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2 Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
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Abstract

This paper explores Minimum Bayes Risk
(MBR) decoding for self-improvement
in machine translation (MT), particularly
for domain adaptation and low-resource
languages. We implement the self-
improvement process by fine-tuning the
model on its MBR-decoded forward trans-
lations. By employing COMET as the
MBR utility metric, we aim to achieve
the reranking of translations that bet-
ter aligns with human preferences. The
paper explores the iterative application
of this approach and the potential need
for language-specific MBR utility met-
rics. The results demonstrate signifi-
cant enhancements in translation quality
for all examined language pairs, including
successful application to domain-adapted
models and generalisation to low-resource
settings. This highlights the potential of
COMET-guided MBR for efficient MT
self-improvement in various scenarios.

1 Introduction

Machine translation (MT) bridges the gap between
languages, fostering global communication and in-
formation exchange. However, achieving high-
quality translations across diverse languages and
domains remains a significant challenge, espe-
cially for low-resource languages where limited
training data hinders model performance. Even in
well-resourced settings, continuous improvement
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and adaptation to specific domains are ongoing re-
search efforts.

This paper explores the potential of Minimum
Bayes Risk (MBR) decoding (Kumar and Byrne,
2004) as a self-improvement strategy for MT mod-
els. MBR decoding leverages the model’s predic-
tions to select the best translation from a set of
candidates, potentially improving overall transla-
tion quality.

We employ COMET (Rei et al., 2020) as the
utility function in MBR decoding and rerank can-
didate translations generated by an MT model.
This approach creates a synthetic parallel dataset
from monolingual data in the source language, en-
abling further model self-improvement.

This study examines the effectiveness of MBR
decoding for self-improvement in three lan-
guage pairs: English–German (high-resource),
Czech–Ukrainian (low-resource), and English–
Hausa (low-resource). For English–German, the
focus is on the biomedical domain, incorpo-
rating additional monolingual data, while for
Czech–Ukrainian, self-improvement is explored
using only the training data translated by the
model and reranked through MBR decoding.
We further investigate the potential of iterative
self-improvement with MBR decoding in both
English–German and Czech–Ukrainian language
pairs. Finally, in the case of English–Hausa, we
compare the use of COMET, a massively multilin-
gual metric, with a metric specifically tailored to
African languages i.e. AfriCOMET (Wang et al.,
2023).

To determine the optimal configuration for
MBR decoding, we investigate two decoding al-
gorithms and various numbers of translation can-
didates.
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2 Related Work

MBR and QE reranking with neural metrics
MBR decoding, a technique commonly used in
Statistical Machine Translation (SMT), has gained
traction in Neural Machine Translation (NMT) in
recent years. Freitag et al. (2022) proposed using
reference-based metrics, such as BLEURT (Sel-
lam et al., 2020a) and Quality Estimation (QE)
models, such as COMET-QE (Rei et al., 2021) for
reranking the set of hypotheses produced by the
NMT model.

Similar work by Fernandes et al. (2022) pro-
posed quality-aware decoding. They explored
various reranking strategies, including the well-
performing pre-ranking of the set of hypotheses
with QE models before passing them into MBR de-
coding. They found that using MERT-tuned (Och,
2003) reranker, where multiple QE metrics and
model log-likelihood scores are linearly combined
with learned weights to maximize a reference-
based metric on a validation set shows improve-
ments over the baseline.

Amrhein and Sennrich (2022) used MBR decod-
ing to identify biases and weaknesses in COMET,
where they found that the early COMET models
are not sufficiently sensitive to discrepancies in
numbers and named entities.

MBR decoding performance is heavily depen-
dent on the number of samples and the sampling
strategy. Freitag et al. (2023) investigated various
sampling strategies and found that epsilon sam-
pling outperformed others. This sampling method
discards tokens with a probability below a cer-
tain threshold (epsilon), guaranteeing that each to-
ken in the final sample has a fair chance of being
included. The approach is particularly effective
when generating a large set of samples, as it in-
herently yields greater sample diversity compared
to beam search.

Vernikos and Popescu-Belis (2024) introduced
QE-fusion, a method that combines spans from
different candidates sampled from a model using
QE metrics. They found that the method con-
sistently improves translation quality in terms of
neural evaluation metrics, especially if applied to
LLM due to their ability to generate diverse out-
puts.

Due to its ease of implementation and use,
MBR and QE reranking have been success-
fully applied in machine translation shared tasks,
as demonstrated by the results in several stud-

ies (Nowakowski et al., 2022; Kudo et al., 2023;
Jon et al., 2023). This highlights its potential to
significantly improve translation quality.

Model self-improvement Recent research has
shown a growing interest in leveraging model out-
puts for self-improvement. This approach holds
significant promise in the case of machine trans-
lation, especially for low-resource and domain-
specific translation scenarios, where there is access
to the source-language data, but the corresponding
target-language data is severely limited.

Gulcehre et al. (2023) describes reinforcement
self-training (ReST) method for language mod-
eling. The method is based on producing a
dataset for fine-tuning by sampling from the model
(LLM). The samples are then scored with a QE
metric. Then, offline reinforcement learning al-
gorithms are applied using a reward-weighted loss
based on the QE scores. The method can be ap-
plied to all generative learning settings, but the au-
thors focus on its application to machine transla-
tion, showing that the method increases translation
quality.

Concurrent work by Finkelstein et al. (2023) de-
scribes self-tuning NMT models on a set of hy-
potheses reranked using either MBR, QE, or a
combination of the two methods. They also ex-
perimented with using LLM as the teacher model,
finding that it outperforms using a self-teacher and
fine-tuning on references.

Our research expands on recent developments in
the field by investigating the use of MBR-based
fine-tuning in three key areas. Firstly, we exam-
ine its applicability in domain-specific translation
tasks, specifically focusing on English–German
translation in the biomedical domain. Secondly,
we investigate its effectiveness for low-resource
translation directions, exemplified by the Czech–
Ukrainian language pair. This broadens the scope
beyond English-centric language pairs, thus con-
tributing to a more comprehensive analysis of
MBR performance across less-represented lan-
guages in neural evaluation metrics. Finally, we
explore the use of neural QE metrics tailored for
specific languages, using AfriCOMET (Wang et
al., 2023) as an example.
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3 Experiment Overview

3.1 Model Self-Improvement
The self-improvement process leverages MBR de-
coding to guide the model to select high-quality
translations according to the utility function. The
process consists of 3 steps:

Step 1: Sample Generation Using beam search
decoding with beam size equal to N, gener-
ate N translation candidates using the base
model for each source sentence. While Fre-
itag et al. (2023) suggested that epsilon sam-
pling might yield better results with MBR de-
coding, it typically requires reranking a sig-
nificantly larger number of translation can-
didates, which becomes computationally ex-
pensive for processing large datasets. Beam
search, on the other hand, allows for gener-
ating a smaller set of high-quality candidates
while providing sufficient data for effective
MBR decoding.

Step 2: MBR Decoding Select a single transla-
tion for each source sentence from the list of
candidates through MBR decoding utilizing
COMET to guide the selection towards high-
quality translations. For an efficient imple-
mentation of the MBR decoding algorithm,
we use the code1 from the Marian (Junczys-
Dowmunt et al., 2018) framework.

Step 3: Model Fine-tuning Fine-tune the base
model on the synthetically created dataset.
Use COMET as an early stopping metric dur-
ing training to ensure fitting to this metric.

3.2 English–German
The English–German experiment simulates a real-
world domain adaptation scenario. In such set-
tings, while a large general-purpose parallel corpus
might be available, the specific domain often lacks
extensive parallel data. To address this challenge,
we leveraged both a smaller parallel dataset and a
larger monolingual dataset in the source language
containing biomedical terminology.

To leverage the monolingual data in the source
language we propose a two-step approach:

1. Fine-Tuning: We fine-tune a general-purpose
English–German model on a small parallel
biomedical dataset.

1https://github.com/marian-nmt/
marian-dev/tree/master/scripts/mbr

2. Self-improvement: To enhance the model
performance in the biomedical domain, we
incorporate a larger monolingual biomedi-
cal dataset during the self-improvement pro-
cess. This involves creating a synthetic par-
allel dataset via MBR decoding and subse-
quently fine-tuning the biomedical translation
model on the generated data.

To assess the robustness of the self-
improvement method, we conducted an additional
experiment in which we applied this method to
a model that was fine-tuned to the biomedical
domain using general domain data for MBR
decoding. This evaluated whether the model
would retain its translation capabilities in the
biomedical domain despite improvements based
solely on out-of-domain data.

3.3 Czech–Ukrainian

The Czech–Ukrainian experiment addresses the
challenge of machine translation between two low-
resource languages. We aimed to evaluate whether
self-improvement through MBR decoding leads to
an increase in the overall translation quality when
applied to language pairs that do not involve En-
glish, which typically dominate machine transla-
tion research.

In this setting, we used only the parallel data
set without incorporating any additional monolin-
gual data. To employ MBR decoding in this data-
scarce environment, we directly translated the en-
tire source side of the parallel dataset using the
baseline translation model. This created a set of
synthetic candidate translations, which were then
reranked through MBR decoding.

In contrast to our English–German experiments
where we incorporated external monolingual data,
this setup explored self-improvement without re-
lying on additional datasets. We achieved this by
solely leveraging the information present within
the data of the base model. This demonstrates the
potential for self-improvement even in resource-
constrained scenarios.

3.4 English–Hausa

The English–Hausa experiment delves into the
critical question of how the choice of a quality
evaluation metric influences the effectiveness of
self-improvement with MBR decoding. We ex-
plored the impact of language coverage in the eval-
uation metric by comparing two approaches:
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• MBR decoding with WMT22 COMET: uti-
lizing the wmt22-comet-da model, which has
been trained on direct assessments between a
diverse set of language pairs.

• MBR decoding with AfriCOMET: using
AfriCOMET-STL, a novel COMET-like met-
ric specifically designed for evaluating trans-
lations to and from multiple African lan-
guages, including Hausa.

The objective of this study was to investigate
the effect of language contribution in the neural
evaluation metric on the quality of translations de-
coded using MBR. The comparison of these two
approaches specifically addresses whether self-
improvement guided by the WMT22 COMET
metric, which is trained on a diverse range of
language pairs, can effectively generalize to low-
resource language pairs. Furthermore, we explore
the potential need to use language-specific metrics,
such as AfriCOMET-STL for Hausa, to achieve
better performance in such scenarios.

3.5 Iterative MBR Self-Improvement

Following the initial self-improvement through
MBR decoding, we explored the possibility of ap-
plying it iteratively to further enhance the model’s
translation quality.

We started each iteration by selecting the best
model checkpoint based on the WMT22 COMET
metric on the validation set. Next, we performed
MBR decoding on the entire training set using this
checkpoint, generating a new iteration of the syn-
thetic training set. Finally, we resumed the train-
ing of the model using the new training set, starting
from the previously selected checkpoint.

The iterative process was repeated until a de-
crease was observed in the evaluation scores of
metrics other than WMT22 COMET. In the case of
English–German biomedical translation, the pro-
cess was continued until the model’s quality im-
proved solely on an in-domain test set and de-
creased on a general domain test set, as this could
indicate potential overfitting to the biomedical do-
main.

4 Experimental Setup

4.1 Data Filtering

We filtered the general training data using the fol-
lowing heuristic filters:

• average length of words in each sentence
(character-wise) ≤ 15;

• number of characters in each sentence ≤ 500;

• digits in a sentence (character-wise) ≤ 15%;

• number of characters in the longest word ≤
28;

• number of words in sentence ≤ 100;

• Levenshtein distance between source and tar-
get sentences ≥ 2;

• number of characters in each sentence ≥ 5;

• probability that each sentence is in the correct
language ≥ 10%.

To ensure that each sentence is in the correct
language, we have used the fastText LID-201 lan-
guage identification model (Burchell et al., 2023).

The Bicleaner-AI model (Zaragoza-Bernabeu et
al., 2022) is also used to filter the English–German
dataset. This tool estimates the likelihood that a
sentence pair constitutes a mutual translation. A
threshold of 50% is established for the Bicleaner
score within this language pair. Bicleaner-AI is not
utilized for other language pairs due to the unavail-
ability of open-source models for those languages.

4.2 Vocabulary
We employed SentencePiece (Kudo and Richard-
son, 2018), a subword tokenization library, to train
unigram tokenizers for each language pair in our
experiments.

For the English–German and English–Hausa se-
tups, we created a joint vocabulary containing
32,000 subword tokens and tied all embeddings
during the training of the MT model. In con-
trast, for Czech–Ukrainian, due to different scripts
(Latin and Cyrillic), we created separate vocabu-
laries of 32,000 subword tokens and tied only the
target and output layer embeddings.

4.3 Baseline Model Hyperparameters
For all experiments, we trained Transformer
(big) (Vaswani et al., 2017) models using the Mar-
ian framework. These models were trained on four
NVIDIA A100 GPUs, each equipped with 80GB
of VRAM.

Hyperparameter Settings:

• learning rate: 2e-4;
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• learning rate warmup: 8000 updates;

• learning rate decay: inverse square root;

• mini-batch size determined automatically to
fit GPU memory;

• early stopping after 10 consecutive valida-
tions with no improvement in mean word
cross-entropy score.

4.4 Evaluation metrics

We use sacreBLEU (Post, 2018) to calculate
BLEU2 (Papineni et al., 2002) and chrF3 (Popović,
2015).

We acknowledge the potential for overfitting to
the WMT22 COMET4 metric used for MBR de-
coding. Therefore, we extended the evaluation
to also include CometKiwi5 (Rei et al., 2022),
UniTE6 (Wan et al., 2022), UniTE-DA7 (Rei et al.,
2023) and BLEURT-208 (Sellam et al., 2020b).

For the English–Hausa experiments, we addi-
tionally calculated scores using AfriCOMET-STL
(Wang et al., 2023), which was specifically trained
to evaluate translations involving certain African
languages.

4.5 English to German

To train the baseline model, we used all corpora
from the MTData toolkit (version 0.4.0) (Gowda
et al., 2021), excluding the validation sets and the
test sets from the available datasets. Our filters de-
scribed in Section 4.1 reduced the dataset from ap-
proximately 800 million sentences to 400 million.

In the context of domain adaptation, we em-
ployed the following list of domain data:

1. 40 thousand sentences from biomedical-
translation-corpora (Neves et al., 2016);

2. 3 million sentences from Ufal medical corpus
shared in WMT23 (Kocmi et al., 2023);

2BLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
3chrF signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
4https://huggingface.co/Unbabel/
wmt22-comet-da
5https://huggingface.co/Unbabel/
wmt22-cometkiwi-da
6https://huggingface.co/Unbabel/unite-mup
7https://huggingface.co/Unbabel/
wmt22-unite-da
8https://storage.googleapis.com/
bleurt-oss-21/BLEURT-20.zip

3. 2 million sentences from EMEA corpus
downloaded from OPUS (Tiedemann and Ny-
gaard, 2004).

After deduplication, we were left with 3 mil-
lion sentences which we split into two datasets.
We considered a scenario with 1 million bilin-
gual parallel sentences and approximately 2 mil-
lion monolingual sentences in the source language.
Khresmoi-dev (Dušek et al., 2017) concatenated
with FLORES-200 (NLLB Team et al., 2022) was
utilized as the validation set during training. We
did not apply any filtering to the domain data.

We used the above data to train the following
models:

• Baseline (Baseline) – model trained only on
data from the MTdata toolkit.

• Baseline + mix-tuning (Mix-tune) – fine-
tuned Baseline model on 1 million in-domain
bilingual data concatenated with 1 million
general-domain data randomly sampled from
the Baseline training set.

• Baseline + domain MBR (Base-domain-
mbr) – fine-tuned Baseline model on 2 mil-
lion domain-specific sentences from MBR-
decoded forward translations.

• Mix-tuned + domain MBR (Mix-tune-
domain-mbr) – fine-tuned Mix-tune model
on 2 million domain-specific sentences from
MBR-decoded forward translations.

• Mix-tuned + MBR-iteration2 (Mix-tune-
domain-mbr-iter2) – fine-tuned Mix-tune-
domain-mbr on the 2 million domain-
specific sentences from MBR-decoded for-
ward translations.

• Mix tuned + general-MBR (Mix-tune-
general-mbr) – fine-tuned Mix-tune model
on 2 million sentences sampled from the
general-domain corpora from the Baseline
training set as MBR-decoded forward trans-
lations.

When fine-tuning the Mix-tune model, we tailor
the learning rate setup to meet specific require-
ments: learn-rate: 1e-7, lr-decay-inv-sqrt: 16000,
lr-warmup: 16000. All remaining fine-tuning pro-
cedures employ an adjusted learning rate set to
5e-6.
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4.6 Czech to Ukrainian
We leveraged all of the Czech–Ukrainian parallel
data from the WMT23 MTData recipe, resulting
in approximately 8 million sentence pairs after fil-
tering as described in Section 4.1. We did not in-
clude any additional monolingual data in this ex-
periment.

We utilized the FLORES-200 dataset for vali-
dation during training, while the WMT22 test set
served as an additional benchmark.

We trained the baseline model only on the par-
allel data, using hyperparameters as described in
Section 4.3. Next, we translated the source side of
the parallel corpus used in training with our base-
line model, saving a list of translation candidates.
We performed MBR decoding, selecting the best
translation of each set of candidate translations, re-
sulting in a synthetic training dataset.

We investigated the following approaches to
leverage the MBR-decoded data for model im-
provement:

• Standard fine-tuning (MBR-finetuned) – we
fine-tuned the baseline model on the MBR-
decoded data, using a learning rate of 5e-6.

• Fine-tuning with a high learning rate (MBR-
ft-high-lr) – we fine-tune the baseline model
on MBR-decoded data, using a learning rate
of 2e-4.

• Resuming training with MBR-decoded data
(MBR-resumed) – we switched the training
set to the MBR-decoded version and resumed
training, restoring the optimizer state and ef-
fectively continuing its training with the im-
proved data.

4.7 English to Hausa
To train the models in the English–Hausa direc-
tion, we used data from the WMT shared tasks
from previous years. Specifically, we used:

1. 7 million sentences from OPUS;

2. 2.4 million data from the WMT23 African
MT Shared Task (Kocmi et al., 2023);

3. 150 thousand sentences from ParaCrawl
v8.0 (Bañón et al., 2020).

The deduplication process reduced the data size
to approximately 9 million sentences. Following
the filtering criteria detailed in Section 4.1, a total

of 3.1 million sentences were retained. We used
FLORES-200 for validation during training. After
training, we evaluated the model on the FLORES-
200 and NTREX test sets.

We took similar steps as in the Czech–Ukrainian
experiment, training a baseline model with hyper-
parameters set as described in Section 4.3. We
conducted experiments employing MBR decod-
ing, comparing its performance using two distinct
metrics as the utility function:

• WMT22 COMET – based on XLM-
RoBERTa (Conneau et al., 2020), covering a
diverse set of 100 languages,

• AfriCOMET-STL – based on AfroXLM-
RoBERTa (Alabi et al., 2022), covering 17
African languages and 3 high-resource lan-
guages.

We investigated the impact of the chosen metric
for MBR decoding by training two models using
the refined translations:

• MBR-COMET – training resumed with the
training set switched to the WMT22 COMET
MBR-decoded version.

• MBR-AfriCOMET – training resumed with
the training set switched to the AfriCOMET-
STL MBR-decoded version.

5 Results

The statistical significance of the evaluation re-
sults is assessed using a paired bootstrap resam-
pling test (Koehn, 2004), involving 1000 resam-
pling trials to confirm the statistical significance of
the model improvements (p < 0.05).

5.1 Number of translation samples and
search algorithm

To determine the optimal setup for MBR decoding,
we conducted experiments involving the transla-
tion and evaluation of chosen test sets with various
MBR decoding sample sizes and two decoding al-
gorithms. This approach offers the advantages of
being both representative and computationally ef-
ficient compared to training MT models on the en-
tire MBR-decoded training set.

We evaluated two decoding algorithms – beam
search and top-k. For the top-k setup, we experi-
mented with temperature values of 0.1 and 1, keep-
ing the k parameter equal to 10. These choices
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were based on the work done by Freitag et al.
(2023). To determine the best number of samples
for MBR decoding we conducted experiments with
the following numbers of samples: 10, 25, 50, 100,
200, 300, 400, 500.

Firstly we noted that beam search is the pre-
ferred option, given its high scores and greater sta-
bility across different metric results, as observed in
Figure 1 and 2. We provide more specific results
in the Appendix Figures 4, 5.

Figure 1: Comparison of beam search and top-k algorithms
of the Mix-tune English–German model for the khresmoi
test set. Top-k algorithm with temperature 1.0 showed su-
perior performance on neural metrics over top-k with temper-
ature 0.1 and slightly better performance than beam search.
However, beam search achieved the highest score on the chrF
metric, while the top-k algorithm with temperature 1.0 had
the lowest score (translation without MBR decoding is rep-
resented on the chart as the number of translation candidates
equal to 0).

Secondly, we decided to train our models on
MBR-decoded data from 50 candidates selected by
the beam search decoding algorithm. We consid-
ered the balance between improvement in evalua-
tion metrics based on neural language models, sta-
bility across lexical metrics, and the execution time
of MBR decoding, as shown in Figure 3.

Figure 2: Comparison of beam search and top-k algorithms
of the baseline Czech–Ukrainian model for the FLORES-200
test set. Beam search seems to be the superior option with the
best performance on chrF and BLEURT metrics and slightly
worse results on COMET over top-k with temperature 1.0
(translation without MBR decoding is represented on the
chart as the number of translation candidates equal to 0).

We provide more detailed results in the Ap-
pendix Figures 6, 7, 8, 9, 10, 11, 12.

5.2 English to German

Table 1 shows the evaluation results on the in-
domain test set khresmoi. All models self-
improved with MBR decoding have shown en-
hanced performance. However, model Mix-
tune-domain-mbr-iter2 did not exhibit improve-
ment over its first iteration Mix-tune-domain-
mbr, even on COMET, which was the utility met-
ric of MBR decoding. Mix-tune-general-mbr
model shows a slightly better performance on
BLEURT metric compared to models fine-tuned
on in-domain MBR-decoded forward translations.

Table 2 presents the evaluation results on the
FLORES-200 test set. Although chrF did not in-
crease, the neural evaluation metrics showed im-
provement. Similar to the khresmoi test set, the
Mix-tune-domain-mbr-iter2 model showed a de-
crease in quality during the second iteration of self-
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Figure 3: Comparison of beam search performance with a different number of samples of the Mix-tune English–German
model for the khresmoi test set. Initial increases in the number of samples for MBR decoding showed very rapid gains, but
further increases no longer resulted in such large gains, and performance on the n-gram metrics deteriorated (translation without
MBR decoding is represented on the chart as the number of translation candidates equal to 0).

Model chrF COMET BLEURT

Baseline 66.6 0.8653 0.7693
Mix-tune 66.8 0.8682 0.7749
Base-domain-mbr 66.9 0.8711* 0.7755
Mix-tune-domain-mbr 66.9 0.8728* 0.7792*
Mix-tune-domain-mbr-iter2 66.9 0.8727* 0.7791*
Mix-tune-general-mbr 66.9 0.8720* 0.7799*

Table 1: English–German khresmoi set results for the MBR
self-improvement approaches. All models fine-tuned with
MBR self-improvement technique have shown better per-
formance over Baseline and Mix-tune models, including
the Mix-tune-general-mbr model, which was finetuned on
general-domain MBR-decoded data. The results marked with
an asterisk (*) are statistically significant compared to the
Mix-tune model.

improvement. Mix-tune-general-mbr showed su-
perior performance over other models.

In summary, our findings demonstrate that
applying MBR decoding significantly improves
the performance of the high-resource English–
German model for low-resource biomedical do-
main translation, particularly on neural network
metrics. While lexical metrics show lower stabil-
ity, they also hold potential for improvement.

Experiments demonstrated the robustness of
self-improving models with the MBR decoding
technique. Model fine-tuned on general for-
ward translation had great performance on the
in-domain test set and the model fine-tuned on

Model chrF COMET BLEURT

Baseline 67.5 0.8751 0.7735
Mix-tune 67.5 0.8756 0.7744
Base-domain-mbr 67.2 0.8772 0.7743
Mix-tune-domain-mbr 67.3 0.8787* 0.7766
Mix-tune-domain-mbr-iter2 67.1 0.8766 0.7748
Mix-tune-general-mbr 67.5 0.8813* 0.7784*

Table 2: English–German FLORES-200 test set results for
the MBR self-improvement approaches. Mix-tune-general-
mbr model has shown superior performance, however, mod-
els with domain-specific forward translation maintain perfor-
mance. The results marked with an asterisk (*) are statisti-
cally significant compared to the Mix-tune model.

domain-specific forward translation maintained
performance on the general domain test set. We
provide a broader evaluation in the Appendix Ta-
bles 9, 10, 11, 12.

5.3 Czech to Ukrainian

The results of the three MBR self-improvement ap-
proaches described in Section 4.6 are presented in
Tables 3 and 4 for the FLORES-200 and WMT22
test sets, respectively.

We find that standard fine-tuning of the baseline
model with MBR-decoded data yields the small-
est improvements across all metrics, suggesting its
limited effectiveness in this context. We note that
both fine-tuning with a higher learning rate and
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Model chrF COMET BLEURT

Baseline 52.0 0.8779 0.7466
MBR-finetuned 52.4 0.8839 0.7522
MBR-ft-high-lr 52.7 0.8869 0.7553
MBR-resumed 52.7 0.8864 0.7557

Table 3: Czech–Ukrainian FLORES-200 test set results
for the three MBR self-improvement approaches. All self-
improved models exhibit improvements on all metrics com-
pared to the baseline model, regardless of the fine-tuning
approach used. Notably, both MBR-ft-high-lr and MBR-
resumed models achieve the highest gains, demonstrating
comparable performance. All self-improved models show sta-
tistical significance compared to the Baseline model.

Model chrF COMET BLEURT

Baseline 58.4 0.8721 0.7498
MBR-finetuned 60.0 0.8803 0.7574
MBR-ft-high-lr 60.2 0.8844 0.7619
MBR-resumed 60.0 0.8852 0.7639

Table 4: Czech–Ukrainian WMT22 test set results for the
three MBR self-improvement approaches. Similar to the
FLORES-200 results, all self-improved models exhibit im-
provements on all metrics compared to the baseline model.
However, on the WMT22 test set, the neural metrics favour
the MBR-resumed model over the MBR-ft-high-lr model.
All self-improved models show statistical significance com-
pared to the Baseline model.

Model chrF COMET BLEURT

Baseline 52.0 0.8779 0.7466
MBR-resumed 52.7* 0.8864* 0.7557*
MBR-resumed-iter2 52.8 0.8888* 0.7567
MBR-resumed-iter3 52.6 0.8901 0.7557

Table 5: Czech–Ukrainian iterative self-improvement results
on the FLORES-200 test set. While the COMET score con-
sistently improves across all three iterations, the chrF and
BLEURT scores show a decrease in the third iteration. This
suggests that the model overfits to COMET, harming the qual-
ity of the translation. Results with an asterisk (*) are statis-
tically significant in comparison with the model in the row
directly above it.

resuming the training exhibit comparable perfor-
mance, with resumed training achieving slightly
better results on the WMT22 test set. This may
indicate that resuming training helps mitigate over-
fitting to the FLORES-200 validation set used dur-
ing training.

Tables 5 and 6 showcase the impact of itera-
tive training with MBR decoding on the FLORES-
200 and WMT22 test sets, respectively. The sec-
ond iteration consistently improves scores across
all metrics, demonstrating the effectiveness of the

Model chrF COMET BLEURT

Baseline 58.4 0.8721 0.7498
MBR-resumed 60.0* 0.8852* 0.7639*
MBR-resumed-iter2 60.3* 0.8885* 0.7641
MBR-resumed-iter3 60.1 0.8896 0.7578

Table 6: Czech–Ukrainian iterative self-improvement results
on the WMT22 test set. Consistent with the FLORES-200 re-
sults, the COMET score improves across all iterations, while
other metrics show a decrease in the last iteration. Notably,
the BLEURT score not only decreases but falls below the
score achieved by the first self-improved model. Results with
an asterisk (*) are statistically significant in comparison with
the model in the row directly above it.

iterative self-improvement process in refining the
model’s translation capabilities. However, the
third iteration leads to a decrease in both chrF and
BLEURT scores. This suggests potential overfit-
ting to the MBR decoding utility metric, where the
model prioritizes aspects that score well according
to COMET but may not translate to overall trans-
lation quality.

We provide extended evaluations in the Ap-
pendix in Tables 13, 14, 15, 16.

5.4 English to Hausa

Model chrF COMET BLEURT AfriCOMET

Baseline 49.9 0.7569 0.7931 0.6984
MBR-COMET 50.9 0.7720 0.8083 0.7207
MBR-AfriCOMET 51.2 0.7692 0.8061 0.7239

Table 7: English–Hausa FLORES-200 test set results for
MBR self-improvement with different metrics. Both self-
improved models achieve gains compared to the baseline
model on all evaluation metrics. While the AfriCOMET-
based model achieves a higher AfriCOMET score, reflecting
its alignment with the specific evaluation metric, the COMET-
based model surpasses it in both BLEURT and COMET
scores, while showing a comparable gain on the AfriCOMET
score. All self-improved models show statistical significance
compared to the Baseline model.

Model chrF COMET BLEURT AfriCOMET

Baseline 51.6 0.7596 0.7791 0.6800
MBR-COMET 53.1 0.7752 0.7986 0.7046
MBR-AfriCOMET 53.0 0.7721 0.7956 0.7062

Table 8: English–Hausa NTREX test set results for MBR
self-improvement with different metrics. Similar to the
FLORES-200 results, both self-improved models using MBR
decoding demonstrate improvements over the baseline model
on all evaluation metrics. All self-improved models show sta-
tistical significance compared to the Baseline model.

This section compares the performance of
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two MBR decoding self-improvement approaches
for English–Hausa translation: one utilizing the
WMT22 COMET model and another using the
AfriCOMET model. The results are presented in
Tables 7 and 8 for the FLORES-200 and NTREX
test sets, respectively.

We observe that the AfriCOMET MBR-tuned
model achieves gains over the WMT22 COMET
MBR-tuned model on chrF for the FLORES-200
test set, but this advantage is not replicated on
the NTREX test set. Additionally, the gains from
AfriCOMET MBR-tuning are mainly limited to
the AfriCOMET metric.

Our analysis reveals that the MBR-
AfriCOMET model exhibits improvements
over the MBR-COMET model primarily on
lexical metrics in the case of the FLORES-200 test
set, but not in the case of NTREX. The gains of
the MBR-AfriCOMET model are mainly limited
to AfriCOMET metrics, while other neural-based
metrics consistently favour the MBR-COMET
model.

While WMT22 COMET might exhibit a lower
correlation with human judgment for the English–
Hausa language pair than AfriCOMET, as reported
by Wang et al. (2023), both self-improved mod-
els achieved significant and comparable gains on
AfriCOMET. This suggests that WMT22 COMET,
can still correctly rerank translation candidates and
effectively guide the self-improvement process,
leading to improvements on AfriCOMET, a metric
specifically designed for African languages. This
finding suggests that self-improvement guided by
WMT22 COMET, with its diverse language cov-
erage, might be effective even in low-resource set-
tings, potentially reducing the need for additional
adaptation of neural evaluation models to individ-
ual languages.

Additional evaluations are provided in the Ap-
pendix in Tables 17, 18.

6 Conclusion

This study demonstrated the effectiveness of
model self-improvement through MBR decod-
ing in improving translation quality. This ap-
proach proves beneficial for both high and low-
resource languages, offering versatility in its appli-
cation across diverse scenarios. Examples include
domain-specific translation and the enhancement
of general translation models.

We conducted experiments with various sample

sizes for MBR decoding, using two decoding al-
gorithms: beam search and top-k. The aim was to
find a balance between automatic metric gains and
time efficiency. Our experiments have shown that
the beam search algorithm with a beam size set to
50 is the optimal choice.

In the field of high-resource English-to-
German biomedical translation, we investigated
the impact of domain adaptation using various
self-improvement approaches on MBR-decoded
forward-translated data. Experiments showed that
all MBR-based fine-tuning, regardless of the do-
main of the test set, improved performance com-
pared to the baseline model. This finding high-
lights the robustness of the self-improvement tech-
nique.

Experiments on the Czech–Ukrainian language
pair revealed that fine-tuning the MT model on
MBR-decoded translations of the training data
set significantly improves translation performance.
Applying this process iteratively improves quality,
but further iterations yield diminishing gains and
at some point, the quality may even degrade due to
overfitting to the MBR decoding utility metric.

In the English–Hausa experiments, we em-
ployed two models for MBR decoding: WMT22
COMET and AfriCOMET. Both models yielded
comparable and significant improvements in au-
tomatic metrics, indicating their effectiveness in
guiding the self-improvement process. While
AfriCOMET, specifically trained on African lan-
guages, might intuitively seem favourable for this
language pair, the performance of the MBR-
COMET model highlights the potential of utiliz-
ing more widely applicable metrics like WMT22
COMET even for low-resource settings.
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and Zdeňka Urešová. 2017. Khresmoi summary
translation test data 2.0. LINDAT/CLARIAH-CZ
digital library at the Institute of Formal and Ap-
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and Mariya Shmatova. 2023. Findings of the 2023
conference on machine translation (WMT23): LLMs
are here but not quite there yet. In Koehn, Philipp,
Barry Haddow, Tom Kocmi, and Christof Monz, ed-
itors, Proceedings of the Eighth Conference on Ma-
chine Translation, pages 1–42, Singapore, Decem-
ber. Association for Computational Linguistics.

Koehn, Philipp. 2004. Statistical significance tests for
machine translation evaluation. In Lin, Dekang and
Dekai Wu, editors, Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, pages 388–395, Barcelona, Spain, July.
Association for Computational Linguistics.

90



Kudo, Taku and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Blanco, Eduardo and Wei Lu, editors, Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 66–71, Brussels, Belgium, Novem-
ber. Association for Computational Linguistics.

Kudo, Keito, Takumi Ito, Makoto Morishita, and Jun
Suzuki. 2023. SKIM at WMT 2023 general transla-
tion task. In Koehn, Philipp, Barry Haddow, Tom
Kocmi, and Christof Monz, editors, Proceedings
of the Eighth Conference on Machine Translation,
pages 128–136, Singapore, December. Association
for Computational Linguistics.

Kumar, Shankar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169–176, Boston, Mas-
sachusetts, USA, May 2 - May 7. Association for
Computational Linguistics.

Neves, Mariana, Antonio Jimeno Yepes, and Aurélie
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Popović, Maja. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Bojar, Ondřej, Ra-
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Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 66.6 35.6 0.8653 0.8373 0.6441 0.8574 0.7693
Mix-tune 66.8 35.9 0.8682 0.8397 0.6594 0.8602 0.7749
Base-domain-mbr 66.9 35.7 0.8711 0.8416 0.6694 0.8621 0.7755
Mix-tune-domain-mbr 66.9 35.8 0.8728 0.8423 0.6766 0.8631 0.7792
Mix-tune-domain-mbr-iter2 66.9 35.6 0.8727 0.8423 0.6757 0.8633 0.7791
Mix-tune-general-mbr 66.9 35.5 0.8720 0.8422 0.6775 0.8631 0.7799

Table 9: English–German khresmoi set results for the MBR self-improvement approaches. All models fine-tuned with MBR
self-improvement technique have shown better performance over Baseline and Mix-tune models, even Mix-tune-general-mbr
model with general forward translations.

Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 63.1 35.0 0.8505 0.8336 0.5368 0.8470 0.7500
Mix-tune 63.5 35.6 0.8525 0.8360 0.5418 0.8495 0.7541
Base-domain-mbr 63.5 35.8 0.8549 0.8374 0.5549 0.8501 0.7522
Mix-tune-domain-mbr 63.6 35.7 0.8540 0.8379 0.5552 0.8508 0.7530
Mix-tune-domain-mbr-iter2 63.7 35.9 0.8543 0.8383 0.5575 0.8510 0.7535
Mix-tune-general-mbr 63.4 35.4 0.8547 0.8378 0.5613 0.8501 0.7542

Table 10: English–German WMT22-medline set results for the MBR self-improvement approaches. All models fine-tuned with
MBR self-improvement technique have shown better performance over Mix-tune model except on metric BLEURT. On this
specific test set, Mix-tune-domain-mbr-iter2 outperformed the Mix-tune-domain-mbr model, unlike the results observed on
other test sets.

Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 67.5 42.0 0.8751 0.8454 0.6630 0.8614 0.7735
Mix-tune 67.5 42.2 0.8756 0.8457 0.6657 0.8617 0.7744
Base-domain-mbr 67.2 41.7 0.8772 0.8469 0.6677 0.8632 0.7743
Mix-tune-domain-mbr 67.3 41.7 0.8787 0.8477 0.6719 0.8641 0.7766
Mix-tune-domain-mbr-iter2 67.1 41.5 0.8766 0.8466 0.6653 0.8629 0.7748
Mix-tune-general-mbr 67.5 41.8 0.8813 0.8484 0.6824 0.8654 0.7784

Table 11: English–German FLORES-200 test set results for the MBR self-improvement approaches. Mix-tune-general-mbr
model has shown superior performance, however, models with domain-specific forward translation maintain performance.

Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 63.8 36.6 0.8428 0.8328 0.5308 0.8420 0.7106
Mix-tune 63.7 36.5 0.8427 0.8322 0.5283 0.8414 0.7107
Base-domain-mbr 63.3 35.8 0.8463 0.8359 0.5376 0.8454 0.7138
Mix-tune-domain-mbr 63.2 35.9 0.8468 0.8358 0.5404 0.8464 0.7132
Mix-tune-domain-mbr-iter2 63.0 35.5 0.8460 0.8345 0.5348 0.8455 0.7119
Mix-tune-general-mbr 64.1 36.7 0.8629 0.8399 0.5622 0.8492 0.7202

Table 12: English–German Statmt test set results for the MBR self-improvement approaches. Mix-tune-general-mbr model
has shown significantly improved performance on every metric, however models with domain-specific forward translation
maintain performance.
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Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 52.0 22.2 0.8779 0.8449 0.4441 0.9017 0.7466
MBR-finetuned 52.4 22.3 0.8839 0.8513 0.4715 0.9063 0.7522
MBR-ft-high-lr 52.7 22.6 0.8869 0.8543 0.4829 0.9085 0.7553
MBR-resumed 52.7 22.8 0.8864 0.8540 0.4824 0.9086 0.7557

Table 13: Extended Czech–Ukrainian FLORES-200 test set results for the three MBR self-improvement approaches. All
approaches lead to an increase in evaluation scores. Both MBR-ft-high-lr and MBR-resumed models achieve the highest
gains, demonstrating comparable performance.

Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 58.4 31.1 0.8721 0.8046 0.3744 0.8795 0.7498
MBR-finetuned 60.0 32.3 0.8803 0.8121 0.4112 0.8846 0.7574
MBR-ft-high-lr 60.2 33.2 0.8844 0.8152 0.4246 0.8880 0.7619
MBR-resumed 60.0 33.0 0.8852 0.8162 0.4236 0.8890 0.7639

Table 14: Extended Czech–Ukrainian WMT22 test set results for the three MBR self-improvement approaches. As in the case
of evaluation results on the FLORES-200 test set, all approaches improve upon the baseline model, although MBR-resumed
stands out across all neural metrics apart from UniTE.

Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 52.0 22.2 0.8779 0.8449 0.4441 0.9017 0.7466
MBR-resumed 52.7 22.8 0.8864 0.8540 0.4824 0.9086 0.7557
MBR-resumed-iter2 52.8 22.6 0.8888 0.8557 0.4882 0.9099 0.7567
MBR-resumed-iter3 52.6 22.3 0.8901 0.8562 0.4873 0.9097 0.7557

Table 15: Extended Czech–Ukrainian iterative self-improvement results on the FLORES-200 test set. Models increase in qual-
ity across all neural metrics until the third iteration, when the quality measured by metrics other than COMET and CometKiwi
decreases. It’s worth noticing that the BLEU score increases only in the first iteration and slowly degrades in consecutive
iterations.

Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT

Baseline 58.4 31.1 0.8721 0.8046 0.3744 0.8795 0.7498
MBR-resumed 60.0 33.0 0.8852 0.8162 0.4236 0.8890 0.7639
MBR-resumed-iter2 60.3 32.6 0.8885 0.8183 0.4349 0.8900 0.7641
MBR-resumed-iter3 60.1 31.9 0.8896 0.8174 0.4312 0.8887 0.7578

Table 16: Extended Czech–Ukrainian iterative self-improvement results on the WMT22 test set. Evaluations across all metrics
show similar tendencies as in the case of FLORES-200, except for CometKiwi which also decreases in the third iteration.

Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT AfriCOMET

Baseline 49.9 22.3 0.7569 0.5597 -0.2297 0.6082 0.7931 0.6984
MBR-COMET 50.9 23.2 0.7720 0.5707 -0.1777 0.6233 0.8083 0.7207
MBR-AfriCOMET 51.2 23.4 0.7692 0.5638 -0.1878 0.6183 0.8061 0.7239

Table 17: Extended English–Hausa results on the FLORES-200 test set. According to lexical metrics and AfriCOMET, the
MBR-AfriCOMET model shows the greatest improvement. However, other neural metrics suggest that the MBR-COMET
model is superior.
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Model chrF BLEU COMET CometKiwi UniTE UniTE-DA BLEURT AfriCOMET

Baseline 51.6 23.9 0.7596 0.5704 -0.1763 0.6294 0.7791 0.6800
MBR-COMET 53.1 25.3 0.7752 0.5865 -0.1051 0.6484 0.7986 0.7046
MBR-AfriCOMET 53.0 24.9 0.7721 0.5803 -0.1273 0.6409 0.7956 0.7062

Table 18: Extended English–Hausa results on the NTREX test set. In contrast to evaluations on the FLORES-200 test set, in
this case only the AfriCOMET metric favours the MBR-AfriCOMET model.

Figure 4: Comparison of beam search and top-k algorithms of the Mix-tune English–German model for the khresmoi test
set. Top-k algorithm with temperature 1.0 showed superior performance on neural metrics over top-k with temperature 0.1 and
slightly better performance than beam search. However, beam search achieved the highest score on the chrF metric, while the
top-k algorithm with temperature 1.0 had the lowest score for lexical metrics (translation without MBR decoding is represented
on the chart as the number of translation candidates equal to 0).
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Figure 5: Comparison of beam search and top-k algorithms of the baseline Czech–Ukrainian model for the FLORES-200
test set. Beam search seems to be the superior option with the best performance on every metric except COMET (translation
without MBR decoding is represented on the chart as the number of translation candidates equal to 0).

Figure 6: Comparison of beam search performance with a different number of samples of the Mix-tune English–German
model for the khresmoi test set. Initial increases in the number of samples for MBR decoding showed very rapid gains, but
further increases no longer resulted in such large gains and performance on the n-gram metrics deteriorated (translation without
MBR decoding is represented on the chart as the number of translation candidates equal to 0).
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Figure 7: Comparison of beam search performance with a different number of samples of the Mix-tune English–German
model for the FLORES-200 test set. Initial increases in the number of samples for MBR decoding showed very rapid gains, but
further increases no longer resulted in such large gains and performance on the n-gram metrics deteriorated (translation without
MBR decoding is represented on the chart as the number of translation candidates equal to 0).

Figure 8: Comparison of top-k performance (temperature 0.1, k=10) with different number of samples of the Mix-tune
English–German model for the khresmoi test set. Initial increases in the number of samples for MBR decoding showed very
rapid gains, but further increases no longer resulted in such large gains (translation without MBR decoding is represented on
the chart as the number of translation candidates equal to 0).
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Figure 9: Comparison of top-k performance (temperature 1.0, k=10) with different number of samples of the Mix-tune
English–German model for the khresmoi test set. Initial increases in the number of samples for MBR decoding showed very
rapid gains, but further increases no longer resulted in such large gains (translation without MBR decoding is represented on
the chart as the number of translation candidates equal to 0).

Figure 10: Comparison of beam search performance with different number of samples of the Baseline Czech–Ukrainian model
for the FLORES-200 test set. Initial increases in the number of samples for MBR decoding showed very rapid gains, but further
increases no longer resulted in such large gains and performance on the n-gram metrics deteriorated (translation without MBR
decoding is represented on the chart as the number of translation candidates equal to 0).
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Figure 11: Comparison of top-k performance (temperature 0.1, k=10) with different number of samples of the Baseline Czech–
Ukrainian model for the FLORES-200 test set. Initial increases in the number of samples for MBR decoding showed very rapid
gains, but further increases no longer resulted in such large gains (translation without MBR decoding is represented on the chart
as the number of translation candidates equal to 0).

Figure 12: Comparison of top-k performance (temperature 1.0, k=10) with different number of samples of the Baseline Czech–
Ukrainian model for the FLORES-200 test set. Initial increases in the number of samples for MBR decoding showed very rapid
gains, but further increases no longer resulted in such large gains (translation without MBR decoding is represented on the chart
as the number of translation candidates equal to 0).
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