
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 68–79
June 24-27, 2024 ©2024 European Association for Machine Translation

Recovery Should Never Deviate from Ground Truth: Mitigating Exposure
Bias in Neural Machine Translation

Jianfei He1, Shichao Sun2, Xiaohua Jia1, Wenjie Li2
1 City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

2 The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
jianfeihe-2c@my.cityu.edu.hk, bruce.sun@connect.polyu.hk

csjia@cityu.edu.hk, wenjie.li@polyu.edu.hk

Abstract

In Neural Machine Translation, models
are often trained with teacher forcing
and suffer from exposure bias due to the
discrepancy between training and infer-
ence. Current token-level solutions, such
as scheduled sampling, aim to maximize
the model’s capability to recover from er-
rors. Their loss functions have a side ef-
fect: a sequence with errors may have a
larger probability than the ground truth.
The consequence is that the generated
sequences may deviate from the ground
truth. This side effect is verified in our ex-
periments. To address this issue, we pro-
pose using token-level contrastive learn-
ing to coordinate three training objec-
tives: the usual MLE objective, an ob-
jective for recovery from errors, and a
new objective to explicitly constrain the
recovery in a scope that does not impact
the ground truth. Our empirical analysis
shows that this method effectively achieves
these objectives in training and reduces
the frequency with which the third ob-
jective is violated. Experiments on three
language pairs (German-English, Russian-
English, and English-Russian) show that
our method outperforms the vanilla Trans-
former and other methods addressing the
exposure bias.

1 Introduction

Like many other text generation tasks, models for
Neural Machine Translation (NMT) (Bahdanau et
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BY-ND.

al., 2014) are usually trained with teacher forcing.
During training, ground truth tokens are used as
target prefixes to the decoder, and the model learns
to predict the next token conditioned on the ground
truth. There is a discrepancy between this train-
ing method and inference. In inference, the ground
truth tokens are not available. The target prefixes
to the decoder are tokens previously generated by
the model, which may include some errors. This
discrepancy is referred to as exposure bias (Bengio
et al., 2015; Ranzato et al., 2016). The main con-
cern about exposure bias is error accumulation. If
one error happens at one step, it is incorporated
into the future steps and leads to more errors. Al-
though there are still some doubts about whether
exposure bias is a big issue for text generation (He
et al., 2021), more research shows that this issue
matters for NMT (Wu et al., 2018; Wang and Sen-
nrich, 2020; Korakakis and Vlachos, 2022).

There are two approaches to mitigate the expo-
sure bias, working at the token and sequence lev-
els, respectively.

The token-level solutions, for example, sched-
uled sampling (Bengio et al., 2015; Mihaylova and
Martins, 2019; Liu et al., 2021), usually use the to-
kens sampled from the model to replace the ground
truth in training. The objective is to simulate the
possible errors in inference and recover from these
errors to reduce the error accumulation.

The sequence-level solutions directly maximize
the total quality of the generated sequences with a
sequence-level loss function (Ranzato et al., 2016;
Shen et al., 2016; Edunov et al., 2018). There
is still debate whether these solutions are stable
and effective (Choshen et al., 2019; Kiegeland and
Kreutzer, 2021).

This paper focuses on mitigating the exposure
bias with token-level objectives.
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The loss functions used in most token-level so-
lutions have a side effect. They aim to increase
the model’s capability to recover from errors by
maximizing the probability of the next token con-
ditioned on some error tokens. Consequently, a
sequence with errors may have a larger probabil-
ity than the ground truth, and the generated se-
quences may deviate from the ground truth. This
side effect is verified in our experiments. We dis-
cover a missing objective behind this side effect
that can explicitly constrain the recovery in a scope
that does not impact the ground truth. We propose
to use token-level contrastive learning and coordi-
nate three training objectives: the usual Maximum
Likelihood Estimation (MLE) objective, an objec-
tive for recovery from errors, and a new objective
constraining the recovery. Our empirical analy-
sis shows that this method effectively meets three
objectives in training. Particularly our method
reduces the frequency that the third objective is
violated. We conduct experiments on German-
English (De–En), Russian-English (Ru–En), and
English-Russian (En–Ru). Results show that our
method outperforms the vanilla Transformer and
other methods addressing the exposure bias.

2 Related Work

2.1 Exposure Bias and Methods to Migitate It

The existence of exposure bias is well recognized
(Bengio et al., 2015; Ranzato et al., 2016), but
its impact is still under debate. He et al. (2021)
find that the distortion from exposure bias is lim-
ited in open-ended generation tasks. They hypoth-
esize that the self-recovery ability of the language
model is countering that distortion. In NMT, Wu et
al. (2018) and Korakakis and Vlachos (2022) prove
the error accumulation from exposure bias using
prefix switching. They use different types of pre-
fixes on the target side and measure the difference
in the quality of the predictions. Typical prefixes
include ground truth, predictions from the system,
and random tokens. Wang and Sennrich (2020)
provide indirect evidence for exposure bias in
NMT. They train models with Minimum Risk
Training (MRT), which has a sequence-level ob-
jective and inherently avoids exposure bias. The
better performance of MRT than MLE justifies that
exposure bias is harmful. Besides NMT, Chiang
and Chen (2021) and Arora et al. (2022) quantify
exposure bias in open-ended text generation tasks
such as text completion.

Two categories of approaches have been pro-
posed to mitigate exposure bias.

The token-level approach usually uses the to-
kens sampled from the model to replace the ground
truth in training. Bengio et al. (2015) pro-
pose Scheduled Sampling (SS), which dynamically
takes samples from the model’s predictions and
replaces the ground truth used for the decoder.
Zhang et al. (2019) further extend the sample space
with beam search and choose the candidate trans-
lation with a sentence-level metric such as BLEU.
Mihaylova and Martins (2019) implement SS to
Transformer (Vaswani et al., 2017) using two-pass
decoding. The first pass gets the predictions from
the model, which are used as input to the sec-
ond decoder according to the scheduler. Liu et
al. (2021) propose Confidence-Aware Scheduled
Sampling (CASS) which also uses the two-pass de-
coding. They improve the performance by choos-
ing the inputs to the second decoder based on the
log probability of the ground truth token. Model
predictions are only used when the model is confi-
dent and has a high probability (above 0.9 in their
paper). Goodman et al. (2020) propose TeaForN
to mitigate exposure bias. They use a stack of de-
coders to allow the model to update based on N
prediction steps. Each decoder’s output is used to
calculate the loss component at this decoder and
is also used as the input of the next decoder. The
overall loss is the weighted sum of losses from all
decoders.

There are some doubts about SS. Huszár (2015)
proves that SS has an improper training objective.
Experiments in Mihaylova and Martins (2019)
show that SS performs worse than teacher forcing
for De–En. Korakakis and Vlachos (2022) use the
ground truth tokens as prefixes for the decoding on
a model trained with SS and find that its perfor-
mance is bad compared to the MLE model. They
conclude that finetuning with SS results in catas-
trophic forgetting (French, 1999). To avoid forget-
ting, they use Elastic Weight Consolidation (EWC)
to regularize conditioning with model-generated
prefixes. This method is similar to TFN for us-
ing a weight for prediction. But EWC works at the
training parameters level, not at the loss level like
TFN.

The sequence-level approach uses a sequence-
level loss function and directly maximizes the
total quality of the generated sequences. Ran-
zato et al. (2016) propose MIXER, based on
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a reinforcement-learning algorithm REINFORCE.
MRT (Shen et al., 2016; Wang and Sennrich, 2020)
aims to minimize the risk by preference to the can-
didate with the largest similarity to other candi-
dates. Edunov et al. (2018) provide a summary
of classic sequence-level loss functions. There is
some debate on the effectiveness of these methods.
Choshen et al. (2019) identify multiple weaknesses
of MIXER and MRT and suspect that they do
not optimize the expected reward, while Kiegeland
and Kreutzer (2021) provide empirical counter-
evidence to these claims.

The sequence-level approach is usually hard
to converge from randomly initialized parameters
and requires a baseline model trained at the token
level as a starting point. In this sense, a token-level
solution can be complementary to the sequence-
level approach.

2.2 Using Contrastive Learning (CL) in NLP
Sun and Li (2021) apply CL to mitigate exposure
bias for text summarization. They use the gold ref-
erences and low-quality predictions as the positive
and negative samples, respectively. The average
log probability of sequences is used for the loss.
Liu et al. (2022) use CL to calibrate the model. The
objective is that higher-quality candidates tend to
have higher log probability and are more likely to
be chosen from the n-best list at the decision phase.
All these methods use CL in sequence-level objec-
tives, while our method works at the token level.

Yang et al. (2019) and Pan et al. (2021) apply CL
to NMT, but they address specific issues, namely
word omission errors and interim presentation for
many-to-many multilingual NMT, respectively. Su
et al. (2022) use CL to calibrate the model’s repre-
sentation space for tokens, mitigating the issue of
anisotropic distribution of token representations.

3 Approach

3.1 Discover the Missing Objective
We analyze the objectives used by the current
token-level methods and discover a missing objec-
tive.

We use X and yi to denote the source sentence
and the ground truth token for step i. ŷi is a target
token different from yi at step i.

At step i, the MLE training with teacher forc-
ing maximizes p(yi|X, y1, ..., yi−1). If the model
is effectively trained, it implies that, for any ŷi,

p(yi|X, y<i) > p(ŷi|X, y<i). (1)

The popular token-level methods addressing ex-
posure bias, such as Scheduled Sampling, usually
aim to enhance recovery capability from errors by
maximizing p(yi|X, y<i−1, ŷi−1), which implies
that, for the sampled ŷi−1 and any ŷi,

p(yi|X, y<i−1, ŷi−1) > p(ŷi|X, y<i−1, ŷi−1). (2)

Note: when ŷi−1 is the first error, y<i−1 are all
ground truth tokens. Otherwise, y<i−1 may in-
clude sample tokens.

However, maximizing p(yi|X, y<i−1, ŷi−1) has
a side effect. Although it is good for re-
covery, it may impact the ground truth. If
p(yi|X, y<i−1, ŷi−1) exceeds p(yi|X, y<i), the se-
quence (y<i−1, ŷi−1, yi) may have a larger proba-
bility than the ground truth (y<i−1, yi−1, yi). This
side effect is observed in our experiments (Subsec-
tion 5.2).

This side effect implies that the model’s predic-
tion may deviate from the ground truth and gener-
ate a sequence with an error. This is particularly
probable when beam search is used for decoding,
where several ŷi−1 tokens have a chance to remain
in the hypothese set and enter the next step during
decoding.

The objective in Inequality (3) is missing in cur-
rent training objectives:

p(yi|X, y<i) > p(yi|X, y<i−1, ŷi−1). (3)

With this objective, the recovery is explicitly
constrained in a scope not to impact the ground
truth. We propose to include it in training.

These three inequalities represent three objec-
tives that we want to achieve. We denote them as
ObjMLE , ObjRec and ObjCRec for Inequality (1),
(2), and (3), respectively. CRec stands for Con-
straining the Recovery.

3.2 Token-Level Contrastive Learning
The key component in the loss function of con-
trastive learning is a max function:

max{0, ρ+ Snegative − Spositive}, (4)

where Snegative and Spositive are scores for neg-
ative and positive samples, ρ is a hyperparameter
for the margin. This function implies that when the
score of the negative sample plus a margin is larger
than the score of the positive sample, it outputs a
positive loss. Otherwise, the loss is zero. The ob-
jective is that the score of the negative sample is
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constrained to be at least one margin lower than
the score of the positive sample.

We apply contrastive learning at the token level.
The left terms in Inequality (2) and (3) are used
as the scores of positive samples, while their right
terms are the scores of negative samples.

3.3 Coordinate Three Objectives in One Loss
Function

Three objectives in Subsection 3.1 are combined in
our loss function using multi-task learning.

We follow the two-pass decoding in Mihaylova
and Martins (2019) and Liu et al. (2021), as illus-
trated in Figure 1.

Figure 1: Scheduled sampling for the transformer with two-
pass decoding (Mihaylova and Martins, 2019; Liu et al.,
2021)

The first decoder is trained with teacher forcing,
and its output is used for the ObjMLE (Inequal-
ity 1). The Negative Log-Likelihood (NLL) with
Label Smoothing (Edunov et al., 2018) is used:

LMLE = −
n∑

i=1

log p(yi|X, y<i)

−DKL(f ∥ p(yi|X, y<i)),

(5)

where f is uniform prior distribution over all to-
kens in the vocabulary with the size of V , f = 1

V .
We use the same strategy and hyperparameters

in Confidence-Aware Scheduled Sampling (Liu et
al., 2021) to decide the inputs to the second de-
coder. Predicted tokens and random tokens are
used as target inputs for high-confidence posi-
tions, and the ground-truth tokens are used for low-
confident positions. The decision rule can be ex-
pressed in Equation (6) below.

yi−1 =





yi−1 if p(yi|X, y<i) ≤ 0.9

ŷi−1 if 0.9 < p(yi|X, y<i) ≤ 0.95

yrand if p(yi|X, y<i) > 0.95

(6)

When the probability of the ground truth token at
step i in the first decoder is no greater than 0.9,
the ground truth token yi−1 is chosen as input for
the second decoder to reinforce the teacher forcing.
When the probability is between 0.9 and 0.95, the
token with the maximum probability at step i−1 is
used to simulate the model prediction in inference.
When the probability is larger than 0.95, a token
randomly sampled from the target sentence is used.

The output from the second decoder is used with
contrastive learning for the ObjRec and ObjCRec.

To meet the ObjRec from Inequality (2), we use
the function below to formulate the recovery loss:

LRec = max{0, ρ+ log p(ŷi|X, y<i−1, ŷi−1)

−log p(yi|X, y<i−1, ŷi−1)}.
(7)

We use the function below to formulate the loss for
the ObjCRec (Inequality 3) to constrain recovery:

LCRec = max{0, ρ+ log p(yi|X, y<i−1, ŷi−1)

−log p(yi|X, y<i)}.
(8)

The overall loss function is a weighted sum of
three components:

L =
LMLE + αLRec + αLCRec

1 + 2α
, (9)

where α is a hyperparameter as the weight.

4 Experiments

4.1 Datasets

Our experiments use the corpora from WMT1.
Wang and Sennrich (2020) claim that the methods
reducing exposure bias with sequence-level objec-
tives such as MRT can particularly enhance the
model’s resilience to domain shift. To evaluate this
claim, we conduct Out-Of-Domain (OOD) tests on
De–En and Ru–En.

For De–En, we use Europarl v7, News-
commentary-v12, and Common Crawl for train-
ing, Newstest2014 for validation, and New-
stest2021 and EMEA2 for in-domain and OOD
testing respectively.

For Ru–En and En–Ru, we use ParaCrawl v9,
News-commentary-v10, and Common Crawl for
training, Newstest2014 for validation, and New-
stest2021 for in-domain testing. The OOD tests for

1http://www.statmt.org
2https://opus.nlpl.eu/EMEA.php
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Ru–En use the test set for the Biomedical Transla-
tion Task in WMT223.

These original datasets are filtered to remove
low-quality data. 350 million sentences are ran-
domly selected with the conditions below:

• The length of source and target sentences are
within the range of 5 to 300.

• The disparity between the source and target
sentence length does not exceed five times.

The number of sentence pairs in the final training
sets for each language pair is: De–En 2.6 million,
Ru–En 2.9 million, En–Ru 2.9 million.

4.2 Models
We compare our method to the vanilla Transformer
model and reimplement five methods aiming at
mitigating exposure bias for comparison.

• TX is the vanilla Transformer.

• SS (Mihaylova and Martins, 2019) is a typi-
cal Scheduled Sampling method based on 2-
pass decoding with Transformer. We use In-
verse Sigmod Decay for scheduling since it
performs better than other scheduling algo-
rithms according to Liu et al. (2021).

• CASS (Liu et al., 2021) is Confidence-Aware
Scheduled Sampling using the best configu-
ration in their paper, which outperforms TFN,
MIXER, and MRT in their experiments.

• TFN (Goodman et al., 2020) uses 2 stacking
decoders and combine their loss functions.
According to their paper’s recommendation,
we use 0.4 as the second decoder’s weight and
shared parameter for both decoders.

• MIXER (Ranzato et al., 2016): Our
implementation follows Kiegeland and
Kreutzer (2021).

• MRT (Shen et al., 2016): We use 4 candidates
and do not include the gold reference, same as
Wang and Sennrich (2020).

Our method is denoted as TCL (Token-level Con-
trastive Learning). The margin ρ for the con-
trastive learning is set to 0.01. This means that the
probability of a negative sample is allowed to reach
3https://www.statmt.org/wmt22/
biomedical-translation-task.html

99% of the probability of a positive sample maxi-
mally. We conducted preliminary experiments on
the weight α in the loss function. The models with
α = 0.5 got bad performance. Our results in this
paper are from experiments using models trained
with α = 0.1.

Our implementation is based on the Fairseq
toolkit (Ott et al., 2019) with a typical configura-
tion 4 similar to the original Transformer (Vaswani
et al., 2017). We use the BPE (Sennrich et al.,
2016) mode in SentencePiece5 for subwords with
32,000 updates and use a shared vocabulary for
source and target. We use beam search for decod-
ing. The beam size is 4.

Our experiments are based on Transformer Base
(about 60 million parameters). Both the dropout
rate and Lable Smoothing are set to 0.1 for all
models.

The models for vanilla Transformer TX are
trained for a minimum of 20 epochs, stopping if
the validation loss does not decrease for 20 con-
secutive epochs. The other baseline methods and
TCL use these vanilla Transformer models as pre-
trained models for finetuning. During finetuning,
we adopt the same early stop policy as Choshen et
al. (2019), where the process is terminated if the
validation loss does not decrease for ten consecu-
tive epochs.

The token-level methods (CASS, CASS, TFN,
and TCL) have similar speeds in training. It takes
about 30 minutes to finish one epoch with 10
GPUs. The sequence-level methods (Mixer and
MRT) are much slower since they use online sam-
ples during training. It takes MIXER and MRT
about 10 hours and 14 hours to finish one epoch
with 10 GPUs, respectively. This result is consis-
tent with the experiments in Edunov et al. (2018).
They find that online sampling methods can be 26
times slower than the corresponding offline meth-
ods.

We do significance tests for token-level meth-
ods. We train models with five different seeds
(1–5) and report the mean and standard error over
these independent runs. We use the default seed (1)
in Fairseq for other experiments. We do not have
significance tests for the sequence-level methods
(MIXER and MRT) since they are too slow.

All GPUs that we use are Nvidia GF1080Ti.

4https://github.com/facebookresearch/
fairseq/tree/main/examples/scaling_nmt
5https://github.com/google/sentencepiece
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De–En Ru–En En–Ru
Metrics BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet

TX 27.57 49.72 75.01 30.15 49.43 74.93 15.87 29.13 63.97

SS 27.78±.08 49.76±.12 75.16±.01 30.44±.11 49.64±.13 75.16±.07 16.78±.11 30.54±.24 65.95±.34

CASS 27.86±.18 49.74±.07 75.26±.06 30.59±.16 49.85±.10 75.39±.02 17.10±.28 31.08±.05 66.36±.49

TFN 27.62±.23 49.63±.19 75.16±.09 30.44±.10 49.74±.07 75.33±.09 17.04±.18 30.87±.30 66.62±.09

MIXER 27.84 49.74 75.33 30.03 49.67 75.36 17.65 31.64 66.77

MRT 27.41 49.52 75.29 30.39 49.69 75.07 17.15 31.29 66.04

TCL 28.10±.16 49.94±.13 75.33±.07 30.59±.17 49.81±.13 75.50±.18 17.35±.16 31.56±.24 66.83±.13

∆ (-TX) 0.53 0.22 0.32 0.44 0.38 0.57 1.48 2.43 2.86

Table 1: Performance of different methods for the in-domain tests (Newstest2021). We report mean and standard error over
five independent training runs with seeds 1–5 for the token-level methods. The scores of TCL and those better than TCL are
highlighted in Bold. ∆ is the gain of TCL compared to TX.

De–En Ru–En
Metrics BLEU Meteor Comet BLEU Meteor Comet

TX 25.75 41.62 67.93 34.94 52.01 74.91

SS 26.17±.14 42.09±.07 68.13±.08 35.66±.06 52.51±.17 75.20±.10

CASS 26.32±.12 42.03±.07 68.23±.09 35.54±.15 52.39±.25 75.28±.12

TFN 26.41±.08 42.04±.06 68.32±.07 35.85±.08 52.57±.13 75.23±.09

MIXER 26.62 42.20 68.50 35.66 52.22 75.18

MRT 26.36 42.05 68.15 35.39 52.55 75.22

TCL 26.62±.20 42.17±.19 68.34±.07 35.82±.11 52.61±.07 75.24±.07

∆ (-TX) 0.87 0.55 0.41 0.88 0.60 0.33

Table 2: Performance of different methods for out-of-domain (OOD) tests. Denotations are the same as Table 1.

4.3 Evaluation and Results

We use BLEU, Meteor, and Comet for evaluation.
For BLEU, We use SacreBLEU 6 (Post, 2018) 7.
For Meteor8, we use version 1.5. For Comet9, we
use the wmt22-comet-da model, which scales the
scores between 0 and 1. Scores for all metrics are
multiplied by 100.

Table 1 and Table 2 illustrate the performance
of methods for in-domain test sets (Newstest2021)
and out-of-domain test sets, respectively.

TCL outperforms the vanilla Transformer in all
tests. TCL gets the best performance among token-
level methods in tests except for three cases, high-
lighted in the tables in Bold. The differences in
scores between TCL and these three exceptions are
very small (less than 0.1).

TCL is ten times more efficient in training com-
pared to those two sequence-level methods. TCL
still outperforms those methods in the majority of
the tests.

6https://github.com/mjpost/sacreBLEU
7case.mixed+numrefs.1+smooth.exp+tok.13a+version.2.3.1
8http://www.cs.cmu.edu/˜alavie/METEOR/
9https://github.com/Unbabel/COMET

TCL gets larger gains in the OOD tests than in
the in-domain tests. This is consistent with the
conclusion in Wang and Sennrich (2020). They
claim that exposure bias is more influential in
domain shift, although their experiment uses the
method MRT.

Our analysis in Section 5.2 demonstrates that
TCL achieves both recovery and constraining re-
covery and mitigates the exposure bias. The anal-
ysis in Section 5.3 shows the effectiveness of this
method by tracking the values of three components
in the loss function in training.

5 Analysis

Besides the overall performance, we investigate
how these three objectives are met and whether the
loss function effectively coordinates these objec-
tives.

We start by using the prefix switching method.
Then, we directly measure how often the three ob-
jectives in Subsection 3.1 are NOT met during de-
coding for each method. Finally, we verify the ef-
fectiveness of the loss function in Subsection 3.3
by monitoring how the values of these components
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De–En Ru–En En–Ru
Prefix Normal Prefix Normal Prefix Normal

TX 41.37 27.57 42.87 30.15 30.25 15.87

SS 41.20 27.75 43.28 30.20 30.91 16.86

CASS 41.16 27.70 43.42 30.35 31.01 17.19

TFN 41.77 27.25 43.47 30.30 30.83 17.29

MIXER 41.40 27.84 43.43 30.03 30.54 17.65
MRT 40.96 27.41 43.42 30.39 30.83 17.15

TCL 41.65 28.48 43.44 30.39 30.79 17.33

Table 3: The inconsistency between prefix switching test (denoted as Prefix) and normal tests. Best BLEU scores are high-
lighted in Bold.

in our loss function change during training TCL
and its variants.

5.1 Using Prefix Switching to Quantify
Exposure Bias Is Not Reliable

Prefix Switching is often used to quantify expo-
sure bias (Wu et al., 2018; Korakakis and Vlachos,
2022). We use various lengths of ground truth to-
kens as prefixes and measure the average quality
of the part of the sequence from the model’s pre-
diction. The length of the prefix varies from 1 to
N-1, where N is the length of the reference. After
decoding, we measure the average sentence-BLEU
scores of the prediction part of sequences. If the
length of a prediction part is shorter than 4, it is
not considered for the average.

Table 3 shows the results for three language
pairs on the in-domain test sets using the Prefix
Switching and the normal tests. In the normal tests,
there are no ground-truth prefixes during decoding.

The results of these two tests are inconsistent.
For example, TFN gets the best BLEU score in
De–En in Prefix Switching testing. But it gets a
score lower than the vanilla Transformer in the
normal test. It reflects that using prefix switching
to quantify the exposure bias may not be reliable.
This issue requires further investigation.

5.2 Analysis if Three Objectives Are Met or
Not

We directly detect how many times these three ob-
jectives (ObjMLE , ObjRec and ObjCRec) in Sub-
section 3.1 are met or not in decoding.

Similar to prefix switching, we use various
lengths of ground truth as prefixes to the decoder.
In this experiment, we only need to monitor one or
two steps of decoding, not requiring the decoder to
finish a prediction with an End-of-Sentence (EOS).

Assume that N is the length of the gold reference
in subwords and k is the length of the prefix which
enumerates between 0 and N.

We need a set of non ground-truth tokens, ŷk−1,
to test ObjRec and ObjCRec. ŷk−1 is correspond-
ing to ŷi−1 in Inequality (2) and (3). It is in-
tractable to enumerate all tokens in the vocabulary.
We choose the m tokens with the top probabilities
from outputs at the step k-2 and test with each of
them by appending it to the ground truth prefixes
y<k−1 for decoding at step k-1. The ground truth
token is taken out if it is in this top-m token set.
We use m ∈ {1, 5, 10} since the size of the beam
search is usually not greater than 10 in practice.

Once ŷk−1 is selected, the decoder uses
(X, y<k−1, yk−1) and (X, y<k−1, ŷk−1) as in-
puts respectively and get both p(yk|X, y<k) and
p(yk|X, y<k−1, ŷk−1). If p(yk|X, y<k) is the
maximum in its decoding step, we can tell that
ObjMLE is met. If p(yk|X, y<k−1, ŷk−1) is the
maximum in its step, ObjRec is met.

We use the joint probability of bi-gram to test
ObjCRec, the third (missing) objective, since the
total probability of the sequence is used in decod-
ing. Inequality (10) below is the criterion:

p(yk, yk−1|X, y<k−1) =

p(yk|X, y<k) ∗ p(yk−1|X, y<k−1)

>

p(yk, ŷk−1|X, y<k−1) =

p(yk|X, y<k−1, ŷk−1) ∗ p(ŷk−1|X, y<k−1)

(10)

Table 4, 5, and 6 illustrates results for differ-
ent methods for De–En, Ru–En and En–Ru respec-
tively. The event of Not Met is counted for each
step for each objective. When the number of non
ground-truth tokens (m) is larger than 1, such an
event may happen more than once at one step. The
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ObjMLE ObjRec ObjCRec

Top1 Top5 Top10 Top1 Top5 Top10
TX 0.316 0.277 3.087 6.852 0.125 0.362 0.534

SS 0.314 0.275 3.091 6.855 0.127 0.362 0.530

CASS 0.314 0.275 3.078 6.806 0.127 0.366 0.538

TFN 0.313 0.275 3.117 6.933 0.138 0.388 0.566

TCL 0.314 0.275 3.088 6.868 0.123 0.354 0.521
MIXER 0.317 0.279 3.101 6.887 0.125 0.363 0.532

MRT 0.314 0.274 3.080 6.842 0.127 0.353 0.513

Table 4: Failure rates of three objectives for De–En. Smaller is better. The smallest ones are highlighted in Bold. The values
in this table are how often the objective is NOT met, divided by the total number of tests (24760 in this case). Top-m denotes
that the number of non ground-truth tokens (ŷk−1) used in test is m. CASS has a larger failure rate for the third objective
ObjCRec than the vanilla Transformer. This result reflects that CASS has enhanced recovery too much that it deviates from the
ground truth. TCL is the only token-level method with lower failure rates for all objectives than the vanilla Transformer. The
two sequence-level methods are not supposed to have the deviation issue, but they are tested here for reference.

ObjMLE ObjRec ObjCRec

Top1 Top5 Top10 Top1 Top5 Top10
TX 0.288 0.254 3.078 6.891 0.104 0.281 0.394

SS 0.285 0.251 3.083 6.891 0.104 0.276 0.388

CASS 0.286 0.250 3.068 6.838 0.106 0.285 0.400

TFN 0.284 0.249 3.103 6.955 0.115 0.303 0.418

TCL 0.285 0.251 3.067 6.865 0.103 0.275 0.387
MIXER 0.285 0.252 3.078 6.892 0.104 0.275 0.388

MRT 0.285 0.251 3.079 6.874 0.102 0.274 0.380

Table 5: Failure rates of three objectives for Ru–En. Smaller is better. The denotations are the same as Table 4. The total
number of tests is 27828 in this case.

ObjMLE ObjRec ObjCRec

Top1 Top5 Top10 Top1 Top5 Top10
TX 0.379 0.356 3.464 7.559 0.149 0.492 0.776

SS 0.375 0.351 3.462 7.560 0.145 0.487 0.774

CASS 0.373 0.348 3.431 7.492 0.151 0.504 0.794

TFN 0.373 0.353 3.464 7.558 0.159 0.519 0.813

TCL 0.376 0.352 3.451 7.536 0.144 0.486 0.770
MIXER 0.375 0.352 3.467 7.577 0.140 0.467 0.740

MRT 0.373 0.349 3.448 7.540 0.146 0.479 0.757

Table 6: Failure rates of three objectives for En–Ru. Smaller is better. The denotations are the same as Table 4. The total
number of tests is 42442 in this case.

total number of events is then divided by the num-
ber of steps (for example, 24760 in De–En). The
results are the average failure rate per token.

These tables show that CASS has the lowest
failure rates for the second objective ObjRec in
both De–En and En–Ru. CASS also gets rela-
tively low failure rates for this objective in Ru–
En. These results demonstrate that CASS success-
fully enhances the recovery capability. However,
CASS has larger failure rates for the third objective
ObjCRec than the vanilla Transformer in all three

language pairs. This result reveals that CASS has
enhanced recovery too much that it deviates from
the ground truth, which is the side effect described
in Subsection 3.1.

Our method TCL gets the lowest failure rate for
the third objective ObjCRec among the token-level
methods in all tests. Furthermore, TCL is the only
token-level method with lower failure rates for all
objectives than the vanilla Transformer in Ru–En
and En–Ru. It achieves a pareto optimality in the
sense of improvement on both objectives: recovery
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(a) The loss of MLE LMLE (b) The loss of Recovery LRec

(c) The loss of Constraining Recovery LCRec (d) The total loss

Figure 2: Investigate the values of components in TCL’s loss function for De–En in training. Rec Only denotes the model
trained without applying the loss component LCRec. CRec Only denotes the model trained without applying the loss component
LRec. MLE Only denotes the model trained without applying both LRec and LCRec.

and constraining recovery. These results demon-
strate that the exposure bias is mitigated by our
method.

The sequence-level methods do not have the de-
viation issue discussed in this paper since they use
sequence-level objectives in training. Their results
are included in these failure rate tests for reference
only. The results show that they perform well in
this test, reflecting their effectiveness in mitigating
exposure bias, although these methods are much
slower than the token-level methods.

5.3 Effectiveness of Loss Components

There are three components in our loss function in
Equation (9): LMLE , LRec, and LCRec. We evalu-
ate the effectiveness of these components by track-
ing their loss values in training TCL and its three
variants by turning off one or two components. We
use α1 and α2 to denote the weights for LRec and
LCRec, respectively.

• Normal TCL: α1 = α2 = 0.1

• Rec Only (recovery): α1 = 0.1, α2 = 0

• CRec Only (constraining recovery): α1 =
0, α2 = 0.1

• MLE Only: α1 = α2 = 0

Figure 2 illustrates how each loss component’s
values vary in training for De–En. These values
are reported every 100 updates during training and
smoothed by taking the average with their ten right
and left neighbors.

Figure 2a shows that the values of LMLE for
four models are almost the same. This component
is not influenced by other two components.

Figure 2b shows the recovery loss LRec. Even
for the model MLE Only without LRec and LCRec,
this loss decreases in training. This implies that
models increase self-recovery capability during
training even if no extra means are used to enhance
it. This result supports the conclusion from He et
al. (2021), although enhancing the recovery capa-
bility may not be enough to deny exposure bias’s
negative impact. The blue and red lines (Rec Only
and Normal TCL) with the recovery component get
smaller values than the other two models without
this component. This illustrates that this compo-
nent in the loss function effectively increases the
capability of recovery.

Figure 2c shows the values of LCRec (constrain-
ing recovery). Similar to the values of LRec in Fig-
ure 2b, even for the model MLE Only without LRec
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and LCRec, this loss decreases in training. The
green and red lines (CRec Only and Normal TCL)
with the component LCRec get smaller values than
the other two models without this component. This
implies that using this component in the loss func-
tion effectively reduces the LCRec.

This loss surprisingly increases after a pe-
riod of decreasing in training for MLE Only and
CRec Only. This is the consequence of increas-
ing the capability of self-recovery shown in Fig-
ure 2b with or without LRec. The increasing
of p(yi|X, y<i−1, ŷi−1) may result in the increase
of values of LCRec according to its definition in
Equation (8). Current token-level methods that
maximizes p(yi|X, y<i−1, ŷi−1) may make this
contradiction more severe.

Figure 2d shows the total loss.
Table 7 shows the ablation tests using the BLEU

scores for Rec Only (recovery) and CRec Only
(constraining recovery) models compared to the
vanilla Transformer and the normal TCL models.
Rec Only gets worse performance than the vanilla
Transformer. CRec Only have some gains. The
normal TCL that combines these components gets
extra improvement. Table 8 in Appendix A illus-
trates the results for En–Ru, and they lead to the
same conclusion.

De–En
Metrics BLEU Meteor Comet

Vanilla Transformer (TX) 27.57 49.72 75.01

Rec Only 27.23 49.29 75.27

∆ (-TX) -0.34 -0.43 0.26
CRec Only 27.82 49.85 75.40

∆ (-TX) 0.25 0.13 0.39
TCL 28.48 50.20 75.55

∆ (-TX) 0.91 0.48 0.54

Table 7: Ablation tests. Rec Only (recovery) and CRec
Only (constraining recovery) models compared to the vanilla
Transformer and normal TCL models.

6 Conclusion

Current token-level methods addressing exposure
bias may have a side effect: A sequence with er-
rors may have a larger probability than the ground
truth. Consequently, the generated sequence may
deviate from the ground truth. Our experiments
verify this side effect. We discover a missing ob-
jective behind this side effect that can explicitly
constrain the recovery in a scope that does not im-

pact the ground truth. We propose token-level con-
trastive learning to coordinate three objectives in
the loss function: the original MLE, recovery from
errors, and constraining the recovery in a scope not
to exceed the ground truth. Experimental results
on three language pairs show that our method out-
performs the vanilla Transformer and five meth-
ods aiming at mitigating exposure bias. Empirical
analysis demonstrates that this method achieves a
Pareto optimality compared with the vanilla Trans-
former. It is also verified that each component in
our loss function effectively improves the model in
training.
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A Ablation tests for En–Ru

Table 8 shows the ablation tests for En–Ru. Both
Rec Only and CRec Only have some gains. The
normal TCL that combines these components gets
extra improvement.

En–Ru
Metrics BLEU Meteor Comet

Vanilla Transformer (TX) 15.87 29.13 63.97

Rec Only 16.33 29.71 65.05

∆ (-TX) 0.46 0.58 1.08
CRec Only 16.65 30.86 65.92

∆ (-TX) 0.78 1.73 1.95
TCL 17.33 31.77 67.02

∆ (-TX) 1.46 2.64 3.05

Table 8: Ablation tests. Rec Only (recovery) and CRec
Only (constraining recovery) models compared to the vanilla
Transformer and normal TCL models.
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