
The Seventh Workshop on e-Commerce and NLP (ECNLP 7), pages 97–114
21 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

97

STA: Self-controlled Text Augmentation for Improving Text
Classifications

Congcong Wang†*, Gonzalo Fiz Pontiveros‡, Steven Derby‡, Tri Kurniawan Wijaya‡
† School of Computer Science, University College Dublin, Dublin 4, Ireland

‡ Huawei Ireland Research Centre. Georges Court, Townsend St, Dublin 2, D02 R156, Ireland
†congcong.wang@ucdconnect.ie

‡{gonzalo.fiz.pontiveros, steven.derby, tri.kurniawan.wijaya}@huawei.com

Abstract
Despite recent advancements in Machine Learning, many tasks still involve working in low-data regimes which can
make solving natural language problems difficult. Recently, a number of text augmentation techniques have emerged
in the field of Natural Language Processing (NLP) which can enrich the training data with new examples, though they
are not without their caveats. For instance, simple rule-based heuristic methods are effective, but lack variation in
semantic content and syntactic structure with respect to the original text. On the other hand, more complex deep
learning approaches can cause extreme shifts in the intrinsic meaning of the text and introduce unwanted noise into
the training data. To more reliably control the quality of the augmented examples, we introduce a state-of-the-art
approach for Self-Controlled Text Augmentation (STA). Our approach tightly controls the generation process by
introducing a self-checking procedure to ensure that generated examples retain the semantic content of the original
text. Experimental results on multiple benchmarking datasets demonstrate that STA substantially outperforms
existing state-of-the-art techniques, whilst qualitative analysis reveals that the generated examples are both lexically
diverse and semantically reliable.

Keywords: Natural language processing, text generation, data augmentation

1. Introduction

A variety of tasks such as Topic Classification
(Li and Roth, 2002), Emotion Detection (Saravia
et al., 2018) and Sentiment Analysis (Socher et al.,
2013) have become important areas of research
in NLP. Such tasks generally require a consider-
able amount of accurately labelled data to achieve
strong performance. However, acquiring enough
such data is both costly and time-consuming,
hence making it rare in practice. This has moti-
vated a vast body of research in techniques that
can help alleviate issues associated with low-data
regimes.

A popular augmentation approach involves the
use of rule-based transformations, which employ
intuitive heuristics based on well-known paradig-
matic relationships between words. For instance,
by using a lexical-semantic database such as
WordNet (Miller, 1995), researchers can make ra-
tional and domain-specific conjectures about suit-
able replacements for words from lists of known
synonyms or hyponyms/hypernyms (Wang and
Yang, 2015; Wei and Zou, 2019; Feng et al., 2020).
Whilst these substitution-based approaches can
result in novel and lexically diverse data, they also
tend to produce highly homogeneous structures,
even when context-free grammars are used to gen-

*The author completed this work during his intern-
ship at Huawei Ireland Research Center.

erate more syntactically variable examples (Jia and
Liang, 2016).

The recent success of pretrained transformer lan-
guage models such as BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019) has helped facil-
itate more robust strategies for dealing with low-
resource scenarios: Conditional text generation.
Large language models — typically trained on a
vast corpus of text — contain a rich understanding
of syntactic structure and semantic phenomena
and thus are well suited for faithful domain-specific
generation (Petroni et al., 2019). Indeed, large
language models have been employed to great
success (Kobayashi, 2018; Wu et al., 2019; Anaby-
Tavor et al., 2020; Kumar et al., 2020) to synthe-
size highly diverse training examples resulting in
stronger downstream performance in low-resource
settings. However, the use of diverse neurally-
generated data may come at the cost of introducing
semantic discrepancies, which can cause misalign-
ment between the generated samples and their
intended labels. Ideally, the optimal augmenta-
tion method would be one that satisfies both Lex-
ical/Syntactic Diversity and Semantic Fidelity
(reliable alignment between semantic meaning and
class label).

In this paper, we propose a novel strategy —
self-controlled text augmentation (STA) that aims
to tightly control the generation process in order to
produce diverse training examples which retain a

98

high level of semantic fidelity. Following previous
work, we fine-tune a state-of-the-art sequence-to-
sequence transformer model, in this case T5 (Raf-
fel et al., 2020), using a dataset containing only
a limited number of samples and generate new
samples using task-specific prompting, which has
been shown to be effective in low-resource sce-
narios (Le Scao and Rush, 2021). While similar
approaches have been deployed in previous work
(Anaby-Tavor et al., 2020), our novel strategy ef-
fectively utilizes Pattern-Exploiting Training (Schick
and Schütze, 2021a,b) by employing templates
of verbalization-patterns that simultaneously direct
the generation process and filter noisy labels within
a single unified framework. Experimental results on
multiple benchmarks demonstrate that STA outper-
forms existing state-of-the-art augmentation tech-
niques. Furthermore, examining the quality of the
augmented data reveals better diversity and fidelity
as compared to the existing techniques.

2. Related Work

Various text augmentation techniques have been
proposed in the literature (Feng et al., 2021).
Zhang et al. (2015) and Wei and Zou (2019) use
simple operations like synonym replacement, ran-
dom insertion, swap, and deletion to generate new
samples. Feng et al. (2020) further explores these
substitution techniques for text generation. In con-
trast, Wang and Yang (2015) and Kobayashi (2018)
use word embeddings and contextual language
models, respectively, to replace words or phrases
with semantically similar concepts.

Back translation is another effective method for
text augmentation, transforming sentence between
languages (Sennrich et al., 2016; Shleifer, 2019).
Recently, researchers have explored the use of
pretrained transformer-based language models for
conditional text augmentation to generate novel
sentences from the original data (Wu et al., 2019;
Anaby-Tavor et al., 2020; Kumar et al., 2020).
For instance, Wu et al. (2019) leveraged BERT’s
masked language model, while Anaby-Tavor et al.
(2020) fine-tuned GPT-2 to generate novel sen-
tences and filter out noisy ones using a jointly
trained classifier with some success in tackling
the label misalignment problem. Similarly, Kumar
et al. (2020) studied conditional text augmentation
using transformer-based models, with BART out-
performing other methods in low-resource settings

Building upon ideas presented in the GPT series
(Radford et al., 2018, 2019; Brown et al., 2020;
Ubani et al., 2023), prompt-based templates have
become and effective approach for eliciting latent
knowledge from language models to great success
(Trinh and Le, 2018; Petroni et al., 2019; Davison
et al., 2019; Talmor et al., 2020; Le Scao and Rush,

2021). For example, Wang et al. (2021) proposed
using GPT-3 for text augmentation with zero-label
learning, with results that were competitive when
compared to fully supervised approaches. Yoo
et al. (2021a) instead generate augmented text
examples by using soft-labels from GPT-3 to distil
the knowledge. More recently, (Ubani et al., 2023)
investigated the use of ChatGPT-generated data
for augmenting training data via prompting in low-
resource scenarios, surpassing existing methods
with task-specific prompts. More closely related to
our instruction-based generation strategy, Schick
and Schütze (2021b) propose GenPet which is
used to directly tackle a number of text generation
tasks rather than text augmentation itself. In their
work, which builds upon previous research PET
(Schick and Schütze, 2021a), the authors alter the
text inputs to form cloze-style questions known as
prompting training (Liu et al., 2021), demonstrating
improved performance on few-shot downstream
tasks. Finally, researchers have proposed an array
of techniques aiming to systematically engineer
the structure of these templates beyond ad hoc
human intuitive reasoning: For example, using au-
tomated template generation for the tasks (Shin
et al., 2020; Gao et al., 2021), trained end-to-end
with soft-prompts (Lester et al., 2021; Gu et al.,
2022) or designed from sub-prompts created by
decomposing prior task knowledge into rules (Han
et al., 2022).

Our approach differs from prior work by using
task-specific templates as verbal prompts for gen-
eration and classification which signal the model’s
objective. The model itself is self-controlling, gen-
erating novel data and retaining only the most con-
vincing examples using a classification template to
ensure semantic fidelity.

3. Method

In this section, we describe our novel self-
controlled approach for text augmentation in text
classification (STA). Figure 1 illustrates the work-
flow of STA and Algorithm 1 states STA in simple
terms. At a high level, STA first finetunes a pre-
trained sequence-to-sequence (seq2seq) model
using a dataset which implicitly includes genera-
tion and classification tasks.

3.1. Pattern-Exploiting Training in
seq2seq Models

PET is a finetuning technique for text classifica-
tion tasks in masked language models, as demon-
strated in (Schick and Schütze, 2021a). By convert-
ing inputs into cloze questions, PET enables accu-
rate classification with minimal labeled data. In this
paper, we extend the principles of PET to seq2seq

99

Generated
Candidate

Dataset

Generation template

Classification template

Seq2Seq
TransformerOriginal

Dataset

Step 2: Fine-tuning

Generation template Classification template
Seq2Seq

Transformer

Step 4: Self checking and selection

Generated
Dataset

+
Step 3: Generation

+

+

Training

Inference

Step 5: construction

Step 1: Conversion
Training
Dataset

Figure 1: The architecture of our Self-controlled Text Augmentation approach (STA). The upper portion
outlines the finetuning component of our method (Training), whilst the lower portion demonstrates our
procedure for generating novel data (Inference). STA is highlighted by using the generation template and
classification template for fine-tuning a seq2seq transformer model. The generation template is used for
generating samples and the classification template is used for self-controlling and selecting the generated
samples.

Algorithm 1 :Self-Controlled Text Augmentation

Require: Original dataset Do. Generative model
M . Generation template G. Classification tem-
plate C.

1: Convert Do to training dataset Dt via G and C.
2: Finetune M on Dt in a generation task and a

classification task jointly to obtain Mt.
3: Use G and Mt to generate candidate dataset

Dc.
4: Apply Mt to do classification inference on Dc

with C to select the most confident examples.
5: Form the final generated dataset D∗ with the

selected examples.

autoregressive models, presenting a novel strategy
for prompting-based generation and our innovative
self-controlled approach.

Consider a pretrained seq2seq autoregressive
transformer model denoted as M (we use T5 (Raf-
fel et al., 2020) in our experiments). This type
of model comprises an encoder-decoder pair,
where the encoder takes an input sequence s and
generates a contextualized encoded sequence s.
The decoder then takes the encoded sequence
and the current subsequence t : {t1, t2, ..ti−1}
as input to compute the conditional distribution
pM (ti|t1:i−1, s) for the subsequent token in the se-
quence. Given s, the possible target sample (a
sequence) t : {t1, t2, ..., tm} can be obtained via
the factorization:

pM (t1:m|s) =
m∏
i=1

pM (ti|t1:i−1, s) (1)

Let Do = {(xi, yi)}|ni=1 be a dataset for text clas-
sification where xi ∈ X and yi ∈ L are text and
label respectively. The goal is to produce a derived
dataset Dt to finetune M and ensure it is primed
for generating diverse and (label) faithful examples
by leveraging a set of prompt templates.

Formally, a template is a function T : V ∗ × L →
V ∗ × V ∗ where V is the vocabulary of M and V ∗

denotes the set of finite sequences of symbols in
V . Of course, the structure of these templates
can be quite malleable. For example, a template
could be constructed through human interpretable
verbalizable terms, optimized automatically for the
task, fine-tuned with soft prompts or made up of
sequentially intuitive sub-prompts. Regardless of
the approach, the process is the same.

Given a family of templates T , we set Dt =
T (Do) =

⋃
T∈T T (Do). That is, we convert each

sample (xi, yi) ∈ Do to |T | samples in the derived
dataset Dt. In the field of synthetic data generation
for low-resource scenarios, these templates gener-
ally belong to the collection of templates capable
of generating novel examples. Crucially, we extend
these templates to consider two types of template
families: generation templates G and classification
templates C, such that T = C ∪ G. As we shall
demonstrate, by carefully considering these tem-
plates, we can produce a dataset Dt (generated
from these templates T applied to the dataset D)

100

that is designed in such as way that the model can
learn to directly optimize for key characteristics:
High semantic fidelity and lexical diversity.

3.1.1. Generation templates

Though not exclusive to the field, these templates
are commonplace within the synthetic data gen-
eration literature for creating novel training exam-
ples. Since our work focuses on encoder-decoder
models, the templates take the form g(x, y) =
(fs(x, y), ft(x)), where fs and ft denote functions
that map a piece of text to a source sequence
and target sequence respectively. Concretely, the
source function fs is a verbalizable mapping which
depends on the text x ∈ X and label y ∈ L, the
latter of which conditions the model to align the
generated text with the labels. The target function
ft on the other hand, represents the desired out-
put of the model, which depends on the text, and
typically corresponds to the identity function.

Diverse Generation. Without loss of gen-
erality, for a given downstream task {Task},
we could choose the primary template fs =

Description: {yi} {Task}. Text: as our source

function and ft = {xi} as the desired target for
fine-tuning to facilitate the generation process, fol-
lowing previous work (Anaby-Tavor et al., 2020;
Schick and Schütze, 2021b,a). Here the goal
of Task is to provide context about the dataset,
since providing this sort of information helps when
there are limited training examples (Schick and
Schütze, 2021b). In this work, our goal is not
only to generate novel sythetic examples for few-
shot classification, but to generate a diverse vari-
ety of these samples. To ensure the model pro-
duces lexically diverse text, we propose a simple
yet effective generation strategy which addition-
ally includes an auxiliary template for generation
by including prior knowledge, somewhat similar to
Paragraph2Paragraph and Shard2Shard settings
from (Chen and Liu, 2022). Given some data point
(xi, yi) we achieve diversity by modifying two com-
ponents to our source and target functions.

• Memory: We add a previous example of text
xj which share the same label as an input to
the source function, j ∈ N such that yj = yi.

• Priming: We instantiate the source function
with some of the target output x0−n

i , n < |xi| ∈
N , which further constrains the model to avoid
the generation of non-factual hallucinations
(Cao et al., 2022).

Concretely, we define a second auxiliary
template function for generation g′(xi, xj , yi) =
(f ′

s(xi, xj , yi), f
′
t(xi)), with the source function f ′

s =

fs(xj , yi). Another text: {x0−2
i } and target func-

tion f ′
t = {x3...

i } where yj = yi, facilitating these
modifications. Intuitively, we use a previous ex-
ample as prior knowledge before concatenating
them with the new template to ensure the model
produces distinct examples as opposed to repeti-
tions, with similar findings demonstrated by Chen
and Liu (2022). It’s worth mentioning that the g′

function can be employed multiple times to create
various examples by sampling different texts dur-
ing the conversion of a single training example (we
present an example of how an original training sam-
ple is converted by the templates in Appendix B).
For generation, we include both templates g and g′

for tuning our model. These templates are further
outlined in Table 1.

3.1.2. Classification templates

Classification has been employed as an additional
processing step to filter synthetic examples which
do not align with the generated label (Anaby-Tavor
et al., 2020). In previous work, a separate net-
work is trained using the original data to classify
the examples, based on the intuition that checking
the results is easier than producing new examples.
One problem that emerges from adding a filter in
low-resource settings is that it creates an addi-
tional layer of complexity within the system: Not
only must the generator predict the correct label
from limited data, but so must the classifier. These
templates take the form c(x, y) = (fs(x), ft(y))
where ft and fs similarly denote the source se-
quence and target sequence functions respec-
tively. In this case, the source functions are sim-
ilar to the generation templates (the text can be
conditioned on the labels or be completely inde-
pendent), although the target function instead re-
lates to the label or some semantically compati-
ble class. In this case we set the source function
as fs(xi) = Given {Task}: {L}. Classify: {xi} and
target function as ft(yi) = yi , with L providing
context to the possible labels.

Semantic Fidelity. Although prompt-based
tuning has proven to work better in limited data
settings than simple feed-forward approaches
(Le Scao and Rush, 2021), we further supple-
ment the template dataset by generating multiple
intuitive patterns following previous work (Schick
and Schütze, 2021a). To achieve this, we ex-
tend our base classification templates with two
more auxiliary templates which we refer to as
cpos and cneg in the vein of cloze-style questions.
Concretely, we define cpos = (fs(xi), ft(yi)) such
that fs = Text: {xi}. Is this text about {yi} {Task}?
and ft= yes , with the goal of classifying
whether the correct label conforms to the

101

Template Source seq. (s) Target seq. (t)

Classification
Primary c Given {Task}: {L}. Classify: {xi} {yi}

Auxiliary cpos Text: {xi}. Is this text about {yi} {Task}? yes

Auxiliary cneg Text: {xi}. Is this text about {yi} {Task}? no

Generation Primary g Description: {yi} {Task}. Text: {xi}

Auxiliary g′ Description: {yi} {Task}. Text: {xj}. Another text: {x0-2
i } {x3...

i }

Table 1: Prompt templates for training sequences conversion. “Task” refers to a simple keyword describing
the dataset e.g. “Sentiment” or “Emotion” and L is the list of all class labels in the dataset. The symbol yi
in cneg stands for any label in L \ {yi}, chosen randomly. In g′, the xj denotes another sample from the
same class as xi (i.e. yj = yi) chosen randomly.

text. Furthermore, we generate a counter
template cneg = (fs(xi), ft(yi)) such that
fs = Text: {xi}. Is this text about {ŷi} {Task}? and
ft = no , ŷi ∼ L\{yi}, with the goal of determining
that the incorrectly sampled label does not conform
to the text. These templates are given in detail in
Table 1.

Self-Checking. We note that these auxillary
verbalizable patterns for classification are simply
meant to supplement and do not represent the opti-
mal solution for eliciting important knowledge from
the network (Gao et al., 2021). We instead wish
to avoid cascading errors between the generation
and classification template: The classification net-
work’s performance should be within an acceptable
tolerance. In order to extract synthetic examples
with high levels of semantic alignment between
the generated text and labels, we propose a novel
strategy for controlled self-supervised data gen-
eration, which we refer to as Self-Checking. Dif-
ferent from previous work, we perform generation
and classification filtering within a single unified
neural framework. We hypothesise that this mul-
tiview learning process should allow the network
to discover the semantic relationship between the
labels and text, further preventing non-factual hallu-
cinations of incorrect labels during the generation
process.

3.2. Data Generation, Self-checking and
Selection

We follow a two-step process: first we generate
candidates and second we select a fraction of the
candidates to be included as augmentations. This
processes is conducted for each class separately
so we may assume for the remainder of this section
that we have fixed a label y ∈ L.

That is, first, we generate α×ny samples where
ny is the original number of samples in Do for label
y and then select the top β×ny samples (β < α). In
our experiments, we call β the augmentation factor
and set α = 5 × β. Namely, our self-checking

technique selects the top 20% of the candidate
examples per class 1 to form the final generated
D∗ that is combined with the original dataset Do

for downstream model training.
For the generation task, we need to choose a

prefix/source sequence s and proceed autoregres-
sively using Equation 1. Referring back to Table 1,
there are two choices g and g′ that can be used to
construct s. In this work, we employ g for generat-
ing examples because it allows for greater flexibility
in generating diverse examples. We aim to gener-
ate as many diverse examples as possible at this
stage (rather than selecting g′, which requires a
few initial words from an existing example as the
context and can restrict the freedom of generating
diverse examples). Nevertheless, all generated
samples will be self-checked for semantic fidelity
next. Here we generate α × ny samples using
the finetuned encoder-decoder model Mt where
α is the factor controlling the size of our synthetic
dataset of generated examples in comparison to
the original dataset.

Now that we have gathered a synthetic candi-
date dataset Dy

c = {(xi, y)}|
α×ny

i=1 , we will further
refine these examples using a self-checking strat-
egy for selecting the generated samples based
on the confidence estimated by the model Mt it-
self. For each synthetic sample (x, y), we construct
a source sequence using the classification tem-
plate c(x, y) as described in Table 1 to generate
the source s. Given the source s, we define a score
function u:

u(y|s) = log pMt({y}|s)

equivalently this is the logit computed by Mt for
the sequence {y}. We then renormalize over the
labels in L by applying a softmax over each of the
scores u(·|s):

q(y|s) = eu(y|s)∑
l∈L eu(l|s)

1This is based on our experimental search over {10%,
20%, 30%, 40%, 50%}.

102

Finally, we rank the elements of Dy
c by the value

of q and select the top β × ny samples to form the
dataset Dy

∗ and set D∗ =
⋃

y∈L Dy
∗

4. Experiments

Next, we conduct extensive experiments to test the
effectiveness of our approach in low-data regimes.
This section first describes the datasets choices,
and then presents the baselines for comparison.

Regarding experimental setup, we select the
pre-trained T5 base checkpoint as the generation
model and BERT base as the classification model.
For the augmentation factor (i.e., β in Section 3.2),
the augmentation techniques including ours and
the baselines are applied to augment 1 to 5 times
of original training data. To be in low-data settings,
we sampled 5, 10, 20, 50 and 100 examples per
class for each training dataset as per Anaby-Tavor
et al. (2020). To alleviate randomness, we run
all experiments 10 times so the average accuracy
along with its standard deviation (std.) is reported
on the full test set. We report more experimental
details for reproducibility in Appendix D.

4.1. Datasets

Following previous work in the augmentation lit-
erature (Kumar et al., 2020; Anaby-Tavor et al.,
2020), two bench-marking datasets are used in
our experiments: SST-2 (Socher et al., 2013) and
TREC (Li and Roth, 2002). We also include EMO-
TION (emotion classification) (Saravia et al., 2018)
and HumAID (crisis tweets categorisation) (Alam
et al., 2021) to extend the domains of testing STA’s
effectiveness. More details about the datasets refer
to Appendix C.

4.2. Baselines

We evaluate our novel strategy against a set of
state-of-the-art techniques found within the litera-
ture. These approaches include a variety of aug-
mentation procedures from rule-based heuristics
to deep neural text generation. We compare STA
to the augmentation techniques as they are directly
related to our method in generating samples that
can be used in our subsequent study for examining
the quality of generated examples2.

Baseline: No data augmentation is applied to
the original training data.

EDA (Wei and Zou, 2019): Easy Data Augmen-
tation involves applying local word-level changes

2We have gathered the results of a direct comparison
between STA and existing non-augmentation few-shot
baselines on downstream classification tasks and report
them in Appendix E.

to an existing example, such as synonym replace-
ment and random insertion.

BT and BT-Hops (Edunov et al., 2018; Shleifer,
2019): Back-translation techniques involve trans-
lating from English to one (BT) or more randomly
selected languages (BT-Hops) using a pre-trained
translation model.

GPT-2 (Kumar et al., 2020) and GPT-2-
λ (Anaby-Tavor et al., 2020): GPT-2 generates
new examples conditioned on the label descrip-
tion and the first three words of an existing exam-
ple. GPT-2-λ adds the LAMBDA technique, which
selects generated examples based on the perfor-
mance of the downstream classification model on
the original training data.

CBERT (Wu et al., 2019): it is a strong word-
replacement based method for text augmentation
that replaces words in the original examples while
conditioning on the labels.

BART-Span (Kumar et al., 2020): it finetunes
the large model BART (Lewis et al., 2020) based on
the label names and the texts of 40% consecutive
masked words to generate new examples.

5. Results and Discussion

5.1. Classification Tasks

Table 2 demonstrates the results of STA in com-
parison to baselines under low-data conditions for
the SST-2 classification task. The results of the
remaining three classification tasks can be inter-
preted similarly3In all cases, our approach provides
state-of-the-art performance for text augmentation
across all low-resource settings. When a higher
number of samples (50-100)4 are used for training
we see that STA is better, as in the cases of SST-2,
EMOTION and HumAID tasks, or competitive, as
in the case of TREC. Furthermore, we can see that
STA is superior to other augmentation techniques
when only a small number of examples are used
to train the generator (5-10-20). In fact, STA on
average demonstrates a difference of +9.4∆ and
+4.7∆ when trained on only 5 and 10 samples per
class respectively, demonstrating its ability to gen-
erate salient and effective training examples from
limited amounts of data.

3Due to page constraints, we have these results in
Appendix F. If accepted, we will move these results to
the main paper

4We note that around 100 examples per class, all tech-
niques tend to approximate no augmentation baselines,
indicating that most likely constitute something more
equivalent to full data training rather than a low-resource
setting

103

Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 56.5 (3.8) 63.1 (4.1) 68.7 (5.1) 81.9 (2.9) 85.8 (0.8)

EDA (Wei and Zou, 2019) 59.7 (4.1) 66.6 (4.7) 73.7 (5.6) 83.2 (1.5) 86.0 (1.4)
BT (Edunov et al., 2018) 59.6 (4.2) 67.9 (5.3) 73.7 (5.8) 82.9 (1.9) 86.0 (1.2)
BT-Hops (Shleifer, 2019) 59.1 (4.6) 67.1 (5.2) 73.4 (5.2) 82.4 (2.0) 85.8 (1.1)
CBERT (Wu et al., 2019) 59.8 (3.7) 66.3 (6.8) 72.9 (4.9) 82.5 (2.5) 85.6 (1.2)
GPT-2 (Kumar et al., 2020) 53.9 (2.8) 62.5 (3.8) 69.4 (4.6) 82.4 (1.7) 85.0 (1.7)
GPT-2-λ (Anaby-Tavor et al., 2020) 55.4 (4.8) 65.9 (4.3) 76.2 (5.6) 84.5 (1.4) 86.4 (0.6)
BART-Span (Kumar et al., 2020) 60.0 (3.7) 69.0 (4.7) 78.4 (5.0) 83.8 (2.0) 85.8 (1.0)

STA w/o Self-Checking 66.7 (5.0) 77.1 (4.7) 81.8 (2.1) 84.8 (1.0) 85.7 (1.0)
STA w/o Auxiliary Prompts 69.8 (4.9) 79.1 (3.4) 81.7 (4.5) 86.0 (0.8) 87.5 (0.6)
STA (ours) 72.8 (6.2) 81.4 (2.6) 84.2 (1.8) 86.0 (0.8) 87.2 (0.6)

Table 2: STA on SST-2 in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Figure 2: Graph showing the average difference
between STA w/o Self-Checking to STA w/o Aux-
iliary Prompts, STA w/o Auxiliary Prompts to
STA and STA w/o Self-Checking to STA, as the
number of examples per class varies.

5.2. Ablation Studies: Self-Checking and
Auxiliary Prompts

To demonstrate the importance of our self-checking
procedure, we performed our empirical investi-
gations on STA both with and without the self-
checking step, denoted as STA w/o Self-Checking
in Table 2, 7, 8 and 9. Furthermore, we investigate
STA within a minimal template setting where we
only include the templates c and g in Table 1, omit-
ting our proposed auxiliary templates, denoted as
STA w/o Auxiliary Prompts, to empirically sepa-
rate the contribution of these components. Com-
paring our model with no self-checking (STA w/o
Self-Checking) against other state-of-the-art ap-
proaches, we see that the model provides the best
performance particularly when the data is more
sparse (5-10-20), with the exclusion of TREC. How-
ever, when we add self-checking with only basic
generation and classification templates (STA w/o
Auxiliary Prompts), we see a significant improve-

ment, indicating that self-checking is more impor-
tant to the downstream performance. We also com-
pare the average difference between these models
across all datasets with altering components in Fig-
ure 2. Looking at Figure 2 we see that the inclusion
of self-checking provides the greatest increase in
performance, while the contribution of our auxiliary
prompts, including our novel generation template,
decreases with larger examples per class. How-
ever, we note that the inclusion of both templates
and self-checking provides the best performance,
particularly in lower data regimes.

5.3. Lexical Diversity and Semantic
Fidelity

To further analyse the quality of the generated data,
we measure its lexical diversity and semantic fi-
delity (i.e., its ability to align the synthetic exam-
ples with the correct labels). Diversity is assessed
using the UNIQUE TRIGRAMS metric (Feng et al.,
2020; Kumar et al., 2020), which calculates the ra-
tio of unique tri-grams to total tri-grams in a popula-
tion consisting of both original and generated train-
ing data. To coincide with the previous work (Ku-
mar et al., 2020), semantic fidelity is determined
by fine-tuning a “BERT-base-uncased” model on
100% of the original training data for each classi-
fication task and measuring the accuracy of the
generated data predictions by this model (91.8,
93.5, 96.6 and 89.7 accuracy on SST2, EMOTION,
TREC and HumAID respectively). A higher score
indicates better diversity or fidelity.

To present the quality of generated data in terms
of diversity and fidelity, we take the training data
(10 examples per class) along with its augmented
data (β = 1) for investigation. Figure 3 depicts
the diversity versus semantic fidelity of generated
data by various augmentation methods across
three datasets. We find that generation-based
approaches such as GPT-2 or GPT-2-λ, achieve

104

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fidelity

0.5

0.6

0.7

0.8

0.9

1.0

Di
ve

rs
ity

STA
STA-noself
GPT-2-
GPT-2
EDA
BT
BT-Hops
CBERT
BART-Span

(a) SST-2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fidelity

0.5

0.6

0.7

0.8

0.9

1.0

Di
ve

rs
ity

STA
STA-noself
GPT-2-
GPT-2
EDA
BT
BT-Hops
CBERT
BART-Span

(b) EMOTION

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fidelity

0.5

0.6

0.7

0.8

0.9

1.0

Di
ve

rs
ity

STA
STA-noself
GPT-2-
GPT-2
EDA
BT
BT-Hops
CBERT
BART-Span

(c) TREC

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fidelity

0.5

0.6

0.7

0.8

0.9

1.0

Di
ve

rs
ity

STA
STA-noself
GPT-2-
GPT-2
EDA
BT
BT-Hops
CBERT
BART-Span

(d) HumAID

Figure 3: Diversity versus semantic fidelity of generated texts by various augmentation methods. The
average scores over 10 runs are reported.

strong diversity but less competitive fidelity. On the
contrary, rule-based heuristics methods such as
EDA perform well in retaining the semantic mean-
ing but not in lexical diversity. The merit of STA is
that it is good in both diversity and fidelity, as seen
from its position at the top-right of Figure 3a, 3b, 3c
and 3d. Finally, if we compare our STA approach
with and without self-checking, we see that each
approach produces highly diverse examples, al-
though only self-checking STA retains a high level
of semantic fidelity. Comparing with GPT-2 and
GPT-2-λ — the other sample filtering approach —
we see that the inclusion of a separate classifier
results in an average increase of 18.3% in fidelity.
However, if we compare our STA approach with
and without self-checking, we see an average in-
crease of 32.38% in fidelity, further demonstrating
the validity of our joint generation and classification
approach as opposed to an independent classifica-
tion module. As previously suggested, this ability to
align the semantic content of generated examples
with the correct label is the most probable reason
for the increase in downstream classification per-
formance when self-checking is employed. This
supports the notion that our generation-based ap-
proach is able to produce novel data that is lexically
diverse, whilst the self-checking procedure can en-
sure consistent label retention, which guarantees a
high semantic fidelity in the generated examples5.

5.4. Comparison Against ChatGPT

In addition to comparing STA and examining its
augmented data quality with augmentation base-
lines in the literature, we are also interested in eval-
uating the performance of STA against ChatGPT
(using GPT 3.5 (Ouyang et al., 2022) and GPT-4
(OpenAI, 2023)). Because of the limited context
length in GPT-3.5 and restricted access to GPT-4,
we designed this experiment to operate within a
highly constrained, very low-data regime. Specifi-
cally, we sampled a mere five examples per class
from SST2, EMOTION, TREC, and HumAID. Util-

5We provide a comparative demonstration of the texts
generated by different methods in the Appendix G

SST2 EMOTION TREC HumAID

GPT(3.5) 64.6(4.0) 40.4(7.8) 32.2(12) 58.8(18)
GPT(4.0) 71.9(5.0) 42.5(7.8) 100.0(0.0) 68.8(4.4)
STA 72.8(6.2) 43.8(6.9) 59.6(7.4) 69.0(3.9)

Table 3: Comparing STA with ChatGPT (GPT-3.5
and GPT-4). Average (std.) accuracy (in %) over
multiple runs is reported.

ising these samples as input prompts, we tasked
GPT-3.5 and GPT-4 with generating predictions for
a number of randomly selected test set examples.
Essentially, we are evaluating their performance
as classifiers. In this study, we’re assessing Chat-
GPT’s direct (few-shot) prediction capabilities in
situations with limited data. Meanwhile, STA em-
ploys augmentation strategies in similar low-data
scenarios but with significantly smaller models. To
account for the inherent randomness in both the
sampling and generation processes of GPT-3.5
and GPT-4, we conducted multiple iterations of the
experiments. This allowed us to calculate the aver-
age accuracy (std.) in relation to the actual labels
and predictions made by GPT-3.5 and GPT-4. The
comparative analysis between STA and GPT-3.5
and GPT-4 across the four datasets is presented in
Table 3. The results showcased STA’s consistent
superiority over GPT-3.5 across all datasets. Fur-
thermore, STA demonstrated competitive perfor-
mance with GPT-4 on three of the four datasets as
STA competes closely with GPT-4 in SST2, EMO-
TION, and HumAID. However, GPT-4 exhibits un-
expectedly high performance in TREC, with an
average accuracy of 100.0 (std: 0.0), suggesting a
potential issue with data contamination, something
that the original authors were also extremely con-
cerned about in their evaluations (OpenAI, 2023).
These findings reinforce STA’s potential as a aug-
mentation solution for text classification in data-
constrained scenarios, while also highlighting its
computational efficiency and speed of inference in
comparison to GPT-3.5 and GPT-4.

105

6. Conclusion

We propose a novel strategy for text-based data
augmentation that leverages prompt templates to
generate training examples and ensure better label
alignment. Our approach substantially outperforms
the previous state-of-the-art on a variety of down-
stream classification tasks and across a range of
low-resource scenarios. Furthermore, we provide
an analysis of the lexical diversity and label consis-
tency of generated examples, demonstrating that
our approach produces uniquely varied training ex-
amples with more consistent label alignment than
previous work. In the future, we hope to improve
this approach in rich-data regime and extend it to
other downstream natural language tasks.

7. Bibliographical References

Firoj Alam, Umair Qazi, Muhammad Imran, and
Ferda Ofli. 2021. Humaid: Human-annotated
disaster incidents data from twitter with deep
learning benchmarks. In Proceedings of the In-
ternational AAAI Conference on Web and Social
Media, volume 15, pages 933–942.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Gold-
braich, Amir Kantor, George Kour, Segev Shlo-
mov, Naama Tepper, and Naama Zwerdling.
2020. Do not have enough data? deep learn-
ing to the rescue! In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 7383–7390.

N. N. Author. 2021. Suppressed for anonymity.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

BSI. 1973a. Natural Fibre Twines, 3rd edition.
British Standards Institution, London. BS 2570.

BSI. 1973b. Natural fibre twines. BS 2570, British
Standards Institution, London. 3rd. edn.

Meng Cao, Yue Dong, and Jackie Chi Kit Cheung.
2022. Hallucinated but factual! inspecting the
factuality of hallucinations in abstractive sum-
marization. In Proceedings of the 60th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
3340–3354.

A. Castor and L. E. Pollux. 1992. The use of user
modelling to guide inference and learning. Ap-
plied Intelligence, 2(1):37–53.

Yanan Chen and Yang Liu. 2022. Rethinking data
augmentation in text-to-text paradigm. In Pro-
ceedings of the 29th International Conference on
Computational Linguistics, pages 1157–1162.

J.L. Chercheur. 1994. Case-Based Reasoning,
2nd edition. Morgan Kaufman Publishers, San
Mateo, CA.

N. Chomsky. 1973. Conditions on transformations.
In A festschrift for Morris Halle, New York. Holt,
Rinehart & Winston.

Joe Davison, Joshua Feldman, and Alexander M
Rush. 2019. Commonsense knowledge mining
from pretrained models. In Proceedings of the
2019 conference on empirical methods in natural
language processing and the 9th international
joint conference on natural language processing
(EMNLP-IJCNLP), pages 1173–1178.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. In NAACL-HLT (1).

R. O. Duda, P. E. Hart, and D. G. Stork. 2000.
Pattern Classification, 2nd edition. John Wiley
and Sons.

Umberto Eco. 1990. The Limits of Interpretation.
Indian University Press.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation
at scale. In EMNLP.

Steven Y Feng, Varun Gangal, Dongyeop Kang,
Teruko Mitamura, and Eduard Hovy. 2020.
Genaug: Data augmentation for finetuning text
generators. In Proceedings of Deep Learning
Inside Out (DeeLIO): The First Workshop on
Knowledge Extraction and Integration for Deep
Learning Architectures, pages 29–42.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath
Chandar, Soroush Vosoughi, Teruko Mitamura,
and Eduard Hovy. 2021. A survey of data aug-
mentation approaches for NLP. In Findings of
the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 968–988, Online. As-
sociation for Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-
shot learners. In Association for Computational
Linguistics (ACL).

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. Ppt: Pre-trained prompt tuning for few-
shot learning. In Proceedings of the 60th Annual
Meeting of the Association for Computational

https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84

106

Linguistics (Volume 1: Long Papers), pages
8410–8423.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2022. Ptr: Prompt tuning with
rules for text classification. AI Open, 3:182–192.

Paul Gerhard Hoel. 1971a. Elementary Statistics,
3rd edition. Wiley series in probability and math-
ematical statistics. Wiley, New York, Chichester.
ISBN 0 471 40300.

Paul Gerhard Hoel. 1971b. Elementary Statistics,
3rd edition, Wiley series in probability and mathe-
matical statistics, pages 19–33. Wiley, New York,
Chichester. ISBN 0 471 40300.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes,
and Yejin Choi. 2019. The curious case of neural
text degeneration. In International Conference
on Learning Representations.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. To-
ward semantics-based answer pinpointing. In
Proceedings of the First International Confer-
ence on Human Language Technology Re-
search.

Otto Jespersen. 1922. Language: Its Nature, De-
velopment, and Origin. Allen and Unwin.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. In Proceedings
of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 12–22.

M. J. Kearns. 1989. Computational Complexity of
Machine Learning. Ph.D. thesis, Department of
Computer Science, Harvard University.

Diederik P Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Sosuke Kobayashi. 2018. Contextual augmenta-
tion: Data augmentation by words with paradig-
matic relations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short
Papers), pages 452–457.

Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan.
2022. An empirical survey on long document
summarization: Datasets, models, and metrics.
ACM computing surveys, 55(8):1–35.

Varun Kumar, Ashutosh Choudhary, and Eunah
Cho. 2020. Data augmentation using pre-trained
transformer models. In Proceedings of the 2nd

Workshop on Life-long Learning for Spoken Lan-
guage Systems, pages 18–26, Suzhou, China.
Association for Computational Linguistics.

P. Langley. 2000. Crafting papers on machine
learning. In Proceedings of the 17th Interna-
tional Conference on Machine Learning (ICML
2000), pages 1207–1216, Stanford, CA. Morgan
Kaufmann.

Teven Le Scao and Alexander M Rush. 2021. How
many data points is a prompt worth? In Pro-
ceedings of the 2021 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 2627–2636.

Brian Lester, Rami Al-Rfou, and Noah Constant.
2021. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 3045–3059.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zheng-
bao Jiang, Hiroaki Hayashi, and Graham Neu-
big. 2021. Pre-train, prompt, and predict: A
systematic survey of prompting methods in
natural language processing. arXiv preprint
arXiv:2107.13586.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao
Jiang, Hiroaki Hayashi, and Graham Neubig.
2023. Pre-train, prompt, and predict: A sys-
tematic survey of prompting methods in natural
language processing. ACM Computing Surveys,
55(9):1–35.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
editors. 1983. Machine Learning: An Artificial
Intelligence Approach, Vol. I. Tioga, Palo Alto,
CA.

George A Miller. 1995. Wordnet: a lexical database
for english. Communications of the ACM,
38(11):39–41.

T. M. Mitchell. 1980. The need for biases in learn-
ing generalizations. Technical report, Computer
Science Department, Rutgers University, New
Brunswick, MA.

https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150

107

A. Newell and P. S. Rosenbloom. 1981. Mecha-
nisms of skill acquisition and the law of prac-
tice. In J. R. Anderson, editor, Cognitive Skills
and Their Acquisition, chapter 1, pages 1–51.
Lawrence Erlbaum Associates, Inc., Hillsdale,
NJ.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo
Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, et al. 2022. Training language
models to follow instructions with human feed-
back. Advances in Neural Information Process-
ing Systems, 35:27730–27744.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as
knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 2463–2473.

Alec Radford, Karthik Narasimhan, Tim Salimans,
Ilya Sutskever, et al. 2018. Improving language
understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. Journal of Machine
Learning Research, 21:1–67.

Anna Rogers, Olga Kovaleva, and Anna
Rumshisky. 2020. A primer in bertology:
What we know about how bert works. Trans-
actions of the Association for Computational
Linguistics, 8:842–866.

A. L. Samuel. 1959. Some studies in machine
learning using the game of checkers. IBM Jour-
nal of Research and Development, 3(3):211–
229.

Victor Sanh, Albert Webson, Colin Raffel,
Stephen H Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler,
Teven Le Scao, Arun Raja, et al. 2021. Multi-
task prompted training enables zero-shot task
generalization. arXiv preprint arXiv:2110.08207.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang,
Junlin Wu, and Yi-Shin Chen. 2018. CARER:

Contextualized affect representations for emo-
tion recognition. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 3687–3697, Brussels,
Belgium. Association for Computational Linguis-
tics.

Timo Schick and Hinrich Schütze. 2021a. Exploit-
ing cloze-questions for few-shot text classifica-
tion and natural language inference. In Proceed-
ings of the 16th Conference of the European
Chapter of the Association for Computational
Linguistics: Main Volume, pages 255–269.

Timo Schick and Hinrich Schütze. 2021b. Few-shot
text generation with natural language instruc-
tions. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 390–402.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 86–96.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Auto-
prompt: Eliciting knowledge from language mod-
els with automatically generated prompts. In
Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP), pages 4222–4235.

Sam Shleifer. 2019. Low resource text classifi-
cation with ulmfit and backtranslation. arXiv
preprint arXiv:1903.09244.

Charles Joseph Singer, E. J. Holmyard, and A. R.
Hall, editors. 1954–58. A history of technology.
Oxford University Press, London. 5 vol.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seat-
tle, Washington, USA. Association for Computa-
tional Linguistics.

Jannik Strötgen and Michael Gertz. 2012. Tem-
poral tagging on different domains: Challenges,
strategies, and gold standards. In Proceedings
of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12),
pages 3746–3753, Istanbul, Turkey. European
Language Resource Association (ELRA).

http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

108

S. Superman, B. Batman, C. Catwoman, and
S. Spiderman. 2000. Superheroes experiences
with books, 20th edition. The Phantom Editors
Associates, Gotham City.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. olmpics-on what lan-
guage model pre-training captures. Transactions
of the Association for Computational Linguistics,
8:743–758.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv
preprint arXiv:1806.02847.

Solomon Ubani, Suleyman Olcay Polat, and Rod-
ney Nielsen. 2023. Zeroshotdataaug: Generat-
ing and augmenting training data with chatgpt.
arXiv preprint arXiv:2304.14334.

William Yang Wang and Diyi Yang. 2015. That’s so
annoying!!!: A lexical and frame-semantic em-
bedding based data augmentation approach to
automatic categorization of annoying behaviors
using# petpeeve tweets. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2557–2563.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan
Cao. 2021. Towards zero-label language learn-
ing. arXiv preprint arXiv:2109.09193.

Jason Wei and Kai Zou. 2019. Eda: Easy data
augmentation techniques for boosting perfor-
mance on text classification tasks. In Proceed-
ings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
6382–6388.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. 2019. Huggingface’s transform-
ers: State-of-the-art natural language process-
ing. arXiv preprint arXiv:1910.03771.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong
Han, and Songlin Hu. 2019. Conditional bert
contextual augmentation. In International Con-
ference on Computational Science, pages 84–
95. Springer.

Kang Min Yoo, Dongju Park, Jaewook Kang,
Sang-Woo Lee, and Woomyoung Park. 2021a.
GPT3Mix: Leveraging large-scale language
models for text augmentation. In Findings of
the Association for Computational Linguistics:
EMNLP 2021, pages 2225–2239, Punta Cana,
Dominican Republic. Association for Computa-
tional Linguistics.

Kang Min Yoo, Dongju Park, Jaewook Kang,
Sang-Woo Lee, and Woomyoung Park. 2021b.
Gpt3mix: Leveraging large-scale language mod-
els for text augmentation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2021, pages 2225–2239.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin
Deng, Zhen Bi, Chuanqi Tan, Fei Huang, and
Huajun Chen. 2022. Differentiable prompt
makes pre-trained language models better few-
shot learners. In International Conference on
Learning Representations.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text
classification. Advances in neural information
processing systems, 28:649–657.

https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://openreview.net/forum?id=ek9a0qIafW
https://openreview.net/forum?id=ek9a0qIafW
https://openreview.net/forum?id=ek9a0qIafW

109

A. Limitations

Our work explores the possibility of data augmen-
tation for boosting text classification performance
when the downstream model is finetuned using
pre-trained language models. The results show
that STA consistently performs well across different
bench-marking tasks using the same experimen-
tal setup, which addresses the limitation stated in
the previous work (Kumar et al., 2020) calling for
a unified data augmentation technique. However,
similar to Kumar et al. (2020), although STA can
achieve improved performance as the data size
goes up to 100 examples per class in some cases
(such as 100 examples per class in EMOTION, Ta-
ble 7 and HumAID, Table 9), the absolute gain in
performance plateaus when the training data be-
comes richer (such as 100 examples per class in
SST-2 and TREC). This suggests that it is challeng-
ing for STA to improve pre-trained classifier’s model
performance in more abundant data regimes.

It’s also worth noting that STA currently applies to
text classification exclusively using T5 and doesn’t
extend to other general NLP tasks without gener-
ative models. However, our approach, centered
around text classification, holds the potential to ex-
pand beyond this narrow scope and encompass
a wider array of NLP tasks. This flexibility arises
from our use of generative models like T5 in our
research. For instance, to consider the adaptation
of our templates for question answering tasks, the
templates used in our method can be modified to
be like question-answer format. For instance, tem-
plate c in Table 1 could be transformed to read,
“Given Text. Provide answer to this question: Ques-
tion.” Furthermore, our generation template can
be suitably tailored to produce text based on a
given question description. The capacity to adjust
both classification and generation templates un-
derpins the applicability of our approach across
diverse NLP tasks. Thus, in the future, we aim to
extend our approach to other downstream natural
language tasks, incorporating different generation
models alongside T5.

Another important consideration is the choice
of templates used in STA. Ablation experiments in
Section 5.2 show that our chosen set of templates
yields better performance than a ‘minimal subset’
consisting of the two simplest templates; the ques-
tion as to how to choose optimal templates for
this augmentation scheme remains unanswered.
Hence, in future work, we will explore better meth-
ods for constructing the prompt templates, aiming
to reduce the dependency on the manual work at
this step.

110

B. Template Example

Table 4 presents how an original training example
is converted to multiple examples in STA using the
prompt templates from Table 1.

C. Datasets

Table 5 lists the basic information of the four
datasets used in our experiments and they are
shortly described as follows.

• SST-2 (Socher et al., 2013) is a binary sen-
timent classification dataset that consists of
movie reviews annotated with positive and
negative labels.

• EMOTION (Saravia et al., 2018) is a dataset
for emotion classification comprising short
comments from social media annotated with
six emotion types, such as, sadness, joy, etc.

• TREC (Li and Roth, 2002) is a dataset for
question topic classification comprising ques-
tions across six categories including human,
location, etc.

• HumAID (Alam et al., 2021) is a dataset
for crisis messages categorisation comprising
tweets collected during 19 real-world disaster
events, annotated by humanitarian categories
including rescue volunteering or donation ef-
fort, sympathy and support, etc.

D. Training Details

When finetuning the generation model, we select
the pre-trained T5 base checkpoint as the starting
weights. For the downstream classification task,
we finetune “bert-base-uncased”6 on the original
training data either with or without the augmented
samples. Regarding the pre-trained models, we
use the publicly-released version from the Hug-
gingFace’s transformers library (Wolf et al., 2019).
For the augmentation factor (i.e., β in Section 3.2),
the augmentation techniques including ours and
the baselines are applied to augment 1 to 5 times
of original training data. In the experiments, it is
regarded as a hyper-parameter to be determined.
Since our work focuses on text augmentation for
classification in low-data settings, we sampled 5,
10, 20, 50 and 100 examples per class for each
training dataset as per Anaby-Tavor et al. (2020).
To alleviate randomness, we run all experiments
10 times so the average accuracy along with its
standard deviation (std.) is reported on the full test
set in the evaluation.

6https://huggingface.co/
bert-base-uncased

To select the downstream checkpoint and the
augmentation factor, we select the run with the
best performance on the development set for all
methods. The hyper-parameters for finetuning the
generation model and the downstream model are
also setup based on the development set. Al-
though using the full development set does not
necessarily represent a real-life situation in low-
data regime (Schick and Schütze, 2021a; Gao
et al., 2021), we argue that it is valid in a research-
oriented study. We choose to use the full develop-
ment set since we aim to maximize the robustness
of various methods’ best performance given small
training data available. As all augmentation meth-
ods are treated the same way, we argue this is valid
to showcase the performance difference between
our method and the baselines.

For all experiments presented in this work, we
exclusively use Pytorch7 for general code and
Huggingface8 for transformer implementations re-
spectively, unless otherwise stated. In finetuning
T5, we set the learning rate to 5 × 10−5 using
Adam (Kingma and Ba, 2014) with linear scheduler
(10% warmup steps), the training epochs to be 32
and batch size to be 16. At generation time, we
use top-k (k = 40) and top-p (p = 1.0) sampling
technique (Holtzman et al., 2019) for next token
generation. In finetuning downstream BERT, the
hyper-parameters are similar to those of T5 fine-
tuning, although the training epoch is set to be 20.
We set the training epochs to be as large as pos-
sible with the aim of finding the best model when
trained on a small dataset, where the quality is
based on performance on the development set. In
our experiments, for a single run on all datasets,
it takes around one day with a single Tesla P100
GPU (16GB) and thus estimated 10 days for 10
runs. To aid reproducibility, we will release our
experimental code to the public at 9.

E. Comparing to Few-shot Baselines

Since our work explores a text augmentation ap-
proach for improving text classification in low-data
regime, it is also related to few-shot learning meth-
ods that use few examples for text classification.
We further conduct an experiment to compare
STA to three state-of-the-art few-shot learning ap-
proaches: PET (Schick and Schütze, 2021a), LM-
BFF (Gao et al., 2021), and DART (Zhang et al.,
2022). For fair comparison, we set the experi-
ment under the 10 examples per class scenario
with 10 random seeds ensuring the 10 examples

7https://pytorch.org/
8https://huggingface.co/
9https://github.com/wangcongcong123/

STA

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://pytorch.org/
https://huggingface.co/
https://github.com/wangcongcong123/STA
https://github.com/wangcongcong123/STA

111

An example from SST-2 a sentiment classification dataset where the classes (L): negative, positive
Text (x) top-notch action powers this romantic drama.

Label (y) positive

Converted examples by classification templates (C: c, cpos and cneg): source(s), target(t)
Given sentiment: negative, positive. Classify: top-
notch action powers this romantic drama.

positive

Text: top-notch action powers this romantic drama. Is
this text about positive sentiment?

yes

Text: top-notch action powers this romantic drama. Is
this text about negative sentiment?

no

Converted examples by generation templates (G: g and g′): source(s), target(t)
Description: positive sentiment. Text: top-notch action powers this romantic drama.
Description: positive sentiment. Text: top-notch ac-
tion powers this romantic drama. Another text: spiel-
berg ’s realization of

a near-future america is masterful .

Description: positive sentiment. Text: top-notch ac-
tion powers this romantic drama. Another text: a
movie in

which laughter and self-exploitation merge into jolly
soft-porn ’em powerment . ’

Description: positive sentiment. Text: top-notch ac-
tion powers this romantic drama . Another text: a
tightly directed

highly professional film that ’s old-fashioned in all the
best possible ways .

Table 4: The demonstration of an example conversion by the prompt templates in Table 1 where the
example’s text is highlighted in blue and label is highlighted in red for readability.

Dataset # Train # Dev # Test # Classes

SST-2 ∼6k 692 ∼1.8k 2
EMOTION 16k 2k 2k 6
TREC ∼5k 546 500 6
HumAID ∼40k 6k ∼11k 8

Table 5: Datasets statistics

per class are sampled the same across the meth-
ods. Besides, we use bert-base-uncased10

as the starting weights of the downstream classi-
fier. The results are shown in Table 6. We found
that although STA loses the best score to DART
and LM-BFF on the TREC dataset, it substantially
outperforms the few-shot baselines on SST-2 and
EMOTION. This tells us that STA is a competitive
approach for few-shot learning text classification.

F. More Results of Classification
Tasks

Table 7, Table 8 and Table 9 present the results of
STA comparing to baselines in low-data settings for
the EMOTION, TREC and HumAID classification
tasks respectively.

10https://huggingface.co/
bert-base-uncased

SST-2 EMOTION TREC

DART 66.5 (5.8) 26.7 (3.0) 74.0 (2.7)
LM-BFF 71.1 (9.5) 30.2 (3.8) 77.1 (3.0)
PET 56.7 (0.8) 28.4 (1.0) 69.1 (1.1)

STA (ours) 81.4 (2.6) 57.8 (3.7) 70.9 (6.6)

Table 6: The comparison between STA and few-
shot baselines using 10 examples per class on
SST-2 and EMOTION and TREC. The results are
reported as average (std.) accuracy (in %) based
on 10 random experimental runs. Numbers in bold
indicate the highest in columns.

G. Demonstration

Table 10 and Table 11 demonstrate some original
examples and augmented examples by different
methods. In comparison, the examples generated
by STA tend to be not only diverse but also highly
label relevant (semantic fidelity).

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

112

Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 26.7 (8.5) 28.5 (6.3) 32.4 (3.9) 59.0 (2.6) 74.7 (1.7)

EDA 30.1 (6.2) 33.1 (4.3) 47.5 (5.0) 66.7 (2.7) 77.4 (1.8)
BT 32.0 (3.0) 37.4 (3.0) 48.5 (5.1) 65.5 (2.0) 75.6 (1.6)
BT-Hops 31.3 (2.6) 37.1 (4.6) 49.1 (3.5) 65.0 (2.3) 75.0 (1.5)
CBERT 29.2 (6.5) 32.6 (3.9) 44.1 (5.2) 62.1 (2.0) 75.5 (2.2)
GPT-2 28.4 (8.5) 31.3 (3.5) 39.0 (4.1) 57.1 (3.1) 69.9 (1.3)
GPT-2-λ 28.6 (5.1) 30.8 (3.1) 43.3 (7.5) 71.6 (1.5) 80.7 (0.4)
BART-Span 29.9 (4.5) 35.4 (5.7) 46.4 (3.9) 70.9 (1.5) 77.8 (1.0)

STA w/o Self-Checking 34.0 (4.0) 41.4 (5.5) 53.3 (2.2) 65.1 (2.3) 74.0 (1.1)
STA w/o Auxiliary Prompts 41.8 (6.1) 56.2 (3.0) 64.9 (3.3) 75.1 (1.5) 81.3 (0.7)
STA (ours) 43.8 (6.9) 57.8 (3.7) 64.1 (2.1) 75.3 (1.8) 81.5 (1.1)

Table 7: STA on EMOTION in 5, 10, 20, 50, 100 examples per class. The results are reported as average
(std.) accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in
columns.

Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 33.9 (10.4) 55.8 (6.2) 71.3 (6.3) 87.9 (3.1) 93.2 (0.7)

EDA 54.1 (7.7) 70.6 (5.7) 79.5 (3.4) 89.3 (1.9) 92.3 (1.1)
BT 56.0 (8.7) 67.0 (4.1) 79.4 (4.8) 89.0 (2.4) 92.7 (0.8)
BT-Hops 53.8 (8.2) 67.7 (5.1) 78.7 (5.6) 88.0 (2.3) 91.8 (0.9)
CBERT 52.2 (9.8) 67.0 (7.1) 78.0 (5.3) 89.1 (2.5) 92.6 (1.1)
GPT-2 47.6 (7.9) 67.7 (4.9) 76.9 (5.6) 87.8 (2.4) 91.6 (1.1)
GPT-2-λ 49.6 (11.0) 70.2 (5.8) 80.9 (4.4) 89.6 (2.2) 93.5 (0.8)
BART-Span 55.0 (9.9) 65.9 (6.7) 77.1 (5.5) 88.38 (3.4) 92.7 (1.6)

STA w/o Self-Checking 45.4 (3.2) 61.9 (10.2) 77.2 (5.5) 88.3 (1.2) 91.7 (0.8)
STA w/o Auxiliary Prompts 49.6 (9.0) 69.1 (8.0) 81.0 (5.9) 89.4 (3.0) 93.1 (0.9)
STA (ours) 59.6 (7.4) 70.9 (6.6) 81.1 (3.9) 89.1 (2.7) 93.2 (0.8)

Table 8: STA on TREC in 5, 10, 20, 50, 100 examples per class. The results are reported as average (std.)
accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in columns.

Augmentation Method 5 10 20 50 100

Baseline (No Aug.) 29.1 (6.6) 37.1 (6.4) 60.7 (4.0) 80.0 (0.9) 83.4 (1.0)
EDA 49.5 (4.5) 64.4 (3.6) 74.7 (1.5) 80.7 (1.0) 83.5 (0.6)
BT 45.8 (5.7) 59.1 (5.2) 73.5 (2.1) 80.4 (1.2) 83.1 (0.7)
BT-Hops 43.4 (6.4) 57.5 (5.2) 72.4 (2.8) 80.1 (1.1) 82.8 (1.4)
CBERT 44.8 (7.6) 59.5 (4.8) 73.4 (1.7) 80.3 (0.8) 82.7 (1.2)
GPT-2 46.0 (4.7) 55.7 (5.7) 67.3 (2.6) 77.8 (1.6) 81.1 (0.6)
GPT-2-λ 50.7 (8.6) 68.1 (6.2) 78.5 (1.3) 82.1(1.1) 84.2 (0.8)
BART-Span 42.4 (7.3) 58.6(7.0) 70.04 (3.7) 79.3 (1.4) 83.33 (0.9)
STA w/o Self-Checking 56.4 (7.0) 70.2 (4.3) 76.3 (3.3) 79.4 (4.5) 81.8 (1.3)
STA w/o Auxiliary Prompts 68.7 (10.9) 77.6 (3.6) 80.1 (1.7) 82.9 (1.6) 84.3 (0.7)
STA (ours) 69.0 (3.9) 75.8 (3.3) 80.2 (1.6) 83.2 (0.5) 84.5 (1.1)

Table 9: STA on HumAID in 5, 10, 20, 50, 100 examples per class. The results are reported as average
(std.) accuracy (in %) based on 10 random experimental runs. Numbers in bold indicate the highest in
columns.

113

Original training examples and augmented examples for “Sadness" of EMOTION

Original

i sit here feeling blank about this
i feel ashamed that i so readily turn it aside
i feel positively ashamed when i look out of the window and see the state of things
i had just lost my uncle i would be sad but i feel as if i am devastated
i was feeling kind of discouraged because nothing happened

EDA

i sit here opinion blank about this
i feel that ashamed i so readily turn it aside
i feel positively ashamed when i look out of the window and construe the state of things
i had just lost my uncle i would be pitiful but i feel as if i am devastated
i happened feeling kind of discouraged because nothing was

GPT-2-λ

ive seen so many girls walk around feeling ashamed of their bodi
ive got to admit that i feel a little weird for a moment seeing her standing in front of my face when i
walk into the shop
ive always wondered what im doing right now im feeling
ive read many blogs about her and how much she hates those who don’t admit to being kind or
caring about others but instead blame them for not doing something about it
ive never felt sympathetic towards people because of the way they look and act because of their
skin to

STA-noself

i feel like the whole world is watching and feeling it’s failing me
i want people to know i am not alone
i feel ashamed when i look out of the window and see the state of things
i walked away feeling disappointed because i don t know the answer
i drank some cold drink or find some ice dessert such as chendol or ice kacang

STA

i feel sad seeing people who have to work harder to cope
i walked away feeling disappointed because i don t know the answer
i was feeling sad seeing the state of things that i never did i really want to see if it lasted
i feel sad seeing the state of things but the truth is im not sure how to express it gracefully
i feel like the whole world is watching and feeling it’s failing me

Table 10: The demonstration of original training examples and augmented examples for “sadness” of
EMOTION. It is noted that the 5 augmented examples in each block are randomly selected instead of
cherry-picked. This reveals some difference between the original training examples and the augmented
examples by our STA and other methods (Here we use a rule-based heuristics method EDA, a generation-
based method GPT-2-λ and STA-noself for comparison).

114

Original training examples and augmented examples for “missing or found people" of HumAID

Original

UPDATE: Body found of man who disappeared amid Maryland flooding
Open Missing People Search Database from Mati and Rafina areas #Greecefires #PrayForGreece
#PrayForAthens
@ThinBlueLine614 @GaetaSusan @DineshDSouza case in point, #California Liberalism has
created the hell which has left 1000s missing 70 dead,...
Heres the latest in the California wildfires #CampFire 1011 people are missing Death toll rises to 71
Trump blames fires on poor ...
#Idai victims buried in mass grave in Sussundenga, at least 60 missing - #Mozambique #CycloneIdai
#CicloneIdai

EDA

update flooding found of man who disappeared amid maryland boy
open missing people search database from mati escape and rafina areas greecefires prayforgreece
prayforathens
created gaetasusan dineshdsouza hell in point california missing has thinblueline the case which
has left s liberalism dead an countless people...
heres blames latest in the california wildfires campfire people are missing death toll rises to trump
more fires on poor...
idai victims buried in mass grave in sussundenga at mozambique missing least cycloneidai ciclonei-
dai

GPT-2-lambda

@KezorNews - Search remains in #Morocco after @deweathersamp; there has been no confirmed
death in #Kerala
#Cambodia - Search & Rescue is assisting Search & Rescue officials in locating the missing 27
year old woman who disappeared in ...
@JHodgeEagle Rescue Injured After Missing Two Children In Fresno County
#Florence #Florence Missing On-Rescue Teams Searching For Search and Rescue Members
#Florence #Florence #DisasterInformer #E
RT @LATTAODAYOUT: RT @HannahDorian: Search Continues After Disappearance of Missing
People in Florida

STA-noself

Search Database from Matias, Malaysia, missing after #Maria, #Kerala, #Bangladesh #KeralaKerala,
#KeralaFloods, ...
RT @hubarak: Yes, I can guarantee you that our country is safe from flooding during the upcoming
weekend! Previous story Time Out! 2 Comments
The missing persons who disappeared amid Maryland flooding are still at large. More on this in the
next article.
the number of missing after #CycloneIdai has reached more than 1,000, reports CNN.
RT @adriane@przkniewskiZeitecki 1 person missing, police confirm #CycloneIdai. #CicloneIdai

STA

The missing persons who disappeared amid Maryland flooding are still at large. More on this in the
next article.
Search Triangle County for missing and missing after #Maria floods #DisasterFire
Just arrived at San Diego International Airport after #Atlantic Storm. More than 200 people were
missing, including 13 helicopters ...
Search Database contains information on missing and found people #HurricaneMaria, hashtag
#Firefighter
Were told all too often that Californians are missing in Mexico City, where a massive flood was
devastating. ...

Table 11: The demonstration of original training examples and augmented examples for “missing or found
people” of HumAID. It is noted that the 5 augmented examples in each block are randomly selected
instead of cherry-picked. This reveals some difference between the original training examples and the
augmented examples by our STA and other methods (Here we use a rule-based heuristics method EDA,
a generation-based method GPT-2-λ and STA-noself for comparison).

	Introduction
	Related Work
	Method
	Pattern-Exploiting Training in seq2seq Models
	Generation templates
	Classification templates

	Data Generation, Self-checking and Selection

	Experiments
	Datasets
	Baselines

	Results and Discussion
	Classification Tasks
	Ablation Studies: Self-Checking and Auxiliary Prompts
	Lexical Diversity and Semantic Fidelity
	Comparison Against ChatGPT

	Conclusion
	Bibliographical References
	Limitations
	Template Example
	Datasets
	Training Details
	Comparing to Few-shot Baselines
	More Results of Classification Tasks
	Demonstration

