbowmen in inflicting casualties from a safe distance, as well as the challenging terrain of
the battlefield, which made it difficult for the heavily armored French knights to maneuver effectively.

To further evaluate the performance of the LLMs and VLMs in simulating historical battles, we can
examine the paths taken by individual agents over time. This can provide insights into whether these
models have a good sense of distance and can make reasonable decisions based on the overall environment.

A.2 Final Battle Casualty

Each of the four series of figures illustrates the time-series casualty data at each quantized time interval
for the models Claude-3, GPT-4, and GPT-4-vision, presented from left to right. Within each image, the
mean and standard deviation of casualties for both parties are displayed. Generally, it is evident that the
Claude-3 model generates simulations resulting in significantly higher casualty figures compared to the
other two models.

Figure 5: Battle of Crecy
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Figure 6: Battle of Agincourt

Figure 7: Battle of Poitiers

Figure 8: Battle of Falkirk

A.3 Human analysis on agent action
Figure 9 provides an illustrative example of the actions undertaken by two agents, one representing a
part of the army belonging to England and the other representing a part of the army belonging to France,
throughout the entire emulation time. The English agent’s cautious approach is reflected in its movements
and actions, while the French agent’s aggressive strategy is evident in its frequent attacks and resulting
losses. This example provides a reasonable representation of how historical battles may have unfolded.

{9418a275: Initiate Engage}

{8e746105: Cavalry Charge}

{9418a275: Archery Duel - Engage}

{8e746105: Cavalry Charge - Execute}

{9418a275: Tactical Retreat}

{8e746105: Charge Cavalry - Support}

{9418a275: Fortify Position}

{2508af97: Fortify Position
 - Consolidate}

{8e746105: Cavalry Charge - Aggressive}

{9418a275 : Fortify Position - Strengthen}

{2508af97: Fortify Position - Maintain}

{8e746105: Charge Cavalry
- Engage}

{9418a275 : Fortify Position - Strengthen}

{2508af97: Fortify Position - Continue}

{3a888d8f: Execute Flanking}

{3a888d8f: Execute Flanking}

{9418a275 : Fortify Position - Strengthen}

{2508af97: Ambush enemy} {3a888d8f: Execute Flanking}
{3a888d8f: Execute Flanking}

{9418a275 : Fortify Position - Strengthen} {9418a275 : Fortify Position - Strengthen}

Figure 9: Agent action tracker over time.
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