Reforging : A Method for Constructing
a Linguistically Valid Japanese CCG Treebank

Asa Tomita !

Hitomi Yanaka 2

Daisuke Bekki !

' Ochanomizu University, Japan

2 The University of Tokyo, Japan
{tomita.asa,bekki}@is.ocha.ac. jp

hyanaka@is.s.u-tokyo.ac. jp

Abstract

The linguistic validity of Combinatory Catego-
rial Grammar (CCG) parsing results relies heav-
ily on treebanks for training and evaluation, so
the treebank construction is crucial. Yet the cur-
rent Japanese CCG treebank is known to have
inaccuracies in its analyses of Japanese syntac-
tic structures, including passive and causative
constructions. While ABCTreebank, a tree-
bank for ABC grammar, has been made to im-
prove the analysis, particularly of argument
structures, it lacks the detailed syntactic fea-
tures required for Japanese CCG. In contrast,
the Japanese CCG parser, lightblue, efficiently
provides detailed syntactic features, but it does
not accurately capture argument structures. We
propose a method to generate a linguistically
valid Japanese CCG treebank with detailed in-
formation by combining the strengths of ABC-
Treebank and lightblue. We develop an algo-
rithm that filters lightblue’s lexical items using
ABCTreebank, effectively converting lightblue
output into a linguistically valid CCG treebank.
To evaluate our treebank, we manually evaluate
CCG syntactic structures and semantic repre-
sentations and analyze conversion rates.

1 Introduction

There have been significant advances in natural
language processing research through the construc-
tion of syntactic tree corpora, known as treebanks.
Treebanks are datasets where syntactic structures
are annotated over large bodies of text. Vari-
ous treebanks (Marcus et al., 1993; Forst, 2003;
Briscoe and Carroll, 2006; Hockenmaier, 2006;
Hockenmaier and Steedman, 2007; Vadas and Cur-
ran, 2007; Bos et al., 2010; Boxwell and Brew,
2010) have been served as standard datasets for
training and evaluating statistical syntactic parsers.
The Penn Treebank (Marcus et al., 1993), one of
the first context-free grammar (CFG) treebanks,
contains a one-million-word corpus of Wall Street
Journal text. CCGbank (Hockenmaier and Steed-

man, 2007) was constructed by converting the
Penn Treebank to Combinatory Categorial Gram-
mar (CCG; Steedman, 1996, 2000), which con-
tributing to the advancement of CCG parsers.

There are various methods for constructing tree-
banks. One approach is to combine automatic
part-of-speech (POS) taggers and syntactic parsers
with manual corrections, as in the Penn Treebank.
The approach to providing CCGbank involves au-
tomatic conversion from existing treebanks. How-
ever, treebanks have different formats, provided
information, and informational validity. Japanese
CCGbank (Uematsu et al., 2013), constructed by
automatic conversion of Japansese dependency tree
corpora, but provides limited validity of syntactic
structures for passive or causative nestings (Bekki
and Yanaka, 2023). The Japanese ABC grammar
treebank ABCTreebank (Kubota et al., 2020) has
manually annotated argument structures, but does
not provide POS information (conjugation series,
conjugation forms, among others) and other de-
tailed information.

We thus aim to construct a Japanese CCG tree-
bank with both linguistically valid syntactic struc-
tures and detailed syntactic features. To this end,
we propose a method to construct a new Japanese
CCQG treebank using the Japanese CCG parser light-
blue (Bekki and Kawazoe, 2016)!, which can out-
put detailed syntactic features. However, lightblue
contains errors related to argument structures, caus-
ing inaccurate outputs. To address this drawback,
we extracted predicate-argument structures from
ABCTreebank and incorporated this information
into lightblue. This approach involves decompos-
ing and reconstructing the treebank, which we call
“reforging”. We discuss the reforging process in
more detail in Section 3. Section 4 assess the valid-
ity of our proposed method. Section 5 introduces
the error analysis of the output trees. Section 6

"https://github.com/DaisukeBekki/lightblue

196

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics:
Student Research Workshop, pages 196-207
March 21-22, 2024 (©2024 Association for Computational Linguistics

describes manual evaluations considering the syn-
tactic structures and semantic representations of
the output trees.

2 Background

2.1 Combinatory Categorial Grammar

CCQG is a lexicalized grammar consisting of combi-
natory rules and a lexicon. Syntactic categories are
either base categories or functional categories. The
set of base categories includes elements such as
N P for noun phrases and S for sentences. Func-
tional categories use slash notation to represent
complex phrases. For instance, the functional cate-
gories can express an intransitive verb as S\N P,
finding the syntactic structure of category N P on
the right and returning .S. Slash and backslash no-
tations as (S\INP)/N P express transitive verbs.

In CCG, lexicons associate words with their
phonological and syntactic information. For in-
stance, to analyze the sentence

(1) Taro runs.
in CCQG, the the lexical items

NP
S\NP

Taro :

runs :

are supposed to be contained in the lexicon. Com-
binatory rules allow syntactic categories to be
merged. Function application rules and function
composition rules are the basic CCG rules, defined
as follows:

1. Function application rule

(a) Forward application (>)
X/Y Y = X

(b) Backward application (<)
Y X\Y = X

2. Function composition rule

(a) Forward composition (>B)
XY Y/Z = X/Z

(b) Backward composition (<B)
Y\Z X\Y = X\Z

The CCG syntactic structure of the sentence (1) is
given using the following function application rule:

runs
S\NP
<
S

Taro
NP

In CCG, a combinatory rule applied to syntac-
tic structures is indicated by a symbol placed on
the right of the horizontal line. For example, in
the above syntactic structure, the symbol “<” on
the right of the horizontal line indicates the use
of the backward application rule. CCG also in-
cludes other rules such as coordination, crossed-
composition, and crossed-substitution rules.

2.2 Japanese CCGbank

Uematsu et al. (2013) constructed Japanese CCG-
bank through automatic conversion of the Kyoto
corpus®, NAIST text corpus’, and Japanese particle
corpus (Hanaoka et al., 2010). However, Japanese
CCGbank has some empirical problems. One of the
problems, discussed by Bekki and Yanaka (Bekki
and Yanaka, 2023), is that the syntactic analysis of
the Japanese CCGbank contains empirical fallacies
on predictions for passive and causative nestings.
For instance, consider the passive sentence:

(2) KEBAY IREBIZ DS 1 72
Taro-ga Jiro-ni homerare ta

Taro-NOM Jiro-DAT praise passive PST
‘Taro was praised by Jiro.’

Figure 1 shows a syntactic structure based on
Japanese CCGBank, which assigns the category
S\S to the passive suffix re. However, re needs
to play a role in changing the argument structure
of the transitive verb homera, so this analysis is
invalid.

Figure 2 shows a syntactic structure that can be
analyzed based on Japanese CCG (Bekki, 2010).
In this syntactic structure, the syntactic category
S\N Py \N Py \(S\N Pyo\N P,,;|,) is assigned
to the passive suffix re and S\ N P, \ N P, to the
predicate homera. By combining homera with re
using the function composition rule, the argument
structure of the predicate homera is changed to
S\N P;,\N P,;, so it takes nominative and dative
noun phrases as arguments. Thus, this syntactic
structure indicates a valid passive nesting.

2.3 ABCTreebank

ABCTreebank was constructed in an attempt to cre-
ate a general-purpose treebank. It was constructed
by converting the Keyaki Treebank®, a phrase-
structured treebank, to ABC grammar trees. The

Zhttps://github.com/ku-nlp/KyotoCorpus

3https: //sites.google.com/site/
naisttextcorpus/

*https://github.com/ajb129/KeyakiTreebank

197

homera re

praise passive @
S\N P,,\N Py; S\S
Jiro-ni \NPoa\N P \ pST
Taro-ga Jiro-DAT S\N Py \N Py; S\S .
Taro-NOM NPy S\N Pya\N Pri_
N Pya S\N Pyq
S
Figure 1: A syntactic structure based on Japanese CCGbank
homera re
praise passive @
Jiro-ni S\NFya\NF, S\N Pya\N Pui\(S\N Pya\N Prij) . _PST
Taro-ga _ Jiro-DAT _ S\N Pys\N Py s\
Taro-NOM T/(T\N Py;) S\NPyu\NPi_
T/(T\N Pya) S\N Py,
S >

Figure 2: A syntactic structure based on Bekki (2010)

ABC grammar consists of two CCG rules: function
application and function composition rules. Since
these basic rules are common in both CCG and
type-logical grammar (TLG; Morrill, 1994; Moort-
gat, 1997), syntactic structures in ABCTreebank
can be easily converted to CCG syntactic struc-
tures.

ABCTreebank argument structures are assumed
to be reliable because they were manually anno-
tated. However, ABCTreebank does not cover the
syntactic information, such as POS information. In-
corporating POS information into ABCTreebank’s
syntactic structure is challenging because CCG
syntactic structures cannot be retrospectively re-
covered and have more elaborate information than
ABC syntactic structures, such as syntactic features.
Syntactic features can contain diverse information,
such as person agreement, number, gender, tense,
and case frame. For instance, the lexical item of the
verb runs in sentence (1) is written using syntactic
features as follows.

runs :

S\N Psg

The syntactic category N P3¢ denotes a third-
person singular noun phrase. The syntactic struc-
ture of the sentence (1) then appears as follows:

runs
S\NPsg

Taro
N P35

S

The syntactic category N P5g; is a third-person
singular noun phrase indicating that Taro is male.

Although morphological analyzers, such as Ju-
man (Kawahara and Kurohashi, 2006), can gen-
erate elaborate syntactic structures, mapping this
information to ABCTreebank’s syntactic structure
is challenging, as the elaborate syntactic informa-
tion needs to be supplemented with less informative
syntactic structure. Machine learning approaches
for such mappings require annotated training data.
However, no annotated data currently exists, so
there is no method for recovering CCG syntactic
structures. Consequently, the treebank itself must
possess elaborate information.

2.4 lightblue

lightblue is a Japanese CCG parser based on Bekki
(2010) that outputs CCG syntactic structures with
detailed syntactic features. Note that lightblue com-
putes syntactic structures from lexicon and com-
binatory rules, so unlike other parsers, it does not
require training and evaluation data. Its lexicon
contains about 80,000 words with case frames ex-
tracted from the Juman dictionary. lightblue also
provides semantic representations in terms of De-
pendent Type Semantics (DTS; Bekki and Mi-
neshima, 2017) as shown in Figure 4. The phonetic
form appears above the tree’s horizontal line, and
the CCG syntactic category and the DTS semantic
representation are displayed below the horizontal
line. The symbol to the right is the applicable CCG
combinatory rule or the identifier of the lexicon in
which the word is registered. The current version
of lightblue’s argument structures include some er-
rors, leading to unnatural disambiguation in some

198

ABC parsing

ABC
Treebank

chart

case

lightblue
frame lexicon
g

parsing
lexical items

2
3
§
S
 —

predicate
extraction

—»[@]

‘filtering

oS

output

Japanese
CCG treebank

Figure 3: The reforging algorithm

3
Susr\NPg\NP,
siem

(JCon) 3
— 2 (125
Soegerfna |+ \Sigirfona |+
termlattr stem.
€p :evt
s Ao A1 AT [ug : EBNEL BIH T (eq, 71, 20)] : Azo.zo

x2(e0)

Spgril \NPga\NP,
termlattr

€p :evt
: Azp. Az AT { up : EBNEL BIH T (eg, 21, 20)]
w2(eo)

Figure 4: A lightblue output tree

contexts.

3 The Reforging Process

The aim of this research is to construct a linguis-
tically valid Japanese CCG treebank with detailed
syntactic features. Therefore, we propose a method
for constructing a Japanese CCG treebank by com-
bining the positive aspects of ABCTreebank, in
which argument structures are manually annotated,
with lightblue’s ability to provide CCG trees with
detailed syntactic features. The proposed method
decomposes ABCTreebank and reconstructs it us-
ing lightblue, a method we call “reforging”. Note
that “reforging” is not a commonly used linguis-
tics term, but decomposing and reconstructing a
treebank using a parser is a novel approach, so we
assigned this name for convenience.

One approach to constructing a new CCG tree-
bank would be to automatically correct Japanese
CCGbank output. However, one difference be-
tween CCG and CFG is that modifying part of
a CCG tree would require recalculating all sub-
sequent calculations. Since those recalculations
would be almost as costly as reparsing the entire
sentence, this study aims to construct a treebank
using reforging.

The reforging process has three steps:

1. Extract of predicates from ABCTreebank
2. Filter the lightblue lexicon chart

3. Reconstruct the treebank

Figure 3 shows each process in detail. A parser
decomposes a given ABCTreebank input and its
lightblue reconstruction is output as a treebank.

3.1 Predicate Extraction from ABCTreebank

Predicate extraction starts with ABC parsing,
which gives tree-structured data. We then extract
the predicate information from ABCTreebank as a
list of tuples with the following four elements:

1. The phonetic form of the predicate
2. The syntactic category

3. The starting position in the sentence
4. The ending position in the sentence

3) A» HZF3
Hito-ga atumaru
People-NOM gather.

‘People gather.” >

For example, in the case of sentence (3), the
ABCTreebank syntactic structure is represented
as shown in Figure 5. The predicate contained
in this sentence is only “%£ ¥ %(gather)”, so
a list of length 1 is extracted as [(“8 £ % ~
PP\S,,,2,4)].

3.2 Lexicon Chart Filtration

Filtration starts by extracting from the lightblue lex-
icon the lexical items of all substring combinations
that exist in the ABCTreebank sentence. After
obtaining those lexical items is chart parsing us-
ing the lexical items extracted in the previous step.
Left-corner chart parsing is performed in lightblue,
calculating node data while building a syntactic
structure of the word by combining daughter nodes.
Table 1 shows the node data structure. The next
step is chart filtration, where, we filter the chart
with the argument-structure information of the verb
extracted from ABCTreebank.

>ABCTreebank ID: 3_textbook_kisonihongo

199

Data | Example

Rule symbol

<B2 (backward function composition rule)

Phonetic form

E D

Syntactic category

S[U:S:r][stem]\NPga\NPo

Semantic representation

Az0. 21 A22.(€0 : evt) x (u0.E S (€0, x1,20)) x 2(e0)

Signature [%:(x0 : entity) — (x1 : entity) — (0 : evt) — type]
Daughter nodes node of & (run) and node of % (PRS)

Score [1.00]

Lexical entry source JCon

Table 1: Data structure for & % (run) node data

STIL
//A\\

PP (PP\Sy,)

NP (NP\PP,)

N

A »n Hxd

Hito ga atumaru
people NOM gather

Figure 5: ABCTreebank syntactic structure of sen-
tence (3) in ABCTreebank

The filtering algorithm first extracts the phonetic
form and predicate’s syntactic category from ABC-
Treebank. The syntactic category is based on the
ABCTreebank definition and needs to be converted
to the lightblue definition for comparison with the
lightblue category in the next step, which is to ob-
tain lexical items of lightblue predicates. To obtain
lexical items in lightblue, we use the predicate tuple
data extracted from ABCTreebank. We extract the
syntactic features of those lexical items that having
the same phonetic form as the predicate extracted
from ABCTreebank. In this study, the argument
structures of adjectives and nominal predicates did
not need to be filtered, so we excluded adjectives
and nominal predicates. Valid and detailed syntac-
tic information can be constructed by combining
the the argument structure converted from ABC-
Treebank and the syntactic features extracted from
lightblue.

Genre Sentences | Len-50+ sentences | Reforged trees
aozora 1773 590 1183
bible 1652 220 1430
book_expert 50 4 41
dict_lexicon 2640 4 2636
diet_kaigiroku 486 112 374
fiction 921 44 877
law 337 128 209
misc 335 59 276
news 443 103 340
non-fiction 223 87 126
spoken 570 11 559
ted_talk 605 54 551
text-book 4880 10 4870
wikipedia 222 51 171
Total \ 15137 | 1482 | 13653

Table 2: Reforged treebank data

3.3 Treebank Reconstruction

We randomly sampled five files from each of the
14 ABCTreebank genres and parsed them using
lightblue and filtered charts. However, there are
fewer than five ABCTreebank files for each of the
bible, dict, fiction, and law genres, so we used all
data in those genres.

The computational complexity of lightblue chart-
parsing is O(n?), so CCG parsing of long sentences
takes a long time. We thus limited sentences to
fifty or fewer characters. Even with this restriction,
90.19% of sentences could be converted to CCG
trees, which is sufficient coverage. Table 2 shows
the statistics for the reforged treebank data. From
left to right, the table shows the number of ABC-
Treebank sentences for each genre, the number of
sentences with more than 50 characters, the num-
ber of CCG trees obtained by reforging, and the
percentage of trees that could be converted to CCG
trees by reforging from ABCTreebank data. We
obtained 13,653 trees in total.

200

4 Discussion

Figure 6 shows the syntactic structure tree of the
sentence (3) before filtering the lightblue chart, and
Figure 7 shows the tree after filtering.

The lightblue lexical items for the predicate
gather are the entries having ga-case and ni-case
NPs as arguments. Therefore, gather was an-
alyzed as having not only ga-case NP but also
ni-case /NP as arguments using the chart before
filtering. However, the verb gather does not nec-
essarily have the ni-case [V P as an argument. Es-
pecially in sentence (3), it is reasonable to assume
that gather has only ga-case N P as the argument.
By overwriting the partial syntactic structure of the
predicate gather having ga-case and ni-case N Ps
as arguments with a lexical entry having only ga-
case NP as the argument, it became possible to
convert ABCTreebank sentences to linguistically
valid CCG syntactic structures. lightblue output
also contains detailed syntactic features and Depen-
dent Type Semantics (DTS; Bekki and Mineshima,
2017) representations.

4.1 Passive and Causative Sentences

As introduced in Section 2.2, Japanese CCGbank
is based on the incorrect analysis for passive and
causative sentences. To show how this study im-
proved this issue, we discuss the passive sentences
in the constructed treebank. The treebank con-
structed in this study includes the following passive
and causative sentences:

4) KEBIX i 2 iEos h

Taro-wa sensei-ni e-o homera re ta
Taro-NOM teacher-DAT picture-OBJ
praise passive PST

‘Taro was praised for his picture by his
teacher.” ©

5) Fix Mz % BRI H 7=
‘Watasi-wa neko-ni sakana-o tabesa se ta
I-NOM cat-DAT fish-OBIJ eat causative
PST

‘I fed the cat fish.” 7

The CCG tree output by lightblue is in the Ap-
pendix. Figure 10 shows the syntactic structure and
semantic representation of sentence (4). The cate-
gory S\N Py, \N Py, \(S\N P,,) is assigned to the
passive suffix re, and the argument structure of the
predicate homera is changed from S\ N P,,\N P,

8 ABCTreebankID:413_textbook_kisonihongo
" ABCTreebankID: 693_textbook_purple_intermediate

to S\IN Py, \N P,;, which is linguistically valid.
Figure 11 shows the syntactic structure and seman-
tic representation of the sentence (5). The causative
suffix se is also linguistically valid, in the same
manner as the passive suffix re. These outputs
for passive and causative sentences show the im-
provement of the incorrect analysis in Japanese
CCGBank.

5 Error Analysis

The reforging process is successful in some sen-
tences, but errors can still occur due to factors such
as incorrect argument structures in ABCTReebank
or incorrect analysis of the adnominal clause in
lightblue.

5.1 Incorrect ABCTreebank Argument
Structures

ABCTreebank occasionally contains incorrect ar-
gument structure annotations, and using such incor-
rect argument structures for reforging can remove
correct lexical items in lightblue. For example,
ABCTreebank contains erroneous argument struc-
tures for sentence (6).

6) #WwARTAN T HKIZ 257
Suzukisan-ga machi-de kyuyu-ni at ta

Mr.Suzuki-NOM town-LOC old friend-
DAT meet PST

‘Mr.Suzuki met an old friend in town’ 8

Figure 8 shows the syntactic structure of sen-
tence (6) in ABCTreebank. ABCTreebank ana-
lyzed old friend as an adverb phrase and assigned
the category ((PPs\Sm)/(PPs\Sm)), despite the
category P P, being correct for an ni-case noun
phrase.

5.2 Incorrect Analysis of the Adnominal
Clause

Sentence (7) below is an example of a sentence
containing a relative clause:

7 BRZEHEDL I,
Taberu mono-mo nakere ba, sumu
b AG A

tokoro-mo nai
Eat thing-NOM no CONJ, live place-NOM
no.

‘No food to eat, no place to live’ °

8 ABCTreebankID: 1 32_textbook_kisonihongo
9 ABCTreebankID:12_textbook_particles

201

A

hito 7j§ % i é
E| people ga atuma ru
T/(T\N Ppc) /N N NOM gather PRS
T/(T\NP,.) T/(T\N Pyo\N Pyc) S\NPy\NPy S\S
> 2
pro T/(T\NFy0) S\NPp\NPu ="
T/(T\Npga|o\m|+) S\NPnZ
>
S
Figure 6: lightblue tree before reforging
A
hito 2 ¥ 2
3 people ga atuma u
T/(T\N Pyc) /N N NOM gather PRS
T/(T\N Py.) T/(T\N Py \NPy.) S\N Py, S\S
> < B?
T/(T\N Pya) S\N Py, .
3 .
Figure 7: lightblue tree after reforging
Sm
pp (PPs\Sm)
(PP\S) [(PP\Sy) /<PP\sm>\
NP (NP\PP;) NP (NP\(PP\Sn)/(PP\Sm)) (PPs\Sm)/{PPs\Sm) (PPs\Sm)
N N NP (NP\(PP\Su) !/ (PP\Sn)) (PP\Sm) (Sm\Sm)
N
wARTA M o) T H& Iz =5 7=
Suzuki-san ga mati de kyay ni at ta
Mr.Suzuki NOM town Loc old friend DAT meet PST

Figure 8: ABCTreebank syntactic structure of sentence (6)

202

T/(T\N Py)
T/(T\N Prnc)/N N
N /NAN
S\NPy N/N(S\N Pyafofnil+)

S\NP,, \NP,; S\S

3 £ & rel Fit
su mu tokoro
live PRS place

Figure 9: Invalid output for an adnominal clause sen-
tence

Figure 9 shows part of the tree output after reforg-
ing. In this tree, the predicate live takes the ga-case
NP and becomes a relative clause, but cannot be
interpreted as the place is lived. Thus, an external
relation was analyzed as an internal relation.

6 Evaluation

Since the linguistic validity of constructed tree-
banks cannot be automatically evaluated, it is nec-
essary to manually check one-by-one whether each
syntactic structure and semantic representation is
correctly obtained. However, the cost of manu-
ally evaluating the syntactic structures of CCG and
DTS representations would be very high, and it was
unfeasible to manually evaluate all of the 13,653
sentences constructed in this study. We thus man-
ually evaluated 56 sentences, randomly sampling
four sentences from each genre. We also evaluated
the constructed treebanks by their conversion rates.
As evaluation metrics for machine-learning-based
CCG parsers such as depccg (Yoshikawa et al.,
2017), lexical coverage, sentential coverage, and
syntactic rule coverage are used. However, we did
not use supervised learning methods for CCG pars-
ing; instead, we performed rule-based conversions.
Consequently, evaluations using unseen data were
infeasible, so we used only conversion rates as an
evaluation metric.

6.1 Conversion Rate

The conversion rate is the percentage of sentences
fully converted to CCG trees. As a result of re-
forging, out of 13,655 sentences, 13,653 sentences
were successfully converted, for a conversion rate
of 99.9%.

Metrics Sentences

Syntactic category 18

Syntactic Error | Compound verb 4
Other syntactic error 30

Semantic Error 7

No Error ‘ 19

Table 3: Results from manual evaluations

6.2 Manual Evaluation

We manually evaluated 56 randomly sampled sen-
tences, four from each genre. Manual evaluations
considered whether the sentences had correct syn-
tactic structures from three perspectives:

1. Whether the sentence was assigned a invalid
syntactic category

2. Whether compound verbs are analyzed sepa-
rately

3. Whether other syntactic errors are included

We also evaluated the validity of output DTS rep-
resentations to see whether correct semantic repre-
sentations are obtained from syntactic structures.
Table 3 shows the evaluation results. Syntacti-
cally and semantically valid trees were produced
for 19 of 56 sentences (33%). One of the most
common observed errors was the invalid syntactic
categories. In particular, we observed several cases
where the word ni, which should be analyzed as
a case-marking particle, was incorrectly analyzed
as the stem of the verb niru which means “to boil.”
This occurred when reforging overwrote the syn-
tactic category a predicate having ni case NP as
an argument. In the future, it will be necessary to
eliminate this error by making an exception for the
word ni.

The incorrect reforging output can be categorized
into the following four error cases:

1. The pre-reforging argument structure is incor-
rect, but the post-reforging argument structure
is correct.

2. The pre-reforging argument structure is cor-
rect, but reforging results in an error

3. Both the pre-reforging and post-reforging ar-
gument structures are correct.

4. Both the pre-reforging and post-reforging ar-
gument structures are incorrect.

203

Reforging was successful in Case 1. Case 2 occurs
when there are inaccuracies in ABCTreebank’s ar-
gument structure. Case 3 signifies instances where
reforging had no impact, while Case 4 involves
errors originating from lightblue that cannot be
resolved through reforging. A future goal is to ad-
dress and improve errors related to the argument
structures that occur in Case 2.

7 Conclusion

We proposed a reforging method for constructing
linguistically valid Japanese CCG treebanks with
detailed syntactic features. Our method obtained
correct Japanese CCG syntactic structures to some
extent. Our method assumes that ABCTreebank
argument structures are valid because their syn-
tactic structures are manually annotated. However,
there is an upper bound on the validity of ABCTree-
bank argument structures. To obtain linguistically
valid argument structures, our future work will con-
sider combining ABCTreebank with other reliable
resources. We also plan to improve our filtering al-
gorithm, and improve lightblue’s parsing algorithm
to better handle long sentences.

Acknowledgements

We thank the two anonymous reviewers for their
helpful comments and feedback. This work was
partially supported by JSPS KAKENHI grant num-
ber JP20K 19868, Japan.

References

Daisuke Bekki. 2010. Nihongo-Bunpoo-no KeisikiRiron
- Katuyootaikei, Toogohantyuu, Imigoosei - (trans.’
Formal Japanese Grammar: the conjugation system,

categorial syntax, and compositional semantics’).
Kuroshio Publisher, Tokyo.

Daisuke Bekki and Ai Kawazoe. 2016. Implementing
variable vectors in a CCG parser. In Logical Aspects
of Computational Linguistics. Celebrating 20 Years
of LACL (1996-2016), pages 5267, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Daisuke Bekki and Koji Mineshima. 2017. Context-
passing and underspecification in dependent type se-
mantics.

Daisuke Bekki and Hitomi Yanaka. 2023. Is Japanese
CCGBank empirically correct? a case study of pas-
sive and causative constructions. In Proceedings of
the 21st International Workshop on Treebanks and
Linguistic Theories (TLT, GURT/SyntaxFest 2023),
pages 32-36, Washington, D.C. Association for Com-
putational Linguistics.

Johan Bos, Cristina Bosco, and Alessandro Mazzei.
2010. Converting a dependency treebank to a cat-
egorial grammar treebank for italian.

Stephen A. Boxwell and Chris Brew. 2010. A pilot
Arabic CCGbank. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Ted Briscoe and John Carroll. 2006. Evaluating the
accuracy of an unlexicalized statistical parser on
the PARC DepBank. In Proceedings of the COL-
ING/ACL 2006 Main Conference Poster Sessions,
pages 41-48, Sydney, Australia. Association for
Computational Linguistics.

Martin Forst. 2003. Treebank conversion - establishing
a testsuite for a broad-coverage LFG from the TIGER
treebank. In Proceedings of 4th International Work-
shop on Linguistically Interpreted Corpora (LINC-
03) at EACL 2003.

Hiroki Hanaoka, Hideki Mima, and Jun’ichi Tsujii.
2010. A Japanese particle corpus built by example-
based annotation. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Julia Hockenmaier. 2006. Creating a CCGbank and a
wide-coverage CCG lexicon for German. In Proceed-
ings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages
505-512, Sydney, Australia. Association for Compu-
tational Linguistics.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355-396.

Daisuke Kawahara and Sadao Kurohashi. 2006. Case
frame compilation from the web using high-
performance computing. In Proceedings of the Fifth
International Conference on Language Resources
and Evaluation (LREC’06), Genoa, Italy. European
Language Resources Association (ELRA).

Yusuke Kubota, Koji Mineshima, Noritsugu Hayashi,
and Shinya Okano. 2020. Development of a general-
purpose categorial grammar treebank. In Proceed-
ings of the Twelfth Language Resources and Evalua-
tion Conference, pages 5195-5201, Marseille, France.
European Language Resources Association.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Michael Moortgat. 1997. Categorial type logics. In
J. van Benthem and A. ter Meulen, editors, Handbook
of Logic and Language. Elsevier.

204

Glyn Morrill. 1994. Type Logical Grammar: Categorial
Logic of Signs.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

Mark J. Steedman. 1996. Surface Structure and Inter-
pretation. The MIT Press, Cambridge.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,
Yusuke Miyao, and Hideki Mima. 2013. Integrat-
ing multiple dependency corpora for inducing wide-
coverage Japanese CCG resources. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1042—-1051, Sofia, Bulgaria. Association for
Computational Linguistics.

David Vadas and James Curran. 2007. Adding noun
phrase structure to the Penn Treebank. In Proceed-
ings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 240-247, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto.
2017. A* CCG parsing with a supertag and depen-
dency factored model. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 277-287,
Vancouver, Canada. Association for Computational
Linguistics.

A Appendix

205

an[qy31] AQ pa1oNIISU0d 90UUAS dAIssed oy Jo 9211 DD 0] 2In31g

_: |

) e IR R R,

TCevmricey
oopen:

sz an

(2]~

S—

]

T Y |

I

an[qIy31] £Q PAIONIISUOD ADUUIS JATBSNED) JO 901 DD [IS

ey

207

