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Abstract

Subword regularized models leverage mul-
tiple subword tokenizations of one target
sentence during training. Previous de-
coding algorithms select one tokenization
during inference, leading to the underuti-
lization of knowledge learned about mul-
tiple tokenizations. To address this, we
propose the SubMerge algorithm to res-
cue the ignored Subword tokenizations
through Merging equivalent ones during
inference. SubMerge is a nested search al-
gorithm where the outer beam search treats
words as the minimal units, and the inner
beam search provides a list of word can-
didates and their probabilities by merging
subword tokenizations that form the same
word. Experimental results on six machine
translation datasets show more accurate
word probability estimation and higher
translation quality using SubMerge than
beam search. Additionally, we provide
time complexity analysis and investigate
the effect of different beam sizes, training
set sizes, dropout rates, and whether it is
effective on non-regularized models.

1 Introduction

Despite the end-to-end nature that makes neu-
ral machine translation (NMT) (Sutskever et al.,
2014; Bahdanau et al., 2014; Vaswani et al., 2017;
Gehring et al., 2017) the most prevalent and con-
venient approach for machine translation (MT),
subword tokenization (Sennrich et al., 2016b;
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Figure 1: Subword regularized models suffer from discrep-
ancies between training and inference, where they are trained
on multiple target tokenizations and generate one. We pro-
pose to merge equivalent subword tokenizations that compose
the same word with different conditional probabilities during
the inference.

Provilkov et al., 2020; Kudo and Richardson,
2018; Kudo, 2018a) remains an indispensable pre-
processing step for most NMT systems. Subword
vocabularies address the out-of-vocabulary prob-
lem of word-based NMT systems (Kalchbrenner
and Blunsom, 2013; Bahdanau et al., 2014; Lu-
ong et al., 2015) by reducing new words to known
subwords, while avoiding the high computational
cost of character-based NMT systems (Gupta et al.,
2019; Kim et al., 2016; Costa-jussa and Fonollosa,
2016; Ling et al., 2015; Cherry et al., 2018) by en-
abling much shorter input and output sequences.
Deterministic segmenters like Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016b) and Sentence-
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Piece (Kudo, 2018a) are widely used due to their
simplicity and effectiveness. They are determin-
isitic in the sense that they consistently generate
the same tokenization for a given sentence. NMT
models trained on consistent subword tokeniza-
tions typically allocate the majority of a sentence’s
true probability (considering all potential tokeniza-
tions by marginalizing over them) to its specific
tokenization (Cao and Rimell, 2021), except for
out-of-domain data (Chirkova et al., 2023). There-
fore, the probability of the sentence approximately
equals the probability of that tokenization.

On the other hand, stochastic segmenters such as
subword regularization methods (Provilkov et al.,
2020; Kudo, 2018a) produce multiple tokeniza-
tions of a given sentence during training, as illus-
trated in Figure 1. As a data augmentation method,
models trained on regularized data usually outper-
form those trained on non-regularized data, espe-
cially in low-resource scenarios. However, this
causes a discrepancy between training and infer-
ence. During training, the model learns to gen-
erate multiple target tokenizations for each source
sentence and learns to distribute the probability of
a target sentence across all the tokenizations. Dur-
ing inference, greedy or beam search approximates
the single highest probability tokenization. This
causes a discrepancy - the probability of a target
tokenization diverges drastically from the proba-
bility of a target sentence. The inaccurate proba-
bility estimation of the next word during inference
in turn leads to a degradation in translation qual-
ity. The way to overcome this is to incorporate the
marginal likelihood of the next words during de-
coding for the subword regularized models.

To this end, we propose SubMerge, a decoding
algorithm that aggregates probabilities from ex-
ponentially many tokenizations for a sentence by
merging subword tokenizations that form the same
word. The property of BPE-dropout (Provilkov
et al., 2020) that each word is individually seg-
mented makes aggregating probabilities from ex-
ponentially many tokenizations theoretically pos-
sible. As for the implementation, SubMerge is a
nested beam search approach. In the outer beam
search, we hide the detail of possible subword tok-
enizations of the word, treating words as minimal
units. This ensures that the outer beam is unaware
of and unaffected by the subword tokenizer. In
the inner beam search, we limit the search space
within the word boundary. The inner beam search

finds the n-best tokenizations, merges equivalent
ones, and returns a list of words and the corre-
sponding probabilities.

Previous attempts to estimate marginal likeli-
hood over tokenizations include summing over n-
best tokenizations (Cao and Rimell, 2021) and us-
ing importance sampling (Chirkova et al., 2023).
However, these algorithms focus on perplexity es-
timation, assuming the output is already in hand.
In our approach, we perform marginal likelihood
estimation for the next words along with the infer-
ence process, aiming to improve not only the esti-
mation precision but also the translation quality. In
a nutshell, our contributions are as follows:

* We propose SubMerge, a nested beam search
algorithm for generating text with subword
regularized models. It merges equivalent
subword tokenizations for the next words,
thereby enhancing probability estimation pre-
cision and translation quality.

* Experimental results on six machine trans-
lation datasets demonstrate significant im-
provements in estimating the underlying word
perplexity computation for a model and its
translation quality.

* We provide analyses of time complexity, var-
ious beam sizes, the selection of the inner
searching function, and the impact of hyper-
parameters.

2 Preliminaries

This section formulates the objective of the infer-
ence process of NMT models, highlights the dis-
tinction introduced by subword regularized mod-
els, and introduces how we address it.

Inference Objective An NMT model with

parameters 6 during inference is to obtain

arg max Py(Y|X) where X and Y are the source
Y

and target sentences in plain text form. For
subword-based NMT models, we tokenize X into
a sequence of tokens during both training and in-
ference. We tokenize Y during the training and
try to predict a sequence of tokens that compose Y
during inference. We use two tokenizers 75(X) =
x, where ¢ = (x1, ..., zp) and 70(Y) = y, where
y = (y1,...,Ym). Each subword x; or y; is a non-
empty substring of the text X or Y in a finite-size
subword vocabulary predefined by the source or
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target tokenizer. In theory,

B(Y[X) # Py(yl), (1)

because there are multiple tokenizations of X and
Y (besides x and vy) that the model Py would as-
sign non-zero probabilities to (Cao and Rimell,
2021).

Non-regularized Models For NMT models using
deterministic tokenizers such as BPE (Sennrich et
al., 2016b), tokenization function 7(-) is a bijec-
tive function, and we can approximate the objec-
tive using one tokenization with a small gap (less
than 0.5%) (Chirkova et al., 2023):

By (Y[X) = Py(yle). 2)

Therefore, we can use arg max Py(y|x) to ap-
Yy
proximate arg max Py(Y | X') with greedy or beam
Y

search in inference. This allows us to identify
the next tokens with high conditional probabilities
without concern for the discrepancy between the
probability of raw text Y and of the particular tok-
enization y.

Subword Regularized Models For NMT models
using stochastic tokenizers (Provilkov et al., 2020),
the tokenization function 7 yields multiple tok-
enizations for one sentence. That is 79(X) =
x € Vs(X)where x ~ Pri(x|X). Similar for
Y. In this case, the number of possible segmen-
tation Vs(X') increases exponentially according to
the length of X, which deviates Py(y|x) drasti-
cally from P»(Y|X), thus it requires marginaliza-
tion over all possible tokenizations:

Z Z PB y]:c Ts(m’X)

x€Vs(X) yevr(Y)
(3)

Py(Y|X) =

This study focuses on better estimating the
marginal likelihood of the target side, so we sim-
plify Eq. (3) by using the most probable source

tokenization arg max P ) (z|X) and remove the
zeVs(X)
effect of the source tokenizer, resulting in:

Z Py(ylz). 4)

yevr(Y)

Py(Y|X) ~

Inference for Subword Regularized Models We
propose SubMerge to approximates Eq. (4) by in-
troducing an intermediate variable, word tokeniza-
tions w = (wy, ..., wy), generated by a word to-

kenizer 7y (-) which is a bijective function.! The

problem is simplified as:

P@(Y|£IZ) HPG wz|w<zv ) &)

Py(w|x) =

We estimate Py(w;|w<;, ) by summing over
probabilities of subword tokenizations for one
word w; where the search space is much smaller
compared to the search space of tokenizations of a
whole sentence in Eq. (4):

2.

Yy’ €V (w;)

Pg(wi\w<i,m) ~ P@(y/|’lU<7;,CC). (6)

In practice, since the decoder only takes subword
as input, we feed the best subword tokenization of
the next word w;, which is arg max Py(y'|w;).
y'EVr(w;)

In this way, the probability of the target sentence
is accurately calculated through a deterministic
word tokenization as shown in Eq. (5), where the
probability estimation of each word is precisely
estimated through marginal likelihood estimation
shown in Eq. (6). We implement Eq. (5) with the
outer beam search as introduced in Section 3.2 and
Eq. (6) with our inner beam search as introduced
in Section 3.3.

3 Methodology
3.1 Overview of SubMerge

An overview of the SubMerge algorithm is shown
in Figure 2. It is a nested beam search decod-
ing algorithm that contains an outer beam search
as explained in Section 3.2 and an inner beam
search with subword merging post-processing as
explained in Section 3.3. The outer beam search
selects from a list of words considering the con-
ditional probability in each step and estimates the
most probable sentence arg max Py(Y|X). The
Y

inner beam estimates the conditional probability
of words in Eq. (6) by merging the probabilities of
different subword tokenizations of the same words.

3.2 Outer Beam Search

The outer beam search algorithm is shown in Al-
gorithm 1. It follows the standard beam search ap-
proach, where the difference is that words serve

'That is 7w (Y) = w. Note that word tokenizer is not a bijec-
tive function for languages such as Japanese or Chinese. For
these languages, we can use specific word segmentaters such
as Jumanpp or Stanford Word Segmenter, which are bijective.
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Outer beam search

-

Y<i

Figure 2: Overview of SubMerge. It contains an outer beam
search that views words as minimal units. The candidate
words and their probabilities are obtained from merging sub-
word tokenizations in the n-best list of the inner beam search.

as the basic units. At each time step ¢ in line 3,
we explore each state s in the queue B;_; that
saves the best results in the previous step. When
s is not finished, the candidates of the next words
are obtained from a call to the inner beam search
shown in line 9. Each state in the outer beam
search queue contains the probability of the gener-
ation, the previous words, and their most probable
tokens. Each state s’ from the inner beam search
contains the probability of the possible next word,
the next word itself, and the most probable sub-
word tokenization of that word. We add the new
state to B; shown in line 14 and only save the top-
K ones shown in line 16. The most probable sub-
word tokenization is used as the contextual input
in the next decoding step.

In practice, we take the logarithm (log(-)) of the
probabilities for computational precision. We im-
plemented early stopping after all sequences reach
the special end-of-sentence (< eos >) token.

3.3 Inner Beam Search

The inner beam search is shown in Algorithm 2. It
consists of two parts: 1) a token-level beam search
within the word boundary and 2) post-processing
to merge probabilities from equivalent subword to-
kenizations that compose the same word.

The first part is similar to that of the outer beam

Algorithm 1: OuterBeamSearch

Data: Beam width K, max length 7"
Result: Best sequence of states
1 Initialization:

2 By + {(07 H’ [])}’

3 fort < 1toT do

4 B: + 0;

5 foreach s € B;_1 do

6 if s reaches < eos > then

7 By.append(s);

8 continue;

9 foreach s’ € InnerBS(s[2]) do

10 score, word, toks = s';

11 score < s[0] + score;

12 words + s[1] + words;

13 toks < s[2] + toks;

14 By .append((score, words, toks));
15 Sort B; by scores in descending order;
16 Bt < Bt[l K]

17 return Br

search. The stopping criteria of one sequence
are reaching the start of the next word (with the
start-of-word indicator *_” Unicode U+2581) or the
< eos > token, where this stopping token will not
be added to the token list. Otherwise, the explo-
ration of the sequence continues according to the
next subword probability distribution given by the
decoder. During the post-processing part, we re-
move special tokens and spaces during the detok-
enization of a token list to form the word and re-
turn a list of words with their probabilities. The
time complexity of SubMerge is O(T - K3), where
T is the sentence length and K is the beam size
with the derivation in Section 6.

4 Experimental Setup

We introduce the MT datasets and pre-processing
settings Section 4.1. In Section 4.2, we provide de-
tails around the model hyper-parameters, training
and inference settings. In Section 4.3, we present
our evaluation metrics.

4.1 Data and Pre-processing

Datasets We conducted MT experiments with
datasets listed in Table 1, including WMT’ 22
Livonian—English (Liv-En), Asian Language
Treebank (ALT), IWSLT’15 Vietnamese—English
(Vi-En), WMT’16 Romanian—-English (Ro-En),
WMT’15 Finnish-English (Fi-En), and WMT’ 14
German—English (De-En) datasets. ALT is a
multi-way parallel dataset containing data in En-
glish and other Asian languages including Fil-
ipino (Fil), Indonesian (Id), Japanese (Ja), Malay
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Algorithm 2: InnerBeamSearch

Data: Beam width K, max length T, toks
Result: Next word list

1 Initialization:

2 By < {(0,toks)};

3 fort < 1to 7T do

4 By + 0;

5 foreach s ¢ B; 1 do

6 if s reaches _or < eos > then

7 B;.append(s);

8 continue;

9 foreach s’ € Decoder(s[1]) do
10 score, toks = s';

1 score < s[0] + score;

12 toks < s[1] + toks;

13 By.append((score, toks));
14 Sort B; by scores in descending order.;
15 Bz < Bt [Z K}

16 W={}

17 foreach s € Br do

18 score,toks = s;

19 word = detokenize(toks);

20 if word ¢ W then

2 | Wlword] = (score, toks)

22 else

23 | Wlword][0]4 = score

24 return list(W.items())

Dataset Train Valid Test
WMT’22 Liv—En 1,127 586 856
ALT Asian Langs—En 18k 1,000 1,018
IWSLT’15 Vi-En 133k 1,553 1,268
WMT’16 Ro-En 612k 1,999 1,999
WMT’15 Fi-En 1.8M 1,500 1,370
WMT’14 De-En 4.5M 45,781 3,003

Table 1: Statistics of the datasets.

(Ms), Vietnamese (Vi), and simplified Chinese
(Zh). We used the ALT-standard-split tool? to split
the dataset into train, validation, and test sets.

Data Pre-processing We performed word tok-
enization on all data. We applied Juman++ (Tol-
machev et al., 2018) to data in Japanese, Stanford-
tokenizer (Manning et al., 2014) to data in Chi-
nese, and Moses tokenizer (Koehn et al., 2007) to
data in other languages. We normalized Roma-
nian data and removed diacritics following previ-
ous work (Sennrich et al., 2016a). We prepared
the WMT’ 14 English—-German dataset using a data
cleaning and normalization tool from Fairseq.’
www2.nict.go. jp/astrec-att/member/
mutiyama/ALT

3github.com/facebookresearch/fairseq/
blob/main/examples/translation/

We applied subword tokenization to each trans-
lation direction separately. For source or target lan-
guage, we trained a subword tokenizer with a sub-
word vocabulary of 8k on the monolingual corpus
from the training set. The vocabulary size is com-
puted by the VOLT algorithm (Xu et al., 2021).
For languages in WMT’ 22, ALT and IWSLT’15,
they are 7k to 8k, and for the remaining datasets
they are 10k to 11k. We used 8k for consistency.
We applied a widely adopted toolkit* to train BPE-
dropout tokenizers with a dropout rate of 0.2 for
the generation of regularized data and train BPE
tokenizers for the generation of non-regularized
data. The dropout rate is selected through hyper-
parameter grid search from 0.1 to 0.5 with steps of
0.1, where we found 0.2 usually optimal and rate
> (.3 resulted in unstable training.

4.2 NMT Settings

Model We used the Fairseq framework (Ott et
al., 2019). We refer model settings in previous
works (Rubino et al., 2020; Provilkov et al., 2020).
For WMT’22, ALT and IWSLT’15 datasets, we
used 1 attention head, 6 decoder layers, and 4 or
6 encoder layers (4 layers only for En«— —Fil and
Ja—En) and FFN dim of 512. For other datasets
we used the standard transformer base architec-
ture (Vaswani et al., 2017). We set dropout and at-
tention dropout rates to 0.1. We applied layer nor-
malization (Lei Ba et al., 2016; Mao et al., 2023)
for both the encoder and decoder.

Training We set the batch size to 3,072 tokens
for sentence in the source language and used eight
GPUs, resulting in 25k tokens per batch. We used
the Adam optimizer (Kingma and Ba, 2014) with
Bi = 0.9, By = 098, and ¢ = 1077, We
used warmup and linear decay for the learning
rate (Vaswani et al., 2017), with 4k warm-up steps,
an initial learning rate of 1.7 * 10~7 and a final
learning rate of 5 x 10~*. We used label smoothing
for the cross entropy loss with €, = 0.1 (Szegedy
et al., 2015). We calculated the loss on the valida-
tion set after each epoch and applied early stopping
when no improvement was observed for 10 epochs.

SubMerge led to better word-level perplexities
than traditional beam search and higher BLEU and
chrF++ scores, often achieving statistically signif-
icant improvements.

prepare-wmtl4en2de.sh
4github .com/google/sentencepiece
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Word Perplexity |

BLEU 1 chrF++1

Beam Search SubMerge Beam Search SubMerge Beam Search SubMerge
Low-Resource Scenario

WMT’22 Liv—En 5.93 3.43 1.52 2.04. 05 18.85 194506
WMT’22 En—Liv 19.39 6.88 2.70 321,05 19.14 194103
ALT Fil—En 12.68 4.59 31.10 31.82" ., 57.98 59.17 112
ALT En—Fil 9.56 4.14 30.20 314" 00 59.64 60.14_. 5
ALT Id—En 17.91 591 27.35 28.73" 114 53.61 56.39 2.5
ALT En—1d 16.44 491 33.63 34.19 o6 63.14 63.89. 0.5
ALT Ja—En 24.90 7.79 15.07 15.26" 0.2 45.07 45.46.0.4
ALT En—Ja 6.55 3.69 14.38 14.59 Lo 27.92 29.02. 1 1
ALT Ms—En 11.28 4.33 31.86 32.16*+(),3 5901 60.09+1‘1
ALT En—Ms 12.82 4.18 38.83 39.28 o5 66.25 66.91. .7
ALT Vi—En 17.21 6.14 23.64 2497 3 52.32 529306
ALT En—Vi 8.64 3.52 27.35 27.64 .3 53.66 53.82.0.2
ALT Zh—En 23.11 7.81 13.92 14.31" 4 43.54 44.43 0.9
ALT En—Zh 13.61 6.76 9.03 9.87 05 22.76 23.25.05

Middle- and High- Resource Scenario
IWSLT’15 Vi—En 14.41 5.62 27.87 28.43" .06 48.62 50.59, 2.0
IWSLT’15 En—Vi 7.98 3.39 28.08 28.16 o1 49.27 50.18.10.9
WMT’16 Ro—En 7.44 3.22 33.85 33.77 —o.1 58.75 59.07 0.3
WMT’16 En—Ro 6.78 3.11 34.35 34.50 o4 58.66 58.89 0.2
WMT’15 Fi—En 11.27 4.27 18.95 18.88 _o.1 47.24 475503
WMT’15 En—Fi 22.52 7.81 16.51 16.65 101 47.66 47.97 0.3
WMT’ 14 De—En 10.33 3.90 28.85 2894 ., 55.99 56.52 05
WMT’ 14 En—De 12.74 4.64 24.69 24.83 o1 52.68 52.77 101

Table 2: Results of Subword Regularized Models. Statistical significance p < 0.01 is indicated by * against Beam Search.
SubMerge consistently improves over the Beam Search baseline in most directions. Word perplexity results represent the ability

to accurately estimate sentence probability rather than fluency.

Inference We selected the checkpoint with the
best loss on the validation set. We used beam
search and SubMerge with a beam size of 4 with-
out additional normalization techniques, such as
length penalty or temperature sampling (Dong et
al., 2022).

4.3 Evaluation Metrics

We report word perplexity on generated trans-
lations to compare the probabilities assigned to
generations by models. To evaluate translation
quality, we report BLEU using sacreBLEU (Post,
2018),5 chrF++ (Popovi¢, 2017),% and BLEURT
(Appendix A). We performed paired bootstrap re-
sampling for statistical significance tests (Koehn,
2004).

The word perplexity is calculated as follows.
We first evaluate the negative log probability of the
generated sentences for models using SubMerge
by:

Sscore = — Z log Pg(’wO’l“di), @)

SBLEU+c.mixed+l.en-lang+#.1+s.exp+tok.13a+v.1.5.1
®github.com/m-popovic/chrF with c6w2F0.4. Simi-
lar trends were observed using different chrF settings.

and models with beam search by:
Sscore = — Z log Py (toki). (8)
i

We evaluated the average word perplexity by

1
wppl = emp(ﬁsscore% (9)

where N is the number of words. We evaluated the
word perplexity based on the generated hypothe-
sis rather than the reference. This reflects the ac-
tual scenario in generation tasks where we dynam-
ically generate the next token (word) conditioned
on what the model has generated instead of on the
ground truth. Nevertheless, word perplexity is a
conditional probability dependent on not only the
input but also the parameters in the model. There-
fore, the perplexity results must always be consid-
ered along with model-independent metrics such
as BLEU scores.

5 Translation Quality Results

The results for subword regularized models are
shown in Table 2.
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Word Perplexity We observed that word perplex-
ity results improved substantially in the regular-
ized models in contrast to the tiny gap (0.5%) re-
ported in the non-regularized models (Chirkova et
al., 2023) and in our analysis shown in Section 7.5.
This is due to the fact that multiple tokenizations
for one word appeared during training, which acts
as a label-smoothing function on multiple correct
next tokens. Therefore, the probability weight is
distributed across multiple subwords thus, it be-
comes necessary to incorporate the marginal like-
lihood. It is worth noting that here word perplexity
represents the precision of probability estimation
rather than fluency or quality of the output.
Translation Quality We also found translation
quality improved, especially in low-resource sce-
narios where the average BLEU score improve-
ment is 0.6, whereas in higher resource scenar-
ios, it is 0.3. We also observed consistent im-
provement in the chrF++ score. While only one
translation direction among higher resource direc-
tions is statistically significant, 8 out of 12 low-
resource directions see statistically significant im-
provements. Furthermore, we observed that the
improvement is greater for languages where words
contain more subwords on average (Tsypword). In
the ALT dataset, each Japanese word contains an
average of 1.59 subwords, resulting in a modest
improvement of only 0.2 BLEU. In contrast, Fil-
ipino has a Tgypworqd Of 2.16, leading to an im-
provement of 0.9 BLEU.

6 Efficiency

We show the theoretical analysis of time complex-
ity as well as running time results of SubMerge
comparing with beam search.

Time Complexity Let K denote beam size and
Tworq denote the number of words in the sen-
tence. In the outer beam search Algorithm 1, the
loop in line 3 contains at most 71" steps, and line
5 contains at most K steps. Therefore, the time
complexity of the SubMerge is O(Tyorqg * K *
O(InnerBeamSearch()).

In the inner beam search Algorithm 2, line 3
contains at most T, pword Steps, which is the num-
ber of subwords within the word boundary. Line
5 contains at most K steps, and line 9 contains at
most K steps because each beam yields maximum
K candidates by selecting top- K probable tokens.
Therefore, the time complexity of Algorithm 2 is
O(Tsubword * K * K)

The overall time complexity of SubMerge is

O(Zi(Tsubword> * Ks) = O(T * Kg) which is
K times slower than that of beam search which is
O(T * K?).
Inference Time We compared the running times
in the IWSLT’15 En— Vi direction using K = 4
extracted from the log data reported by the Fairseq
framework. SubMerge took 1,665 seconds to gen-
erate 1,268 sentences, whereas beam search took
303 seconds, showing SubMerge is approximately
5.5 times slower. We set the batch size to 1 be-
cause the current SubMerge implementation does
not yet support batch processing.

7 Analysis

We investigate the effect of different beam sizes on
the algorithm in Section 7.1. Section 7.2 explores
using a sampling algorithm as the inner search al-
gorithm. Section 7.3 and Section 7.4 respectively
analyze the impact of the training set size and the
dropout rate. Section 7.5 show conditions in which
SubMerge is effective.

7.1 Assessing Beam Sizes Variants

Figures 3 and 4 show the word perplexities and
BLEU scores of using different beam sizes for both
non-regularized models and subword regularized
models, comparing beam search and SubMerge.

WMT'15 En->Fi

22.5
20.0
17.5
-
a 15.0 BPE w/ Beam Search
o —e— BPE w/ SubMerge
e 12.5 —e— BPE-dropout w/ Beam Search
é —e— BPE-dropout w/ SubMerge
10.0
7.5
5.0 —__
—
1 2 4 6 8 10
Beam Size

Figure 3: Word perplexity results using different beam sizes
on the WMT’15 En—Fi direction.

We observed that as we increased the beam
size, the word perplexity dropped sharply for BPE-
dropout with SubMerge. When using a large
beam size such as 10, it achieved comparable re-
sults to non-regularized models trained on one-
best tokenization. Nevertheless, SubMerge does
not yet accumulate as large a proportion of the
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WMT'15 En->Fi

BPE w/ Beam Search
17 { == BPE w/ SubMerge

Bm BPE-dropout w/ Beam Search
mmm BPE-dropout w/ SubMerge

161 = B By B B
]
1
]
@
5 151 B 2 BEN s B e o
w
-
)

14 w1 w1 B O m =

131  Ea | R  EE | E | e

1 2 4 6 8 10
Beam Size

Figure 4: BLEU results using different beam sizes on the
WMT’ 15 En—Fi direction.

probability distribution as using a non-regularized
model. Since the training is on multiple segmen-
tations, it certainly comes closer than when using
beam search. For non-regularized models, com-
bining equivalent paths for perplexity estimation
also proved to be effective. We also observed that
increasing beam size can lead to translation quality
improvement for the SubMerge method. However,
this is not the case for all directions (Cohen and
Beck, 2019) and we put the full results using dif-
ferent beam sizes for all datasets in Appendix C.

7.2 Inner Search Algorithm Variants

We replaced the inner beam search with the sam-
pling algorithm as shown in Algorithm 3. In the
algorithm, () is the queue that contains possible
subword tokenizations of the next word. The sam-
pling algorithm selects the next token tok; in line
10 for each ongoing sample s according to the
probability distribution of subwords in the target
vocabulary outputted by the softmax function after
the decoder. The current s is updated for both the
score and the string. We call this pure sampling be-
cause we did not add sampling temperature, top-k
or top-p filtering. We perform the merging post-
processing the same as the inner beam search.
The word perplexity results are shown in Fig-
ure 5. For the sampling algorithm, we sampled
n? tokenizations (where n is the beam size) in
the inner loop and for each path, we started with
the same historical information and selected the
next subword according to the probability distri-
bution until we reached the beginning of the next
word. We then perform the same merging post-
processing. However, we observed that the per-
plexity was higher than n-best tokenizations. This

is because the sampling process could easily get
lost at some step by selecting a token in the long
tail with a very low probability.

Algorithm 3: InnerSampling

Data: Sample times K, max length T, toks
Result: Next word list

1 Initialization:

2 so < {(0,toks)};

3 Q« 0;

4 fori < 1to K do

5 S < So;

6 for j < 1to 71 do

7 if s reaches _or < eos > then
8 Q.append(s);

9 L break;

10 Sample tok; from Decoder(s[1]);
11 Update s using tok;;
12 Sort () by scores in descending order.;
B W={}
14 foreach s € () do

15 score, toks = s;

16 word = detokenize(toks);

17 if word ¢ W then

18 | Wlword] = (score, toks)

19 else

20 | Wlword][0]4 = score

21 return list(W.items())

22.52 W Beam Search
Sampling
B SubMerge

Word PPL

Figure 5: Word perplexity results comparing BPE-dropout
with beam search to two variants of SubMerge: using either
sampling as the inner search function or beam search.

7.3 Assessing Training Set Sizes

SubMerge is effective in extremely low-resource
scenarios, as shown in Figure 6. We reported
BLEU scores using beam search and SubMerge
during decoding for models trained on 1k to 18k
parallel sentences. SubMerge consistently out-
performed beam search across training set sizes.
Moreover, the BLEU improvement reached ap-
proximately 3.4 using only 1k data. This observa-
tion reveals the potential of SubMerge to be used
in domain adaptation scenarios with limited data.
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Figure 6: Translation quality using different sizes of training
data. The x-axis is logarithmized.

7.4 Impact of Dropout Rates

Using a lower dropout rate in BPE-dropout yielded
lower word perplexity and higher BLEU scores in
higher resource scenarios, as shown in Table 3.
When the dropout rate is low, the randomness of
subword segmentation for a given word also de-
creases, leading to reduced variability in the train-
ing data and, concurrently, a diminished range of
choices during the inference process. In the con-
text of low-resource scenarios, reduced variability
implies diminished data augmentation, which can
adversely affect the model’s generalization capa-
bility. Conversely, in higher resource settings, de-
creased variability signifies reduced noise, poten-
tially enhancing model performance.

Word PPL | BLEU 1

Dropout Rate 0.1 0.2 0.1 0.2
ALT Others—En 4.69 6.10 22.06 24.54
ALT En—Others 4.16 453 2475 2612
IWSLT’15 Vi—En 3.09 562  30.03 2843
IWSLT’ 15 En—Vi 2.56 339  29.61 28.16
WMT’ 16 Ro—En 2.34 322 3475  33.77
WMT’16 En—Ro 2.21 3.11 3539 3450
WMT’ 15 Fi—En 3.25 4.27 18.87 18.88
WMT’ 15 En—Fi 4.94 7.81 16.64  16.65
WMT’ 14 De—En 2.86 390  29.70 28.94
WMT’ 14 En—De 3.15 464 2494 2483

Table 3: Results of SubMerge for models trained on BPE-
dropout data with different dropout rates.

7.5 Does SubMerge Work on
Non-regularized Models?

In short, No. We explored whether the proposed
SubMerge method is applicable to non-regularized
models using deterministic BPE tokenization. Ta-

Word PPL | BLEU 1
BeamSearch SubMerge BeamSearch SubMerge
WMT’22 Liv—En 3.60 3.37 0.36 0.44
WMT’22 En—Liv 5.22 4.55 0.64 0.90
ALT Others—En 6.02 5.60 15.73 15.40
ALT En—Others 4.90 4.77 18.06 17.82
IWSLT’15Vi—En  2.95 2.79 24.34 25.63
IWSLT’1SEn—Vi 243 242 25.09 24.86
WMT’16 Ro—En 2.14 2.11 32.05 31.70
WMT’16 En—Ro 2.00 1.98 32.98 32.85
WMT’15 Fi—En 2.85 2.76 17.08 16.94
WMT’ 15 En—Fi 4.03 3.79 15.30 15.06
WMT’ 14 De—En 2.39 2.40 30.18 30.04
WMT’ 14 En—De 2.45 2.36 25.88 25.71

Table 4: Results of non-regularized models trained on data
using BPE tokenizer. We show the averaged results in En—
XX and XX— En directions for the ALT dataset.

ble 4 presents word perplexities and BLEU scores
on non-regularized models using beam search or
SubMerge as the decoding algorithm.

We observed lower word perplexity using Sub-
Merge compared to using beam search. How-
ever, the improvement is not as significant (ap-
proximately 6%) as the improvement achieved by
SubMerge for subword regularized models. This
is consistent with our expectations. Models were
trained on a single tokenization for each training
word, so one tokenization accumulates the most
probability weight. For the non-regularized model,
results show the translation quality of SubMerge is
not as good as that of beam search. Therefore, the
proposed SubMerge method is only applicable to
subword regularized models in the NMT task.

For other tasks, such as question answering, the
word perplexity is greater because the task is less
structured than MT, where the source sentence is
a highly limiting constraint. For less constrained
tasks, it is possible that SubMerge will improve the
performance of even non-regularized models. We
leave this for future work to explore.

8 Related Work

SubMerge is designed for decoding with text gen-
eration models for which likely tokenization prob-
abilities diverge drastically from sentence proba-
bilities. In other words, there are multiple tok-
enizations for one target sentence, and the proba-
bility distribution is splintered among them. Our
objective is to enhance the inference algorithm
on the target side. On the source side, merging
probabilities of multiple tokenizations for a sin-
gle source sentence has been shown to improve
translation performance in low-resource scenar-
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ios (Takase et al., 2022). Although we only exper-
imented on models trained on data segmented by
BPE-dropout (Provilkov et al., 2020), it also works
for SentencePiece Regularization (Kudo, 2018a),
MaxMatch-Dropout (Hiraoka, 2022) and NMT
models with multiple subword segmenters (Kamb-
hatla et al., 2022). On the other hand, NMT
models trained on sentences segmented by de-
terministic segmenter only benefit from marginal
likelihood estimation in out-of-domain data or
long words (Cao and Rimell, 2021; Chirkova
et al,, 2023). Deterministic subword segmen-
tation includes not only subword-level meth-
ods such as WordPiece (Schuster and Nakajima,
2012), BPE (Sennrich et al., 2016b), Sentence-
Piece (Kudo and Richardson, 2018), dynamic pro-
gramming encoding (He et al., 2020), BERT-
Seg (Song et al., 2022), but also byte-level (Sha-
ham and Levy, 2021), character-level (Tay et al.,
2021), word-level (Mikolov et al., 2013), and hy-
brid word-character methods (Luong and Man-
ning, 2016).

Marginal likelihood estimation can be imple-
mented in two ways: sampling and dynamic pro-
gramming. Sampling methods include summing
over n-best tokenizations (Cao and Rimell, 2021)
or important tokenizations (Chirkova et al., 2023).
Sampling can be easily applied to any genera-
tion model. However, a manageable number of
tokenizations cannot precisely estimate the prob-
ability of sentences with an exponentially large
number of tokenizations, which is the case dur-
ing the inference of the subword regularized mod-
els. On the other hand, dynamic programming
can handle an exponentially large number of to-
kenizations by merging the same historical states,
as introduced in sequence modeling via segmenta-
tions (Wang et al., 2017) and applied in the mixed-
character-subword models (He et al., 2020; Meyer
and Buys, 2023). However, they merge the his-
torical states by approximating the previous out-
put by character-level data. That is, after the de-
coder generates one subword, it is split into char-
acters and fed to the decoder. This is not applica-
ble to pure subword models. Based on the property
that each word is individually segmented in BPE-
dropout (Provilkov et al., 2020), we obtain n-best
tokenizations within a small search space and treat
the best tokenization of each word the historical
state, taking advantage of both marginal likelihood
estimation methods.

9 Conclusion and Future Work

We propose SubMerge to estimate the marginal
likelihood of the next word by merging equiva-
lent subword tokenizations during the inference of
subword regularized models. Results demonstrate
a significant improvement in word perplexity es-
timation and translation quality improvement in
terms of BLEU and chrF++ scores, especially in
low-resource scenarios.

Current inference algorithms are mostly based
on conditional probability, which is a short-term
value function. For future work of inference, we
suggest aligning the value function towards evalu-
ation metrics and human preference through rein-
forcement learning, where models are more aware
of longer-term rewards.

Limitations

We did not experiment with common techniques
in the beam search and SubMerge, such as length
penalty. This is because we use a nested beam
search, and the way to define the length (whether to
use the number of tokens or the number of words)
may differ from the definition in a traditional beam
search. However, combining SubMerge with such
techniques could be valuable for further work.

The word perplexity results reported in this pa-
per are on the generated texts rather than reference
texts. They do not correlate with fluency or trans-
lation quality, and we only use them to report how
much of the probability weight of a model is being
used during decoding, which is still useful.

We use the SentencePiece tool for the current
implementation of BPE and BPE-dropout algo-
rithms. Therefore, the SubMerge implementation
is also based on the format of this specific tool,
which uses ”_” (U+2581) to represent the begin-
ning of a new word. However, other tools may use
”@@” at the end of a subword to indicate that the
current word has not ended yet. Therefore, the im-
plementation of SubMerge may be slightly differ-
ent in terms of ending conditions in the inner beam
search.

We did not experiment on large-scale datasets
(e.g., datasets with more than 100\ parallel sen-
tences). Reasons include 1) computational budget
limitations and 2) the goal is verifying the algo-
rithm rather than developing systems. We assume
that the improvement will be marginal in high-
resource scenarios.
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A BLEURT Results

Table 5 shows BLEURT score results using the
BLEURT-20 model (Pu et al., 2021). We can
observe a similar trend with other metrics such
as BLEU or chrF++, where the improvement is
large in low-resource directions and comparable in
higher-resource directions.

B Comparing with Non-Subword Models

We trained character-based and word-based mod-
els on IWSLT’15 Vi-En and WMT’16 Ro-En
datasets and showed inferior performance com-
pared to subword-based models using SubMerge
as shown in Table 6. This conclusion is aligned
with that in previous paper (Kudo, 2018b) and re-
port.”

C Full Results for Different Beam Sizes

Tables 7, 8 and 9 show negative sentence log prob-
ability, word perplexity and BLEU scores for dif-
ferent beam sizes. The conclusions still remain the
same where SubMerge improved probability es-
timation precision, which however did not bring
translation quality improvement.

BLEURT 1
Beam Search SubMerge
Low-Resource Scenario

WMT’22 Liv—En 17.40 17.47
WMT’22 En—Liv 42.74 42.40
ALT Fil—En 55.35 56.70
ALT En—Fil 47.95 47.78
ALT Id—En 51.65 53.91
ALT En—1Id 56.72 57.10
ALT Ja—En 41.54 41.88
ALT En—Ja 27.02 26.86
ALT Ms—En 56.87 57.83
ALT En—Ms 59.32 59.44
ALT Vi—En 49.61 50.97
ALT En—Vi 44.79 45.11
ALT Zh—En 40.95 41.38
ALT En—Zh 28.19 29.19

Middle- and High-Resource Scenario
IWSLT’15 Vi—En 51.75 52.57
IWSLT’15 En—Vi 4713 47.46
WMT’16 Ro—En 61.52 61.35
WMT’16 En—Ro 52.08 51.76
WMT’15 Fi—En 57.12 56.84
WMT’15 En—Fi 53.67 53.41
WMT’ 14 De—En 60.01 59.82
WMT’ 14 En—De 54.97 54.27

Table S: BLEURT Results of Subword Regularized Models.

7 github.com/google/sentencepiece/blob/master/doc/experiments.md
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Models Vi—-En En—Vi Ro—En En—Ro

Char-based 24.72 27.04 30.45 29.82
Word-based 21.40 25.24 26.33 25.67
Subword-based 28.43 28.16 33.77 34.50

Table 6: BLEU score results comparing different models on IWSLT’15 Vi-En and WMT’ 16 Ro-En datasets.

IWSLT’15S IWSLT’15S WMT’16 WMT’16 WMT’1S WMT’1S WMT’14 WMT’14

Vi—En En—Vi Ro—En En—Ro Fi—En En—Fi De—En En—De
BeamSize=1
BPE w/ Beam Seach 25.67 24.37 19.86 19.08 23.64 23.30 21.91 21.01
BPE w/ SubMerge 24.82 24.06 22.87 20.62 23.40 23.07 28.98 20.25
BPE-dropout w/ Beam Seach 30.51 31.59 28.11 27.68 32.35 31.22 31.77 33.45
BPE-dropout w/ SubMerge 30.16 31.14 27.83 27.56 31.81 30.99 - 32.57
BeamSize=2
BPE w/ Beam Seach 23.54 22.52 18.75 17.99 21.83 21.21 19.90 20.11
BPE w/ SubMerge 22.15 22.18 18.42 18.96 21.36 20.69 18.71 19.32
BPE-dropout w/ Beam Seach 29.74 30.58 27.93 27.22 31.84 30.55 31.25 33.03
BPE-dropout w/ SubMerge 25.83 27.15 23.95 23.45 27.52 26.75 26.59 28.72
BeamSize=3
BPE w/ Beam Seach 22.95 21.90 18.39 17.53 21.18 20.43 19.31 19.75
BPE w/ SubMerge 21.33 21.66 18.12 18.17 20.66 19.95 18.44 18.97
BPE-dropout w/ Beam Seach 29.56 30.28 27.87 26.93 31.63 30.00 31.05 32.74
BPE-dropout w/ SubMerge 23.59 24.70 21.56 21.16 30.45 24.69 24.21 26.41
BeamSize=4
BPE w/ Beam Seach 22.59 21.61 18.21 17.31 20.80 20.10 19.08 19.54
BPE w/ SubMerge 20.97 21.31 17.84 17.20 20.39 19.75 20.16 18.82
BPE-dropout w/ Beam Seach 29.52 30.06 27.79 26.79 31.46 29.71 30.88 32.57
BPE-dropout w/ SubMerge 22.57 23.65 20.35 19.86 23.82 23.72 2291 25.08
BeamSize=5
BPE w/ Beam Seach 2243 21.42 18.07 17.18 20.50 19.81 18.88 19.43
BPE w/ SubMerge 20.66 21.14 17.70 17.64 20.16 19.53 19.33 18.70
BPE-dropout w/ Beam Seach 29.42 29.82 27.67 26.71 31.56 29.52 30.72 32.41
BPE-dropout w/ SubMerge 22.38 22.74 19.39 19.05 25.77 22.76 22.02 24.11
BeamSize=6
BPE w/ Beam Seach 2221 21.31 18.01 17.06 20.42 19.67 18.77 19.37
BPE w/ SubMerge 20.46 20.96 17.69 16.97 20.09 19.41 19.18 18.62
BPE-dropout w/ Beam Seach 29.42 29.65 27.67 26.65 31.20 29.41 30.66 32.36
BPE-dropout w/ SubMerge 21.75 22.31 18.82 18.38 22.61 22.23 21.41 23.49
BeamSize=8
BPE w/ Beam Seach 21.95 21.13 17.85 16.87 20.21 19.45 18.66 19.25
BPE w/ SubMerge 20.26 20.77 17.53 17.44 19.80 19.18 18.74 18.51
BPE-dropout w/ Beam Seach 29.08 29.51 27.57 26.57 31.19 29.18 30.49 32.14
BPE-dropout w/ SubMerge 21.20 22.07 18.28 17.87 21.80 21.65 20.83 22.80
BeamSize=10
BPE w/ Beam Seach 21.77 20.93 17.75 16.72 20.06 19.24 18.60 19.16
BPE w/ SubMerge 20.08 20.62 17.41 17.06 19.69 19.02 18.41 18.39
BPE-dropout w/ Beam Seach 28.84 29.39 27.46 26.47 30.69 29.02 30.40 32.03
BPE-dropout w/ SubMerge 20.82 21.56 17.84 17.44 22.03 21.12 20.37 22.26

Table 7: Negative sentence log probability of the generated hypothesis using different beam sizes.
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IWSLT’15 IWSLT’15 WMT’16 WMT’16 WMT’15 WMT’15 WMT’14 WMT’14

Vi—En En—Vi Ro—En En—Ro Fi—En En—Fi De—En En—De
BeamSize=1
BPE w/ Beam Seach 3.34 2.67 227 2.12 3.19 4.83 2.64 2.58
BPE w/ SubMerge 3.30 2.67 2.55 2.26 3.20 4.80 3.20 2.52
BPE-dropout w/ Beam Seach 4.42 3.42 3.20 2.99 4.79 8.32 4.19 4.59
BPE-dropout w/ SubMerge 442 341 3.18 3.00 4.76 8.28 - 4.47
BeamSize=2
BPE w/ Beam Seach 3.05 2.50 2.18 2.04 2.95 4.28 2.45 2.50
BPE w/ SubMerge 2.92 2.48 2.15 2.10 2.88 4.00 2.34 2.39
BPE-dropout w/ Beam Seach 4.30 3.29 3.19 2.95 4.76 8.01 4.13 4.54
BPE-dropout w/ SubMerge 3.56 2.92 2.70 2.53 3.85 6.06 3.35 3.68
BeamSize=3
BPE w/ Beam Seach 2.98 2.45 2.15 2.01 2.88 4.09 241 2.47
BPE w/ SubMerge 2.84 2.44 2.12 2.05 2.79 3.83 2.30 2.36
BPE-dropout w/ Beam Seach 4.31 3.26 3.19 292 4.77 7.82 4.12 4.51
BPE-dropout w/ SubMerge 3.25 2.67 2.46 2.32 4.29 5.28 3.02 3.34
BeamSize=4
BPE w/ Beam Seach 2.95 2.43 2.14 2.00 2.85 4.03 2.39 2.45
BPE w/ SubMerge 2.79 2.42 2.11 1.98 2.76 3.79 2.40 2.36
BPE-dropout w/ Beam Seach 431 3.26 3.19 291 4.77 7.74 4.11 4.50
BPE-dropout w/ SubMerge 3.09 2.56 2.34 221 3.25 4.94 2.86 3.15
BeamSize=5
BPE w/ Beam Seach 293 2.42 2.13 1.99 2.83 3.98 2.38 2.45
BPE w/ SubMerge 2.71 2.41 2.10 2.02 275 3.5 2.35 2.35
BPE-dropout w/ Beam Seach 4.26 3.24 3.18 291 4.80 7.68 4.10 4.49
BPE-dropout w/ SubMerge 297 2.52 2.26 2.15 3.48 4.68 275 3.03
BeamSize=6
BPE w/ Beam Seach 2.92 2.41 2.13 1.99 2.82 3.97 2.38 2.44
BPE w/ SubMerge 276 2.40 2.10 1.97 275 3.5 2.35 2.35
BPE-dropout w/ Beam Seach 4.27 3.23 3.18 291 4.76 7.64 4.10 4.49
BPE-dropout w/ SubMerge 2.88 2.46 221 2.09 3.09 451 2.68 2.95
BeamSize=8
BPE w/ Beam Seach 2.90 2.40 2.12 2.00 2.82 3.94 2.38 2.44
BPE w/ SubMerge 2.74 2.39 2.09 2.01 274 3.72 2.32 2.34
BPE-dropout w/ Beam Seach 423 3.22 3.19 2.90 4.76 7.56 4.08 448
BPE-dropout w/ SubMerge 2.82 2.43 2.16 2.05 2.98 435 2.63 2.87
BeamSize=10
BPE w/ Beam Seach 2.89 2.40 2.12 2.00 2.82 3.93 2.38 2.44
BPE w/ SubMerge 2.74 2.39 2.09 1.98 2.73 3.72 2.32 2.34
BPE-dropout w/ Beam Seach 4.20 3.22 3.17 2.89 4.69 7.51 4.08 4.46
BPE-dropout w/ SubMerge 2.79 241 2.13 2.03 3.03 422 2.58 2.82

Table 8: Word perplexity of the generated hypothesis using different beam sizes.
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IWSLT’15 IWSLT’15 WMT’16 WMT’16 WMT’15 WMT’15 WMT’14 WMT’14

Vi—En En—Vi Ro—En En—Ro Fi—En En—Fi De—En En—De
BeamSize=1
BPE w/ Beam Seach 23.68 24.44 31.34 32.53 16.61 14.10 29.34 25.16
BPE w/ SubMerge 24.22 24.18 31.08 32.14 16.55 14.05 26.45 2491
BPE-dropout w/ Beam Seach 29.28 28.52 34.45 34.87 18.21 16.09 29.08 24.46
BPE-dropout w/ SubMerge 29.13 28.56 34.10 34.53 18.31 16.28 - 24.31
BeamSize=2
BPE w/ Beam Seach 23.98 24.92 31.82 32.79 17.06 14.83 30.05 25.63
BPE w/ SubMerge 25.40 24.80 31.45 32.62 17.10 14.80 30.19 25.59
BPE-dropout w/ Beam Seach 29.87 29.21 35.02 35.25 18.64 16.70 29.48 24.73
BPE-dropout w/ SubMerge 30.01 29.16 34.56 35.19 18.80 16.30 29.53 24.72
BeamSize=3
BPE w/ Beam Seach 24.44 24.92 32.03 33.02 16.89 15.30 30.25 25.84
BPE w/ SubMerge 25.47 24.94 31.66 33.00 16.97 14.84 30.23 25.75
BPE-dropout w/ Beam Seach 29.77 29.34 35.06 35.55 18.77 16.98 29.58 24.89
BPE-dropout w/ SubMerge 29.64 29.20 34.45 35.36 18.26 16.49 29.51 24.84
BeamSize=4
BPE w/ Beam Seach 24.34 25.09 32.05 32.98 17.08 15.30 30.18 25.88
BPE w/ SubMerge 25.63 24.86 31.70 32.85 16.94 15.06 30.04 25.71
BPE-dropout w/ Beam Seach 29.65 29.40 34.96 35.44 18.80 16.95 29.75 24.79
BPE-dropout w/ SubMerge 30.03 29.61 34.75 35.39 18.87 16.64 29.70 24.94
BeamSize=5
BPE w/ Beam Seach 24.38 25.02 32.02 32.95 17.05 15.26 30.13 25.80
BPE w/ SubMerge 25.79 24.93 31.75 33.00 17.07 14.89 30.08 25.67
BPE-dropout w/ Beam Seach 29.36 29.44 34.99 35.55 18.97 17.14 29.69 24.82
BPE-dropout w/ SubMerge 29.50 28.67 34.48 35.43 18.37 16.74 29.61 24.87
BeamSize=6
BPE w/ Beam Seach 24.45 25.07 31.99 32.88 17.02 15.28 30.11 25.78
BPE w/ SubMerge 25.58 24.86 31.62 32.85 17.04 14.77 30.07 25.67
BPE-dropout w/ Beam Seach 29.35 29.53 34.96 35.47 19.05 17.26 29.61 24.81
BPE-dropout w/ SubMerge 29.58 29.18 34.46 35.32 14.41 16.99 29.50 2491
BeamSize=8
BPE w/ Beam Seach 24.57 24.81 31.86 32.37 17.14 15.23 30.06 25.68
BPE w/ SubMerge 25.86 24.83 31.72 32.81 16.78 14.89 29.93 25.63
BPE-dropout w/ Beam Seach 29.33 29.52 34.99 35.58 18.95 17.21 29.54 24.73
BPE-dropout w/ SubMerge 29.73 29.52 34.76 35.27 18.88 17.06 29.46 24.87
BeamSize=10
BPE w/ Beam Seach 24.77 24.93 31.78 32.05 17.09 15.24 30.09 25.75
BPE w/ SubMerge 25.93 24.66 31.63 32.85 16.69 14.97 29.90 28.16
BPE-dropout w/ Beam Seach 29.32 29.41 34.97 35.59 19.08 17.32 29.58 24.80
BPE-dropout w/ SubMerge 29.39 28.92 34.45 35.39 18.88 16.92 29.28 24.68

Table 9: BLEU scores on test sets using different beam sizes.
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