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Abstract

The effectiveness of neural machine trans-
lation is markedly constrained in low-
resource scenarios, where the scarcity of
parallel data hampers the development of
robust models. This paper focuses on the
scenario where the source language is low-
resource and there exists a related high-
resource language, for which we intro-
duce a novel approach that combines pivot
translation and multilingual training. As a
use case we tackle the automatic transla-
tion from Catalan to Chinese, using Span-
ish as an additional language. Our eval-
uation, conducted on the FLORES-200
benchmark, compares our new approach
against a vanilla baseline alongside other
models representing various low-resource
techniques in the Catalan-to-Chinese con-
text. Experimental results highlight the ef-
ficacy of our proposed method, which out-
performs existing models, notably demon-
strating significant improvements both in
translation quality and in lexical diversity.

1 Introduction

The development of neural machine translation
(NMT) has considerably benefited translation be-
tween language pairs abundant in parallel data, en-
hancing translation accuracy and fluency across di-
verse linguistic landscapes (Hassan Awadalla et
al., 2018; Popel et al., 2020). However, its ef-
fect is challenged by the fact that building an ef-
fective NMT system requires a large amount of
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parallel data. This challenge is particularly pro-
nounced in the case of low-resource languages,
that is, language pairs with limited parallel lan-
guage resources, remaining a significant hurdle in
achieving universal communication.

An exemplary case highlighting such hurdle in-
volves the translation dynamics between Catalan
and Chinese, (CA–ZH) two languages character-
ized by limited parallel corpora. The year 2022
marked a significant increase in Chinese invest-
ments in Catalonia1, and the Chinese population
emerged as the fourth largest foreign community in
Catalonia2. These together highlight the growing
economic and social interactions between these re-
gions and thus the pressing need for effective com-
munication tools between Catalan and Chinese
speakers. Despite the potential benefits, the devel-
opment of a robust NMT system for the CA–ZH
language pair faces notable challenges, primarily
due to the scarcity of direct parallel data.

Addressing this gap, previous works have
sought to navigate the low-resource landscape of
the CA-ZH language pair. The research by Costa-
Jussà et al. (2019) was the first work to specifically
focus on addressing the low-resource CA–ZH lan-
guage pair, where they broke new ground by gen-
erating non-human-written parallel sentences, i.e.
pseudo-parallel corpus via pivot translation and
then used them to train ZH→CA NMT models.
Another work (Zhou, 2022) concerned building
CA–ZH parallel data, where CA–ZH bitexts was
first mined from Wikipedia with the help of the
open-source LASER tookit3 and then passed to san-

1Data taken from https://catalonia.com.
2Data taken from https://www.idescat.cat/
novetats/?id=4489\&lang=en.
3https://github.com/facebookresearch/
LASER
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ity check according to Kreutzer’s (2022) method-
ology. Therefore, unlike the training datasets cre-
ated by Costa-Jussà et al. (2019), Zhou’s (2022)
parallel corpus consists of human-selected bitexts.
Subsequently, Liu (2022) used Zhou’s (2022)
dataset to fine-tune a massively pre-trained mul-
tilingual NMT model, i.e. M2M-100 with param-
eters of 418M by Fan et al. (2020) for CA↔ZH,
presenting better translation performance in both
directions as compared to the original M2M-100.

Furthermore, other work (Schwenk et al., 2019;
El-Kishky et al., 2020; Schwenk et al., 2020), re-
lated to building parallel data for many language
pairs, included CA–ZH. The multilingual bitexts
therein were massively mined from web-based re-
sources and subsequently utilized to train multilin-
gual NMT models like M2M-100, which is also
workable with the CA↔ZH translation.

The previous studies on the CA–ZH language
pair contributed to enhancing the automated trans-
lation between these two languages. However,
each focused primarily on employing a singu-
lar, specific low-resource NMT technique, e.g.
pivot translation in Costa-Jussà et al.(2019), fine-
tuning in Liu (2022), multilingual training in Fan
el al. (2020), etc. Unlike these approaches, our
work aims to propose a novel integration, pivot
translation-aided multilingual training (PTAMT),
and compare it against existing methods (multilin-
gual training, fine-tuning, pivot translation, fine-
tuning coupled with pivot translation). We focus
on the CA→ZH translation direction, as a use case
in which the source language is low-resource and
there is a related higher-resourced language, Span-
ish (ES). The technique we introduce, PTAMT,
uses additional data from ES both as pivot and as
multilingual training.

The contributions of our work can be summa-
rized as follows:

1. Our work introduces a novel approach that
effectively leverages pseudo-parallel and au-
thentic data to enhance translation quality
and mitigate the effects of source-side ma-
chine translationese, setting a new standard
for NMT from low-resource languages.

2. Our work, to the best of our knowledge, is the
first one to provide systematic empirical ev-
idence highlighting the effectiveness of dif-
ferent low-resource NMT techniques for the
CA–ZH language pair.

3. Our work underscores the important role of
a modest amount of authentic parallel data in
the target language pair(s) in the training and
fine-tuning processes.

2 Related Work

2.1 Low-resource Techniques

Multilingual training refers to training for dif-
ferent language pairs in a single NMT model
(Wang et al., 2021) via various methods of shar-
ing parameters, e.g. full parameters sharing (Ha et
al., 2016; Johnson et al., 2017; Tan et al., 2019),
attention mechanism sharing (Firat et al., 2016;
Lu et al., 2018), etc. Through multilingual train-
ing, low-resource language pairs can be trained to-
gether with high-resource language pairs, and thus
desired low-resource languages can benefit from
high-resource auxiliary languages when the model
learns linguistic knowledge, contextual informa-
tion, and commonalities, etc. from different lan-
guages. Furthermore, if auxiliary languages are
related to low-resource languages of interest, they
can effectively benefit translation quality in a low-
resource scenario (Gu et al., 2018; Neubig and Hu,
2018).

Fine-tuning is performed when a parent NMT
model is first trained on high-resource language
pairs, and the trained model is used to initialize a
child model’s parameters, which are subsequently
fine-tuned on a low-resource language pair (Zoph
et al., 2016). In this way, whereas knowledge
learnt from high-resource auxiliary languages can
be transferred to low resource languages, the pre-
trained NMT model can also be forced to primar-
ily focus on the desired low-resource language pair
only. By contrast, since a model has constrained
capacity, multilingual training can potentially fa-
vor high-resource language pairs due to imbal-
anced data ratio (Arivazhagan et al., 2019; Wang
et al., 2020). Fine-tuning can be combined with
multilingual training if a model is first trained on
multiple high-resource languages as well as the de-
sired low-resource language pair and then is fine-
tuned on the latter only, which has been proved
as an effective way to improve low-resource trans-
lation (Thillainathan et al., 2021; Adelani et al.,
2022).

Pivot translation is applicable for a low-
resource translation condition if an auxiliary lan-
guage has parallel data with both languages of the
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low-resource language pair, and this auxiliary lan-
guage is called a pivot language (Costa-Jussà et al.,
2019).

There are mainly two approaches in pivot trans-
lation. The first one is the cascade approach, aim-
ing to train two separate translation systems from
source to pivot and from pivot to target, and then
combine them together for source→target trans-
lation, which is common in early statistical ma-
chine translation (Cohn and Lapata, 2007; Wu and
Wang, 2007; El Kholy et al., 2013).

Another approach is more widely used in state-
of-the-art NMT, which is used to synthesize
pseudo-parallel data for a low-resource language
pair, with data either from the source side syn-
thesized through pivot→source translation (Zheng
et al., 2017) or from the target side synthe-
sized through pivot→target translation (Chen et
al., 2017). In this case, to ensure the effec-
tiveness of synthetic data via pivot translation,
it is important to obtain qualified pivot→source
translation or pivot→target translation. For in-
stance, Costa-Jussà et al. (2019) compared two
pseudo-parallel CA–ZH parallel corpora. One was
built by translating the Spanish sentences from
the ES–ZH parallel corpus United Nations Paral-
lel Corpus v1.0 (Ziemski et al., 2016) into Cata-
lan, whereas the other was created by translat-
ing the Spanish sentences from the ES-CA paral-
lel corpus El Periódico (Costa-jussà et al., 2014)
into Chinese. They used them to train two sep-
arate NMT models with same neural network ar-
chitecture for ZH→CA translation, and discovered
that the NMT model trained on the former yielded
a higher BLEU score, as the ES→CA translation
was of higher quality than the ES→ZH translation.

In contrast to this direct synthesis approach,
studies by Lakew et al. (2018) and Currey and
Heafield (2019) leveraged pivot resources differ-
ently. Rather than solely relying on pivot→source
or pivot→target translations to generate pseudo-
parallel data, these studies initiated their process
with multilingual NMT model training using both
source–pivot and target–pivot parallel data. Af-
terwards, Lakew et al. (2018) used their multi-
lingual NMT model to back-translate source and
target language data into the corresponding target
and source languages, respectively. This generated
pseudo-parallel source–target data was then used
alongside the original parallel data to iteratively
re-train the multilingual NMT model. Differ-

ently, Currey and Heafield (2019) leveraged their
multilingual model to back-translate monolingual
data from the pivot language into both the source
and target languages, thereby obtaining pseudo-
parallel source–target data used to further train or
fine-tune the model to enhance the direct transla-
tion capabilities between the source and target lan-
guages.

2.2 Machine Translationese

Machine translationese refers to the artificially im-
poverished language in MT outputs, marked by re-
duced fluency, lexical diversity, and distinct syn-
tactic structures compared to original or human-
translated texts (Vanmassenhove et al., 2021;
Chae and Nenkova, 2009; Ilisei et al., 2010). Such
characteristics can make synthetic machine trans-
lated data ill-suited for capturing the nuances of
human language, potentially leading to deviations
in real-world language usage (Dutta Chowdhury et
al., 2022). When synthetic data is utilised as train-
ing data (as can be the case in pivot translation, see
Section 2.1), models may inadvertently learn from
the machine translationese present in the synthetic
data, leading to the generation of translations or
language constructs that are inconsistent with the
target language.

Efforts to mitigate translationese have included
techniques such as data tagging, where training
datasets are annotated to distinguish between origi-
nal and translated texts. This tagging helps models
recognize and avoid translationese during training,
as in Riley et al. (2020) and Freitag et al. (2022b).
Another approach involves transforming machine-
translated texts into more original-like content us-
ing style transfer or by re-generating text from ab-
stracted representations like AMR (Jalota et al.,
2023; Wein and Schneider, 2024).

These studies mainly focus on improving the
quality of machine-translated output by reducing
translationese. However, less attention has been
given to the effects of source-side artefacts in syn-
thetic data on NMT training. We contemplate
this case in this work, comparing different models
that deal with synthetic source-side training data in
terms of machine translationese.

3 Proposed Method

Our proposed method, PTAMT, couples pivot
translation with multilingual training to leverage
the advantages of both techniques. Distinct from
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previous work (Lakew et al., 2018; Currey and
Heafield, 2019), which uses a less related pivot
language to initially train a multilingual NMT sys-
tem for back-translating and synthesizing pseudo-
parallel data, PTAMT employs a pivot language
(ES) that is linguistically closer to the source lan-
guage. This choice is informed by the synthetic
pivot translation approach demonstrated by Costa-
Jussà et al. (2019), which is favored due to the
greater linguistic affinity between the source (CA)
and pivot (ES) languages as compared to the pivot
(ES) and target (ZH) languages (Rapp, 2021).

In our implementation, we used an exist-
ing ES–ZH corpus to synthesize pseudo-parallel
CA–ZH data by translating ES sentences into CA.
This strategy aligns the synthetic side with the
source language (CA) and uses authentic data for
the target language (ZH), enhancing the model’s
ability to produce natural output.

Nevertheless, as pivot-translated sentences are
inherently machine-translated texts, they are prone
to containing machine translationese. To address
this, PTAMT strategically leverages the ES–ZH
bitexts in a multilingual training setup to facili-
tate effective pivot-based knowledge transfer. This
approach helps to mitigate the potential impact
of noise introduced by the synthetic CA input.
PTAMT incorporates both source languages (CA
and ES) in the encoder, and applies encoder pa-
rameter sharing throughout training, which is ap-
plicable for both from-scratch training and fine-
tuning. The same set of weights and biases is
shareable in a single encoder for inputs from both
source languages. Multilingual training empowers
the model to capture and integrate contextual in-
formation from both source languages. Given that
the ES data is authentic (human-produced), we hy-
pothesize that PTAMT will aid in reducing the in-
fluence of noise from the pivot-translated CA train-
ing data on the target ZH output.

4 Experimental Setup

4.1 Data Description

Original Data We used the aforementioned
CA–ZH parallel corpus, CA–ZH Wikipedia (Zhou,
2022), as the foundation, since it contains human-
selected parallel sentences with quality control.
We refer to this dataset as CA–ZH-WIKI.

Pivot-translated Data We made use of ES–ZH
bitexts from the public release United Nations

Parallel Corpus v1.0 (Ziemski et al., 2016), to
which we refer as ES-ZH-UN. Instead of train-
ing an ES→CA automatic translation system from
scratch as in (Costa-Jussà et al., 2019), we directly
used the open-source NMT model provided by
Softcatalà4 to translate ES sentences from ES-ZH-
UN into CA and then obtain the pseudo-parallel
(synthetic source) CA–ZH United Nations parallel
dataset, CA-ZH-PVT. Addtionally, by translating
CA sentences from CA-ZH-WIKI into ES through
a CA→ES NMT model5, we generated a pseudo
ES–ZH Wikipedia parallel dataset, ES-ZH-PVT,
for later data augmentation.

Mixed Data As for the CA–ZH language pair,
we concatenated the pivot-translated CA–ZH
dataset CA-ZH-PVT with CA-ZH-WIKI, resulting
in the mixed parallel dataset CA-ZH-MIX. As re-
gards the ES–ZH language pair, we concatenated
the pivot-translated ES–ZH Wikipedia dataset ES-
ZH-PVT with ES-ZH-UN to obtain a mixed par-
allel dataset ES-ZH-MIX for the ES–ZH language
pair.

4.2 Models

We implemented one vanilla baseline model, four
models based on a pre-trained multilingual model
(M2M-100-418), two Transformer-based models
trained from scratch, and four PTAMT models to
compare different low-resource NMT techniques
for CA→ZH translation.

Vanilla Baseline Our vanilla baseline was a
Transformer-based model trained on the original
parallel corpus CA-ZH-WIKI. Due to the small size
of this training dataset, rather than using the de-
fault Transformer-base configuration (Vaswani et
al., 2017), we adopted the architecture setting op-
timized on 40k training sentence pairs (Araabi and
Monz, 2020), which consists of 2 attention heads,
5 encoder and decoder layers, and a 512 embed-
ding dimension.

M2M-100-418M Models As a second baseline,
we selected the pretrained model M2M-100 (Fan
et al., 2020), which is representative of a model
that has taken advantage of multilingual training.
M2M-100 is a state-of-the-art massively multilin-
gual translation model, which supports translation
between Catalan and Chinese. We opted for the

4https://github.com/Softcatala/nmt-models
5https://github.com/Softcatala/nmt-models
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Language pair Corpus # of sentence pairs

Training Validation

CA–ZH
CA-ZH-WIKI 58,328 10,293
CA-ZH-PVT 17,575,795 2,638
CA-ZH-MIX 17,634,123 12,931

ES–ZH
ES-ZH-UN 17,575,795 2,638
ES-ZH-PVT 58,328 10,293
ES-ZH-MIX 17,634,123 12,931

Table 1: Distribution of the datasets in the experiments.

one with the least size of parameters (418M) tak-
ing into account available computational resources
as well as comparability across the different mod-
els in our experiments. M2M-100-418M is a
Transformer-based model that contains 12 encoder
and decoder layers with a 1024 embedding dimen-
sion.

Large-scale multilingual pre-trained NMT mod-
els can be further leveraged to improve low-
resource machine translation by fine-tuning them
on low-resource language pairs. Therefore, we
examined three fine-tuned M2M-100-418M mod-
els for the CA→ZH translation. The first one
was obtained from the aforementioned work by
Liu (2022), accessible on a Hugging Face repos-
itory6, which was solely fine-tuned on the CA-ZH-
WIKI training dataset. We fine-tuned the second
one on the pseudo-parallel dataset CA-ZH-PVT
and the third one on the mixed parallel dataset CA-
ZH-MIX. These last two models represent those
that leverage pivot translation (either without or
with original parallel data) paired with fine-tuning.

From-scratch Trained Models We additionally
trained two models from scratch using a Trans-
former architecture, with 6 encoder and decoder
layers and a 512 embedding dimension, respec-
tively on the pseudo-parallel dataset CA-ZH-PVT
and the mixed parallel dataset CA-ZH-MIX. These
two models represent those that leverage pivot
translation (either without or with original parallel
data) under from-scratch training conditions.

PTAMT-enhanced Models We implemented
PTAMT to enable simultaneous benefits from CA-
ZH-MIX and ES-ZH-MIX in both from-scratch
training and fine-tuning scenarios. Under the
from-scratch training condition, we trained a sin-
6https://huggingface.co/projecte-aina/
m2m100\_418M\_ft\_ca\_zh

gle NMT model that has the same network archi-
tecture as the previous from-scratch trained mod-
els. Whereas the language pair of interest is
still CA–ZH, this model supports both CA→ZH
and ES→ZH translation, effectively operating as
a many-to-one NMT system. The encoder param-
eters are shared between CA and ES without in-
creasing the model size, where a special token was
added to the source side to specify the input lan-
guage. Likewise, in the fine-tuning condition, both
language pairs were included, and thus M2M-100-
418M was fine-tuned on both CA-ZH-MIX and ES-
ZH-MIX.

During the training or fine-tuning phase, ES was
engaged as an auxiliary language. Despite poten-
tial noise introduced by pivot-translated CA sen-
tences, the model could still learn relevant lin-
guistic properties and characteristics related to CA
from their ES equivalents, and thereby enhancing
the CA→ZH translation. These two models rep-
resent PTAMT in from-scratch training and fine-
tuning scenarios, respectively. Furthermore, we
applied a second-step fine-tuning to both models
on CA-ZH-WIKI.

4.3 Preprocessing

As for the parallel datasets used in our experi-
ments, we only worked on sentence-level transla-
tion and so we removed lengthy sentence pairs by
restricting them to maximum length of 100 words,
then split them into training set and validation set
(see Table 1), and went through different prepro-
cessing pipelines depending on the models to be
trained, as detailed next.

M2M-100-418M models For this model and its
fine-tuned variants, including two with PTAMT,
we employed the pre-trained SentencePiece tok-
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enizer designed for M2M-1007. This tokenizer
was used to tokenize all the parallel sentences.

Other models For the remaining models, we ap-
plied pre-tokenization using separate segmenters
tailored for each language, following the approach
outlined in Costa-Jussà (2019):

• Chinese: Since word boundaries in Chinese
are not discernible through whitespace, we
utilized the Jieba segmenter 8 to segment Chi-
nese sentences into words.

• Catalan and Spanish: We relied on the
spaCy tokenizer, specifically the models
ca core news sm 9 and es core news sm 10,
respectively. These models were used to iden-
tify word boundaries and split contractions
(e.g., l’original into l’ + original).

Following the pre-tokenization step, we trained
SentencePiece BPE models using training sen-
tences from the respective datasets and then pro-
ceeded with tokenization.

• Vanilla Baseline: Following Araabi and
Monz (2020), we trained a tokenizer with 12k
BPE merge operations for each language.

• From-scratch Models: We sampled 5M sen-
tences from the corresponding training set for
each language. We then trained a tokenizer
with a character coverage of 1.0 for CA and
another one for ZH with character coverage
of 0.9995. To determine the optimal vocabu-
lary size for training our tokenizers, we ini-
tially used the widely-adopted size of 32k.
Subsequently, we conducted experiments by
both increasing and decreasing the vocabu-
lary size. In evaluating the performance of
tokenizers with different sizes, we assessed
the occurrences of the unk token in the tok-
enized data. This resulted in a vocabulary of
35K subwords.

• PTAMT: For the proposed PTAMT-enhanced
model under the from-scratch condition, we
sampled 5M sentences from the ES corpus
and concatenated it with the CA samples.

7https://dl.fbaipublicfiles.com/m2m\_100/
spm.128k.model
8https://github.com/fxsjy/jieba
9https://spacy.io/models/ca
10https://spacy.io/models/es

This combined set was used to train a joint
tokenizer for CA and ES. After testing differ-
ent vocabulary sizes, we finally created a joint
vocabulary of 64K. We retained the Chinese
tokenizer used in the previous from-scratch
trained model for tokenization.

4.4 Training

For maximum comparability across the various
models in this study, we conducted all experiments
using a single NVIDIA RTX A5000 GPU card.
We trained or fine-tuned all models with the Adam
Optimizer and label smoothing cross-entropy loss.
The configuration of hyper-parameters for all the
NMT models is provided in Table 4 (Appendix
A), except that hyper-parameters for training the
vanilla baseline followed the ones in Araabi and
Monz (2020) (see Table 5 in Appendix A). Ad-
dtionally, checkpoints were evaluated at an inter-
vals 5k training or fine-tuning steps on the vali-
dation set. Throughout this process, we continu-
ously monitored the models’ performance by as-
sessing both training and validation losses. To en-
sure a balance between achieving convergence and
avoiding overfitting, we implemented early stop if
there was no improvement in the validation loss
over 0.02 across three consecutive validation inter-
vals. The epochs are listed in Table 6 in Appendix
B.

4.5 Evaluation

4.5.1 Evaluation Benchmark
We benchmarked the models in this work on

FLORES-200 (Team et al., 2022). We used 1012
sentence pairs from its devtest set to evaluate the
translation quality in the CA→ZH direction in all
experiments, where we performed beam search de-
coding with a beam size of 5.

4.5.2 Evaluation Metrics
We incorporated three distinct sets of automatic

evaluation metrics, with the first two aiming to
evaluate translation quality and the last one aim-
ing to assess lexical diversity.

SentencePiece BLEU We adopted the Sentence-
Piece BLEU (spBLEU) (Goyal et al., 2021) as one
of our quality evaluation metrics, since spBLEU
correlated with human ratings slightly better than
BLEU (Freitag et al., 2022a). We first detokenized
the output from all the NMT models, then imple-
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System Methods spBLEU COMET

Vanilla Baseline - 8.2 0.525

M2M-100-418M
Models

multilingual training
(pre-trained baseline)

22.0 0.774

fine-tuning 22.4 0.797
fine-tuning & pivot
(without original data)

22.7 0.779

fine-tuning & pivot
(with original data)

24.6 0.808

PTAMT 25.2 0.810
PTAMT & 2nd fine-tuning 26.7 0.828

From-scratch
Trained
Models

pivot
(without original data)

19.8 0.738

pivot
(with original data)

21.1 0.763

PTAMT 23.1 0.783
PTAMT & 2nd fine-tuning 24.3 0.786

Table 2: Translation quality automatic scores for the baseline, pre-trained models and from-scratch models. The best score per
section and metric is shown in bold.

mented the pre-trained SentencePiece tokenizer 11

specific for FLORES-200 to tokenize the MT out-
put and the reference translation, and finally com-
puted spBLEU for each model.

Crosslingual Optimized Metric for Evaluation
of Translation COMET (Rei et al., 2020) lever-
ages cross-lingual neural language modelling and
is trained to predict human judgement scores for
machine-translated texts. COMET caters for a
great variety of languages, and takes into account
semantic similarities not only between the MT out-
put and the reference translation but also the cor-
responding source text (Rei et al., 2020). We used
the default COMET model12, feeding it a triplet
with detokenized source, MT output, and reference
translation.

Measures of Lexical Diversity As discussed in
Section 2.2, machine-translated texts exhibit dif-
ferences in lexical diversity compared to original
texts. Therefore, we evaluated lexical diversity
in both reference translations and outputs from
the NMT models in our experiments to compare
the prevalence of machine translationese. Follow-
ing the approach outlined by Vanmassenhove et

11https://github.com/facebookresearch/
flores/tree/main/flores200
12https://huggingface.co/Unbabel/
wmt22-comet-da

al. (2021), lexical diversity was examined using
various measures, including lexical frequency pro-
file (LFP), type/token ratio (TTR), Yule’s I and the
measure of textual lexical diversity (MLTD).

In Vanmassenhove et al. (2021), LFP is used
to quantify the richness of a translation by divid-
ing the words of a text into three bands: (i) the
percentage of words among the 1000 most com-
mon words in that language, (ii) the percentage of
words among the next 1000 most common words,
and (iii) all other words. These word frequency
lists are generated from the training set. TTR as-
sesses a text’s repetitiveness by comparing the ra-
tio of unique words (types) to the total number of
words (tokens) in the text. MLTD represents the
mean length of a text where a given TTR value is
maintained. Yule’s I, the inverse of Yule’s K, mea-
sures the constancy of text and the repetitiveness
of vocabulary.

Prior to computing the lexical diversity scores
for each metric, we tokenized the Chinese refer-
ences and MT outputs following the same Chinese
pre-tokenization steps outlined in Section 4.3. Be-
sides, we utilized the pre-tokenized mixed Chinese
training sentences from CA-ZH-MIX to obtain the
Chinese word frequency list for LFP.
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System Methods B1 B2 B3 TTR Yule’s I MLTD

Reference - 0.487 0.090 0.423 0.320 14.679 218.133

Vanilla Baseline - 0.593 0.074 0.333 0.228 3.873 50.784

M2M-100-418M
Models

multilingual training
(strong baseline)

0.534 0.089 0.377 0.248 6.091 115.470

fine-tuning 0.519 0.092 0.389 0.282 8.916 132.883
fine-tuning & pivot
(without original data)

0.517 0.093 0.391 0.279 10.046 121.555

fine-tuning & pivot
(with original data)

0.514 0.094 0.393 0.283 10.257 129.594

PTAMT 0.517 0.093 0.390 0.288 10.770 157.991
PTAMT & 2nd fine-tuning 0.515 0.088 0.396 0.295 10.011 167.163

From-scratch
Trained
Models

pivot
(without original data)

0.584 0.095 0.321 0.246 6.762 137.691

pivot
(with original data)

0.579 0.091 0.331 0.256 6.927 127.027

PTAMT 0.556 0.093 0.351 0.272 8.515 155.443
PTAMT & 2nd fine-tuning 0.547 0.090 0.363 0.274 7.728 149.375

Table 3: LFP scores with 3 bands (B1: 0-1000, B2: 1001-2000, B3: 2001-end), TTR, Yule’s I and MTLD scores for the
reference and the output of the NMT models in CA→ZH translation. Lower B1 values, indicating fewer matched tokens in
frequent cases, along with higher values in B3, TTR, Yule’s I, and MTLD, collectively indicate greater lexical richness.

5 Results and Discussion

5.1 Results
Table 2 displays the quality outcomes, while Table
3 shows the lexical diversity outcomes for all the
NMT models involved in the CA→ZH translation
on the FLORES-200 dataset.

Translation Quality The results indicate a no-
table advancement in translation quality when ex-
amining the from-scratch trained models. Partic-
ularly, transitioning from the vanilla baseline to a
pivot strategy yields a significant increase in per-
formance metrics, with spBLEU surging by 11.6
points from 8.2 to 19.8, and the COMET score
enhancing by approximately 0.213 from 0.525 to
0.738. This trend of improvement extends when
integrating the pivot-translated dataset with the
original, which further elevates the spBLEU score
by 1.3 to 21.1. This enhancement is surpassed by
the PTAMT model, marking a spBLEU increase
of 2.0 from 21.1 to 23.1. Interestingly, fine-tuning
the PTAMT model on the small amount of original
dataset led to a further spBLEU boost by 1.2.

In comparison, the M2M-100-418M models be-
gin with a strong foundation, exhibiting a high ini-
tial spBLEU score of 22 and a COMET score of
0.774. A slight improvement in spBLEU is noted

after fine-tuning on the original training set, in-
creasing modestly to 22.4. The incremental ad-
vancement persists when pairing fine-tuning with
pivot translation, further elevating the spBLEU to
22.7 when excluding the original parallel data and
to 24.6 when combined with the original paral-
lel dataset. Applying PTAMT in the fine-tuning
condition boosts spBLEU further to 25.2, with a
second-step fine-tuning on the original dataset re-
sulting in a peak spBLEU score of 26.7, accompa-
nied by the highest COMET score of 0.828.

The M2M-100-418M models generally outper-
form from-scratch models in terms of translation
quality. However, the PTAMT-enhanced model in
the from-scratch training scenario, whether with
second-step fine-tuning or not, still surpasses the
M2M-100-418M models reliant solely on multi-
lingual training, fine-tuning, and fine-tuning com-
bined with pivot translation (without original par-
allel data) in terms of spBLEU scores.

Lexical Diversity Compared to all the NMT
models, the reference translation exhibits a lower
B1 score and a higher B3 score. This reveals
that the 1000 most frequent words represent a
smaller proportion of the human-translated sen-
tences, while less frequent words constitute a
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larger portion of the original data compared to the
outputs of different NMT systems, indicating a
preference for less frequent words and a richer vo-
cabulary. This is further evidenced by its superior
TTR, Yule’s I, and MLTD scores.

However, the results also reveal that incor-
porating low-resource training approaches into
NMT models consistently leads to performance
improvements over the vanilla baseline. Specif-
ically, our proposed method, PTAMT, stands out
in both from-scratch trained models and atop the
M2M-100-418M pre-trained model, by achieving
the lowest B1 score, the highest B3 score, and the
highest scores of TTR, Yule’s I, and MLTD. This
suggests that the PTAMT-enhanced models excel
in generating linguistically rich and varied outputs
across both from-scratch training and fine-tuning
scenarios. Furthermore, it was observed that the
M2M-100-418M models demonstrate a superior
ability to use a wider vocabulary compared to the
from-scratch trained models.

5.2 Discussion

Notable improvements in translation quality and
lexical diversity have been observed following the
implementation of low-resource NMT techniques,
underscoring the pivotal role of innovative training
strategies in surpassing the limitations traditionally
associated with NMT models in low-resource con-
texts.

While different approaches have exhibited dif-
ferent degrees of enhancement, the overall su-
periority of the M2M-100-418M models can
be attributed to the extensive multilingual pre-
training of the initial M2M-100-418M model,
which is equipped with a broad variety of lin-
guistic knowledge, enabling itself to benefit sub-
stantially from subsequent low-resource training
strategies. Among the low-resource methods ex-
amined, PTAMT has set a new standard for gen-
erating translations, allowing the M2M-100-418M
model to capitalize on both the CA–ZH and
ES–ZH training datasets, achieving superior trans-
lation quality and lexical diversity compared to
the other M2M-100-418M models examined. In-
terestingly, despite the inherent advantages of the
M2M-100-418M’s large-scale multilingual train-
ing base, the from-scratch trained models lever-
aging the PTAMT method exhibit unique capac-
ity to optimize translation quality beyond the ca-
pabilities of the M2M-100-418M models that rely

solely on the approaches of multilingual training,
fine-tuning, and fine-tuning combined with pivot
translation (without original parallel data).

Furthermore, PTAMT is particularly effective
in reducing the impact of source-side machine-
translationese introduced by the pivot-translated
data (i.e. source-side machine-translated Catalan
from Spanish) on the target output. PTAMT does
not only include as training data a large amount of
pseudo-parallel data for the desired source-target
language pair (CA–ZH), but also integrates au-
thentic linguistic input from the pivot–target lan-
guage pair (ES–ZH). This approach enables the
models to not only be exposed to a wider range
of lexical items and usage contexts but also effec-
tively discern and replicate the subtleties of nat-
ural language usage. Empirical evidence from
our results of the lexical diversity metrics corrob-
orates PTAMT’s positive impact. The improved
scores in these metrics for PTAMT-enhanced mod-
els reflect diversified word usage and a depar-
ture from the simplified and often repetitive lan-
guage characteristic of synthetic data-driven trans-
lations, thereby diminishing the hallmarks of ma-
chine translationese.

Besides lexical level, we have also observed a
syntax-semantics phenomenon uniquely captured
by the PTAMT-enhanced models. A translation
sample (see Table 7 in Appendix C) is illustrated
where the CA source sentence contains three el-
ements conveying negative meaning, whereas the
ZH reference exhibits only one negative marker.
This is because CA is a negative concord language,
where multiple negative markers do not cancel but
affirm one another to intensify the negation, and
thus combine into a single negation (Espinal et
al., 2016; Tubau et al., 2023). By contrast, ZH
is a language without negative concord, meaning
that negative markers spell out one another and
thus two negatives resolve to a positive (Yang,
2011). Therefore, the triple negatives in the CA
source sentence actually resolve to a single nega-
tion. When translating the the CA source sentence
to ZH, only one negative needs to be retained. In
our experiments, only the PTAMT models accu-
rately captured this linguistic phenomenon, while
other models erroneously included two negatives
in the ZH translation, resulting in a completely op-
posite meaning. Surprisingly, after fine-tuning the
from-scratch trained PTAMT-enhanced model on
the original parallel corpus, this understanding was
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lost. Conversely, the M2M-100-418M PTAMT-
enhanced model gained this understanding after
the second-step fine-tuning.

Finally, we have also noted the substantial im-
pact of incorporating a small quantity of authentic
parallel data in the desired language pair (dataset
CA–ZH-WIKI). When training or fine-tuning on
pivot-translated data alongside a modest amount of
original CA-ZH parallel corpus, there is a marked
increase in spBLEU and COMET scores, com-
pared to using pivot-translated data alone. More-
over, fine-tuning successively the from-scratch
trained PTAMT-enhanced model and the M2M-
100-418M PTAMT-enhanced model on a small
portion of original CA-ZH parallel data also re-
sulted in a notable enhancement in spBLEU and
COMET scores for both models. Taken together,
these findings are likely to imply the significance
of authentic parallel data in the target language
pair(s) in improving the performance of NMT sys-
tems.

6 Conclusions and Future Work

In this work, our comprehensive experimental
evaluation of from-scratch trained and M2M-100-
418M pre-trained models for the CA→ZH trans-
lation task has highlighted the efficacy of low-
resource NMT techniques. Significantly, these ex-
periments have confirmed the substantial benefits
of these methods on translation quality and lexical
diversity, with our novel PTAMT method emerg-
ing as a key innovator in addressing the challenges
inherent in translating the low-resource language
pair.

The PTAMT method, with its ability to effec-
tively utilize pseudo-parallel and authentic paral-
lel data, significantly mitigates the influence of
source-side machine translationese and enhances
the model’s capability to produce translations that
are not only accurate but also linguistically rich
and varied. This approach not only broadens the
lexical range and usage contexts available to the
model but also ensures a nuanced understanding
and replication of natural language subtleties, as
evidenced by the improved lexical diversity met-
rics and the accurate handling of complex linguis-
tic phenomena such as negative concord.

Moreover, our findings seem to imply the criti-
cal role of integrating authentic data in the desired
language pair(s) into the training or fine-tuning
process, demonstrating that even a small amount

of authentic parallel data can substantially elevate
the performance of NMT systems. This insight
emphasizes the importance of combining pseudo-
parallel and authentic inputs to achieve the best
possible translation outcomes, particularly in the
context of low-resource language pairs.

While our study marks progress in NMT for
the low-resource CA–ZH pair, it also unveils areas
which deserve further exploration. The potential
domain alignment between our test set FLORES-
200 and the original CA-ZH-WIKI parallel data
raises questions about how the inclusion of a mod-
est amount of authentic parallel data in the target
language pair(s) influences translation outcomes.
This becomes especially relevant when consider-
ing the potential for domain-specific biases to af-
fect the evaluation of NMT systems. Moreover,
the observed discrepancies in how from-scratch
trained PTAMT-enhanced models and M2M-100-
418M PTAMT-enhanced models handle linguis-
tic complexities such as negative concord—both
before and after additional fine-tuning—suggest
underlying differences in model learning dynam-
ics that deserve closer scrutiny. These diver-
gent model responses highlight the need for a nu-
anced understanding of how different training ap-
proaches impact the NMT models’ ability to grasp
and accurately render complex linguistic struc-
tures.

To navigate these uncertainties and expand upon
our findings, we propose several avenues for fu-
ture research: firstly, building novel and diversified
test sets to quantify and generalize the influence
of authentic parallel data in the target language
pair(s) on model performance; secondly, exploring
the models’ internal representations and additional
fine-tuning processes to pinpoint factors contribut-
ing to their distinct responses to linguistic com-
plexities such as negative concord; thirdly, expand-
ing our investigation to include more low-resource
language pairs to enable a comprehensive evalua-
tion of the PTAMT method’s applicability across
diverse linguistic contexts.
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A Appendix: Hyper-parameters
Configuration

Hyper-parameters Value

adam betas 0.9, 0.98
learning rate 0.0005

warmup initial learning rate 1.00E-07
label smoothing 0.1

dorpout 0.2
weight decay 0.0001

batch size (in tokens) 4096 (× 8 steps)
gradients accumulation 8

Table 4: hyper-parameters of the neural models. Note that
the same set of hyper-parameters was used for all experiments
except that the batch size for the M2M-100-418M models was
2048 tokens (× 16 steps) due to GPU memory limit.

Hyperparameter Value

adam betas 0.9, 0.98
learning rate 0.0005

warmup initial learning rate 1.00E-07
label smoothing 0.5

dorpout 0.3
activation dropout 0.3
enc/dec layerDrop 0.0/0.1

weight decay 0.0001
batch size (in tokens) 4096 (× 8 steps)

gradients accumulation 8

Table 5: Optimal Transformer hyper-parameters settings for
40k datasets.
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B Appendix: Training and Fine-tuning
Epochs

System Methods Epoch

Vanilla Baseline - 155

M2M-100-418M
Models

multilingual training
(strong baseline)

-

fine-tuning 8
fine-tuning & pivot
(without original data)

3

fine-tuning & pivot
(with original data)

4

PTAMT 4
PTAMT
& 2nd fine-tunig

10

From-scratch
Trained
Models

pivot
(without original data)

13

pivot
(with original data)

11

PTAMT 13
PTAMT
& 2nd fine-tuning

10

Table 6: Training and fine-tuning epochs for the baseline,
pre-trained models and from-scratch models. Note that the
epoch of the pre-trained M2M-100-418M model was not re-
ported publicly.
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C Appendix: Translation Sample

Model Sentence

Source(CA)

Adverteix que no hi ha ningú que pugui garantir
que cap acció a l’Iraq en aquest moment aconsegueixi
aturar la guerra sectària, la violència creixent o una
deriva caòtica.

Reference(ZH)
报告警告称,没有人能保证目前在伊拉克采取的任何行动
能够阻止宗派战争、不断增长的暴力或走向混乱。

Meaning in English
It warns no one can guarantee that any action in Iraq
at this point will stop sectarian warfare, growing violence,
or a slide toward chaos.

Vanilla baseline
亚当斯表示，没有任何人确保伊拉克的行动，并阻止
伊拉克战争、暴力行为、暴力行为或暴力行为。

Meaning in English
Adam shows, no one guarantees the action in Iraq and stops the war
in Iraq, violence, violence, or violence.

M2M-100-418M
(Strong baseline)

他警告说,没有人能保证伊拉克目前没有任何行动
能阻止种族战争、暴力加剧或混乱的流动。

Meaning in English
He warns no one can guarantee that no action in Iraq
at this point will stop ethnic warfare, growing violence,
or the flow of chaos.

M2M-100-418M
+ finetuning

他警告,没有人能保证伊拉克在这一时刻不会采取任何行动
来阻止种族战争、日益暴力或混乱的发生。

Meaning in English
He warns no one can guarantee that Iraq is not taking any action
at this point to stop ethnic warfare, growing violence,
or the occurrence of chaos.

M2M-100-418M
+ fine-tuning & pivot

(without original data)

他警告说,没有人能够保证目前在伊拉克采取的任何行动
都不会停止派别战争、暴力升级或混乱。

Meaning in English
He warns no one can guarantee that any action in Iraq
at this point will not stop sectarian warfare, growing violence,
or chaos.

M2M-100-418M
+ fine-tuning

& pivot
(with original data)

他警告说,没有人能够保证目前在伊拉克采取的任何行动
都不会阻止派别战争、暴力升级或混乱。

Meaning in English
He warns no one can guarantee that any action in Iraq
at this point will not stop sectarian warfare, growing violence,
or chaos.

M2M-100-418M
+ PTAMT

他警告说,没有人能够保证,目前在伊拉克采取的任何行动
都不会成功地制止教派战争、不断升级的暴力或混乱的倾向。

Meaning in English
He warns no one can guarantee that any action in Iraq
at this point will not successfully stop sectarian warfare, growing violence,
or tendency towards chaos.
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Model Sentence

M2M-100-418M
+ PTAMT

& 2nd-fine-tuning

他警告说,没有人能够保证在伊拉克的任何行动
能阻止教派战争、不断升级的暴力或混乱的倾向。

Meaning in English
He warns no one can guarantee that any action in Iraq
will stop sectarian warfare, growing violence,
or tendency towards chaos.

From-scratch
+ pivot translation

(without original data)

他指出,没有人能够保证伊拉克目前的任何行动
都不会导致教派战争、日益严重的暴力或混乱。

Meaning in English
He points out no one can guarantee that any action in Iraq
at this point will not lead to sectarian warfare, growing violence,
or chaos.

From-scratch
+ pivot translation
(with original data)

他警告说,没有人能够保证,伊拉克目前的任何行动
都不会阻止教派战争、不断升级的暴力或混乱的漂流。

Meaning in English
He warns no one can guarantee that any action in Iraq
at this point will not stop sectarian warfare, growing violence,
or the flow of chaos.

From-scratch
+ PTAMT

他警告说,没有人能够确保目前在伊拉克的任何行动
能够制止教派战争、不断升级的暴力或混乱。

Meaning in English
He warns no one can guarantee that any action in Iraq
at this point will stop sectarian warfare, growing violence,
or chaos.

From-scratch
+ PTAMT

& 2nd-fine-tuning

他警告说,没有能保证此时在伊拉克的任何行动
都不会阻止教派战争、不断升级的暴力或混乱的漂流。

Meaning in English
He warns no one can guarantee any action in Iraq
at this point will not stop sectarian warfare, growing violence,
or the flow of chaos.

Table 7: Translation sample for baseline, fine-tuned, and from-scratch trained models. Note that the underlined elements in the
table are words or structural elements that cause negation.
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