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Abstract
While information from the field of linguis-
tic typology has the potential to improve per-
formance on NLP tasks, reliable typological
data is a prerequisite. Existing typological
databases, including WALS and Grambank,
suffer from inconsistencies primarily caused
by their categorical format. Furthermore, ty-
pological categorisations by definition differ
significantly from the continuous nature of phe-
nomena, as found in natural language corpora.
In this paper, we introduce a new seed dataset
made up of continuous-valued data, rather than
categorical data, that can better reflect the vari-
ability of language. While this initial dataset fo-
cuses on word-order typology, we also present
the methodology used to create the dataset,
which can be easily adapted to generate data
for a broader set of features and languages.

1 Introduction

Data from the field of linguistic typology has the
potential to be useful in training NLP models (Ben-
der, 2016; Ponti et al., 2019). However, the main
existing typological databases, WALS (World At-
las of Language Structures) (Dryer and Haspel-
math, 2013) and Grambank (Skirgård et al., 2023),
contain inconsistent and contradictory information
(Baylor et al., 2023). These issues stem, in large
part, from the categorical format of the data, which
is over-simplistic and therefore cannot capture the
nuance and variability that exist in natural lan-
guage.

For example, one of the features describes the
ordering of adjectives and the noun they mod-
ify. The categories in these datasets are Noun-
Adjective, Adjective-Noun, or Variable. Limit-
ing the options to these three categories removes
any information differentiating a language that em-
ploys Noun-Adjective ordering 10% of the time
from one that does so 90% of the time. In addi-
tion, the threshold between the Noun-Adjective and
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Figure 1: Proportion of languages with proportion of
relevant words ordered as labeled, by feature. The black
represents WALS Noun Adjective categories, with the
far left being the Adjective Noun languages, the far right
being the Noun Adjective languages, and the center
being the variable languages. All other distributions
come from our dataset.

Adjective-Noun categories and the Variable cate-
gory is often not clear, which can lead to inconsis-
tencies in the data. As an example, the same 90%
Noun-Adjective language might be classified as
Variable in one database, but might be seen as con-
sistently Noun-Adjective enough to be classified in
the Noun-Adjective category in another database.

In this paper, we apply recommendations pre-
sented in Levshina et al. (2023) and extend their
analysis by introducing a new continuous-valued ty-
pological dataset that removes the need to oversim-
plify data into categories. In particular, we focus
on word-level typology, and present a method for
extracting gradient typology that utilizes the part
of speech annotations available in the Universal
Dependencies (UD) treebank corpus (Nivre et al.,
2020). We then propose a novel regression-based
typology task.

This new dataset and the methods used to create
it are beneficial not only to NLP, but also potentially
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French phrase Noun-Adjective Count Adjective-Noun Count English Translation

Mon cher ami 0 1 "My dear friend"
Mon appartement ancien 1 0 "My ancient apartment"

Table 1: An example of counting Noun-Adjective and Adjective-Noun instances in the dataset creation process,
with English translations for ease. French nouns are underlined and in purple, and French adjectives are italicized
and in red.

to the field of linguistic typology itself. Similar to
previous works that include automatically recogniz-
ing or utilizing typological information (Asgari and
Schütze, 2017; Saha Roy et al., 2014; Nikolaev and
Pado, 2022), we introduce a new data collection
technique that can methodically extract typologi-
cal information from existing annotated text-based
datasets.

2 Background

2.1 Linguistic Typology
Linguistic typology is the study of the world’s lan-
guages through the comparison of specific features
of language, across a variety of languages (Ponti
et al., 2019; Comrie, 1988). These features can fo-
cus on any aspect of language, including phonology
(Hyman, 2008; Lindblom and Maddieson, 1988),
syntax (Greenberg, 1966; Comrie, 1989), morphol-
ogy (Comrie, 1989), and phonetics (Lindblom and
Maddieson, 1988).

For example, a typologist might look to contrast
the number of distinct vowels that a diverse group
of languages employ (Maddieson, 2013). Or they
would compare how different languages tend to
order verbs and their subjects: do verbs generally
occur before or after their subjects in a sentence?
(Dryer, 2013). Compared to other areas of lin-
guistics, word order data can be relatively easy
to collect, meaning that word order features tend
to have data across a large number of the world’s
languages. Additionally, within NLP, word-order
is the most commonly studied typological feature
when it comes to cross-lingual transfer (Philippy
et al., 2023). Typological diversity is furthermore
used in NLP as an argument for language sampling,
albeit without any consensus for the underlying
meaning of the term (Ploeger et al., 2024).

2.2 Existing Typological Resources
The current two most popular typological
databases, WALS (Dryer and Haspelmath, 2013)
and Grambank (Skirgård et al., 2023), offer cov-
erage of over 2,000 languages each. While the

overall scope of the databases is great, their re-
liance on categorical representations of linguistic
features means they frequently oversimplify data
to the point of creating inconsistencies and errors,
both within the databases, and with each other. Al-
though this categorical distinction is a conscious
design choice, we argue that a data driven and gradi-
ent solution can provide benefits both for typology
and for NLP.

One solution to this problem of discrete categor-
ical representations, proposed by Levshina et al.
(2023), is to instead replace them with gradient rep-
resentations. These continuous gradient representa-
tions are better able to capture nuanced linguistic
information.

3 Continuous-Valued Seed Dataset

We introduce a seed dataset based on the idea of
continuous representations of linguistic features
(Levshina et al., 2023). This dataset is currently
small, with coverage of fewer than 100 languages
across a limited number of features. However, the
process used to create it, described in section 3.1,
can be easily adapted for broader feature coverage,
as well as broader language coverage.

3.1 Dataset Creation
To best describe the creation of this dataset, we
will walk through the data collection process for a
single linguistic feature: the relative orderings of
adjectives and the nouns they modify. In WALS
(feature 87A) and Grambank (feature GB025), the
ordering of nouns and adjectives are represented
categorically, with languages generally split into
three categories: Adjective-Noun, Noun-Adjective,
or No dominant order. Instead of trying to fit a
given language into one of these discrete categories,
we extract the proportions of Adjective-Noun and
Noun-Adjective instances in that language’s Uni-
versal Dependencies (UD) treebank (Nivre et al.,
2020).

To do this, we iterate through all of the sentences
in the given dataset, counting the number of times
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for all d ∈ UD Datasets do
na← 0 ▷ na is the Noun-Adj count
an← 0 ▷ an is the Adj-Noun count
for all sentence s ∈ d do

na← na+ count Noun-Adj in s
an← an+ count Adj-Noun in s

end for
na_proportion← na

na+an
end for

Figure 2: Pseudocode depicting our process of collect-
ing data for one linguistic feature.

adjectives occur before the noun they modify, as
well as the number of times they occur after the
noun they modify. Two examples can be seen in Ta-
ble 1, where the phrase Mon cher ami adds one to
the Adjective-Noun count, and the phrase Mon ap-
partement ancien adds one to the Noun-Adjective
count. We then use those counts to calculate the
proportion of Adjective-Noun vs. Noun-Adjective
instances that occur in the dataset.

We repeat this process for every dataset in UD
that includes the necessary Noun and Adjective
part of speech annotations. This algorithm is de-
scribed in pseudocode in Figure 2. Because some
languages have multiple datasets in UD, these lan-
guages have multiple Adjective-Noun and Noun-
Adjective proportion datapoints. In the case of our
seed dataset, we were able to extract information
from 132 different UD datasets, within which there
are 91 unique languages.

For this seed dataset, we extract data for five
features:

1. Ordering of adjectives and their nouns

2. Ordering of numerals and their nouns

3. Ordering of subjects and verbs

4. Ordering of objects and verbs

5. Ordering of objects and subjects

Each feature required manual adjustments of the
dataset creation code in order to extract the neces-
sary part of speech information from the annotated
UD data. These changes are small overall, gener-
ally requiring only an adjustment of the UD tags
being matched. The tags we used can be found in
Table 4 of Appendix A.

3.2 Value Distributions
As Figure 1 demonstrates, each feature’s data cre-
ates a different distribution across the range of pos-
sible proportions. Using these raw proportions al-
lows us to observe linguistic differences between
languages that would previously be collapsed into
the same category. This is made especially clear by
the visualization of WALS data (black) in Figure 1,
which is a much more limited distribution than its
Noun Adjective counterpart in yellow.

4 Proposed Task and Model Comparison

Because categorical typological datasets are a core
part of many existing typology-related NLP tasks,
these tasks also suffer from many of the prob-
lems that the underlying datasets do. Examples
of these tasks include typological feature predic-
tion (Malaviya et al., 2017; Bjerva et al., 2020;
Bjerva, 2024), low-resource language vocabulary
prediction (Rani et al., 2023), and language iden-
tification from speech (Salesky et al., 2021). It
is for this reason that we introduce, along with
the seed dataset, a new task predicting these novel
continuous typological features. Unlike previous
typological prediction tasks, the one we present
here is regression-based.

4.1 Methodological Comparison
Most typological feature prediction (TFP) ap-
proaches use logistic regression (e.g. Malaviya
et al., 2017; Bjerva and Augenstein, 2018a,b;
Östling and Kurfalı, 2023), as they are modelling
categorical outcome variables. However, we argue
that linear regression is a more suitable method
for TFP, since a more appropriate representation of
typology is continuous (Levshina et al., 2023). To
quantify the differences between these approaches,
we compare prediction results based on pretrained
language vectors from Östling and Tiedemann
(2017) and Malaviya et al. (2017).

As a baseline, we train logistic regression models
on a discretized version of the word order features
from our dataset. We have rounded each proportion
to 0 or 1 (with all numbers 0.5 and above going
to 1), to simulate a still-categorical version of the
data, while ensuring comparability with the linear
regression data. In this case, we use the following:

Y =
1

1 + e(−βX−β0)

where X is a matrix made up of pretrained lan-
guage vectors, Y is a vector made up of the in-
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Östling Linear Regr. Östling Logistic Regr. Malaviya Linear Regr. Malaviya Logistic Regr.

Noun-adjective 0.146 0.261 0.141 0.378
Noun-numeral 0.140 0.132 0.129 0.399
Subject-verb 0.0781 0.306 0.101 0.156
Object-verb 0.169 0.237 0.0757 0.122
Object-subject 0.0127 – 0.0349 0.00940

Table 2: Mean squared error scores for linear regression and logistic regression models for each feature, using
language vectors from Östling and Tiedemann (2017) and Malaviya et al. (2017). Better scores are closer to 0.

Östling Linear Regr. Östling Logistic Reg. Malaviya Linear Regr. Malaviya Logistic Regr.

Noun-adjective -0.0423 -1.41 0.0810 -0.780
Noun-numeral 0.246 -3.15 -14.0 -2.45
Subject-verb -0.233 -1.21 -0.627 -0.776
Object-verb -0.137 -3.12 0.00891 -0.486
Object-subject -0.299 – -0.277 -1.84

Table 3: r2 scores for linear regression and logistic regression models for each feature, using language vectors from
Östling and Tiedemann (2017) and Malaviya et al. (2017). Better scores are closer to 1.

put language vectors’ corresponding typological
feature values, and β and β0 are the learned pa-
rameters. We employ the Scikit-learn (Pedregosa
et al., 2011; Buitinck et al., 2013) implementation,
which aims to find the optimal values of β and β0

by minimizing the log likelihood of the data.
As an alternative approach, we train linear re-

gression models on the language representations
and use our gradient word order typology labels.
For the modelling, we use:

Y = Xβ + ε

where X is again a matrix made up of pretrained
language vectors, Y is again a vector made up of
the input language vectors’ corresponding typologi-
cal feature values, β is the vector of learned regres-
sion coefficients, and ε is the bias vector. We use
the Scikit-learn (Pedregosa et al., 2011; Buitinck
et al., 2013) implementation of linear regression to
train the model, which does so by minimizing the
residual sum of squares between the real feature
values and the predicted feature values.

For all models, both linear and logistic, we
trained on a subset of the available languages, and
display results, measured both in mean squared
error and r2 score, calculated on a held-out test
set. Because we employed pretrained language
vectors as part of the training process, we were
only able to train and evaluate each feature model
on the set of languages that had both a pretrained
language vector, and a value in our dataset for that
feature. Unfortunately, this meant that our training
set for each model had only around 40 datapoints,

while our held-out evaluation set had only around
10 (with some slight variation depending on the
feature and the language vector source). In cases
where these languages had multiple available tree-
banks, we randomly selected one treebank to use,
to avoid training on the same input vectors with
potentially different expected output feature val-
ues. We selected one treebank randomly instead of
combining them into one set per language so as to
not arbitrarily combine data from potentially vastly
different domains. Detailed results are displayed in
Tables 2 and 3.

4.2 Results and Discussion

Given that the data at hand is continuous, and that
linear regression models predict categorical val-
ues while logistic regression models predict binary
values, we expected the linear regression models
to outperform the logistic regression models on
this task. Indeed, the linear regression models per-
form better on average than the logistic regression
models, when evaluated using mean squared error
and r2 score. While not always the case, this is
most often true as well on the individual feature
level. While improvements to the modelling can
be implemented, these baselines serve as an initial
exploration of how to approach the novel task of
regression-based typology prediction.

An important note from our statistical results
is that the differences we observe between the
data driven distributions and typological databases
(Fig. 1) clearly show the limitations of established
databases in terms of language descriptiveness
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on a fine-grained scale. This discrepancy may
to some extent explain the difficulty observed in
empirical NLP experiments, when trying to inte-
grate coarse-level WALS features in various NLP
pipelines (Ponti et al., 2019). The introduction
of this regression-based typology prediction task
may prove useful for incorporation of typological
features in NLP modelling - for instance by incor-
poration as an auxiliary task.

While data-driven typology enables more fine-
grained language description, it should be noted
that the source of a treebank can have a consider-
able effect on the estimate (Levshina et al., 2023).
Baylor et al. (2023) show that linguistic variation,
for instance stemming from domain, can affect
word order values. Therefore, direct comparison
between languages should ideally be based on par-
allel data.

5 Conclusion

Information from the field of linguistic typology
has the potential to benefit the field of NLP. Un-
fortunately, the data from existing typological
databases has been unreliable, largely due to their
reliance on categorical features and those features’
inability to represent the variability found in natural
language. In this paper, we attempt to address this
problem by introducing a new continuous-valued
seed dataset, and argue that it is indeed better able
to reflect the nuance of natural language when it
comes to word order. In addition, we provide our
dataset creation methodology that can be easily
adapted in the future to generate data for a wider
array of languages and features. Finally, we present
a novel regression task based on predicting the fea-
ture values of this new dataset.

Limitations

The main limitation of our paper stems from the
small size of our dataset, both in terms of num-
ber of features, and in terms of languages covered.
As is always possible, our subset of features and
languages could be misrepresentative of the larger
existing features and languages, thus keeping our
analyses from generalizing. The small size of our
dataset only makes this more probable.

A secondary limitation of this work primarily ap-
plies to our dataset creation method. As it currently
stands, the method only works with annotated lin-
guistic data, vastly cutting down on the amount of
available useful language data.

Ethics Statement

As this paper relies on existing linguistic data
sources from which to generate datasets, no hu-
man data was collected.

We do not foresee this work directly creating any
substantial ethical issues, but we do note that lan-
guage communities can be significantly impacted,
both positively and negatively, by language tech-
nologies. Given that this research has the potential
to aid in the further development of language tech-
nologies, we want to highlight the importance of
community-led development, including ceasing de-
velopment of technologies for certain languages
based on community request.
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A Tags for algorithm beyond
Adjective-Noun order

POS UD upos value UD deprels value

Noun NOUN –
Adjective ADJ amod
Numeral NUM nummod
Subject – nsubj
Object – obj
Verb VERB –

Table 4: Tags used to extract the necessary parts
of speech from the Universal Dependencies treebank
(Nivre et al., 2020). Dashes indicate that that value did
not need to be specified.
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