Injecting Wiktionary to improve
token-level contextual representations using contrastive learning

Anna Mosolova'?, Marie Candito' , Carlos Ramisch?
'Université Paris Cité, CNRS, LLF, Paris, France
2 Aix Marseille Univ, CNRS, LIS, Marseille, France
first.last@u-paris.fr, first.last@lis-lab.fr

Abstract

While static word embeddings are blind to con-
text, for lexical semantics tasks context is rather
too present in contextual word embeddings,
vectors of same-meaning occurrences being
too different (Ethayarajh, 2019). Fine-tuning
pre-trained language models (PLMs) using con-
trastive learning was proposed, leveraging auto-
matically self-augmented examples (Liu et al.,
2021b). In this paper, we investigate how to
inject a lexicon as an alternative source of su-
pervision, using the English Wiktionary. We
also test how dimensionality reduction impacts
the resulting contextual word embeddings. We
evaluate our approach on the Word-In-Context
(WiC) task, in the unsupervised setting (not us-
ing the training set). We achieve new SoTA
result on the original WiC test set. We also pro-
pose two new WiC test sets for which we show
that our fine-tuning method achieves substan-
tial improvements. We also observe improve-
ments, although modest, for the semantic frame
induction task. Even if we experimented on En-
glish to allow comparison with related work,
our method is adaptable to the many languages
for which large Wiktionaries exist.

1 Introduction

Pretrained language models (PLMs) have brought
great advances in most NLP tasks. As far as word
embeddings are concerned, though, we have moved
from one extreme to the other, namely from static
word embeddings providing a single representa-
tion for a given form, no matter how ambiguous it
is, to contextual token embeddings providing one
representation per occurrence. For lexical level
tasks, while it is desirable that token-level vectors
of the same word sense are close in the semantic
space, this is not the case for the majority of PLMs
(Ethayarajh, 2019).

In this paper, we address the tuning of token-
level contextual representations to better target the
lexical sense instantiated by a given token. We

34

use the contrastive learning (CL), which proved
efficient for getting sentence embeddings that bet-
ter capture sentence-level similarity (Reimers and
Gurevych, 2019; Gao et al., 2021; Chuang et al.,
2022; Fang et al., 2020) and for getting better token-
level embeddings (Liu et al., 2021b; Su et al., 2022).
These approaches use self-supervised CL, with pos-
itive examples created by pairing an original sen-
tence and an automatically modified version of it.

In this paper, we rather investigate how to lever-
age hand-crafted lexicons. Although these are not
always perfectly tailored to NLP tasks, due to cov-
erage and granularity mismatches with the task
or domain at hand, they do contain an enormous
amount of lexical information that is a pity not to
make use of. To do so, we use CL on the exam-
ple sentences of the English Wiktionary, a crowd-
sourced lexicon. We will show the approach is
beneficial for both the Word-in-Context (WiC) task
(intrinsic evaluation), and for the frame induction
task (extrinsic evaluation). Crucially, although we
experiment on English to allow comparison with
related work, our method is adaptable to a large
number of languages for which large Wiktionaries
exist.

We also investigate whether reducing dimen-
sions can provide better-suited token-level contex-
tual embeddings.

In the following, we describe related work (§ 2),
and how we adapted the CL loss to Wiktionary
examples (§ 3). We present our language model
fine-tuning experiments, along with an evaluation
on the Word-in-Context task (§ 4). We test whether
our fine-tuned token embeddings can help cluster
verbal occurrences into semantic frames (§ 5).

2 Related Work

Within the deep metric learning paradigm, con-
trastive learning (CL) became increasingly popular
in computer vision and in NLP (Kaya and Bilge,
2019). It consists in modifying the representation

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 2: Short Papers, pages 34—41
March 17-22, 2024 (©2024 Association for Computational Linguistics

space so that similar objects (positive examples) are
brought closer while dissimilar objects are pushed
away from each other. Hadsell et al. (2006) pro-
posed one of the first contrastive loss functions, for
binary positive examples. CL methods are either
supervised or self-supervised. While the former
rely on labeled data, the latter employ automatic
modifications of objects to produce binary posi-
tive pairs (self-augmentation). Since there can be
more than two examples of the same class, Khosla
et al. (2020) adapt the contrastive loss to handle
“multiple-positive” examples for computer vision.

In NLP, CL is primarily used to improve sen-
tence representations, better capturing sentence
similarity, mainly in the self-supervised paradigm.
Self-augmentation techniques include back transla-
tion (Fang et al., 2020), text corruption (Liu et al.,
2021a), or PLM’s dropout to produce slightly dif-
ferent embeddings per encoding run (Gao et al.,
2021; Chuang et al., 2022). Zhuo et al. (2023)
combine whitening and CL to fine-tune sentence
representations by PLMs. Supervised CL is much
less common. We can only cite Gunel et al. (2021)
who use it for fine-tuning a PLM while learning a
downstream sentiment-analysis classifier.

In contrast to sentence embeddings, fewer works
focus on token-level PLM representations. Liu
etal. (2021a,b) fine-tune contextual embeddings us-
ing self-supervised CL, creating positive pairs with
dropout and random masking of context tokens. Su
et al. (2022) use CL to favor more isotropic token-
level representations. They train a student BERT
model on the masked language modeling task with
a help of a frozen teacher BERT model: CL aims
at increasing the similarity of student and teacher
token representations.

Apart from CL, there was also work in enhancing
BERT with senses during pre-training. For exam-
ple, Levine et al. (2020) add supersense prediction
for every masked word as pre-training objective.

Finally, since we heavily rely on similarities of
contextual embeddings, we mention studies report-
ing the particularities of such spaces. Timkey and
van Schijndel (2021) show that very few dimen-
sions dominate the cosine similarity and propose
postprocessing methods to smooth this effect. Zhou
et al. (2022) identified and Wannasuphoprasit et al.
(2023) tried to solve the problem of underestimated
cosine similarity for high-frequency words.

Our goal is to obtain token-level contextual rep-
resentations more aware of lexical semantics, by

35

injecting lexicon-based information using CL. We
show that this injection is beneficial for the closely
related WiC task, and, to some extent, for the more
downstream task of frame induction.

3 CL for lexical sense examples

Our method fine-tunes the token-level contextual
representations of a PLM using supervised CL, tak-
ing the examples of a lexicon as supervision. More
precisely, each example sentence in the lexicon is
associated with a word sense and contains a target
word occurrence used in this particular sense.

We adapt the multiple-positive contrastive loss
of Khosla et al. (2020) to the use of a lexicon as
labeled data.! Let E(l) be the set of example sen-
tences for lemma [. For an example j € E(l), let
S(j) be the subset of E(l) of examples concern-
ing the same word sense as j, except for j itself.
For every lemma [, we create a single batch, and
we define a loss summing over the set E(1) of all
examples of [:

Lly= >

JjeE()

G/

@S(jvk)/T
keE()\j

1
1SG)I

Z log

J'€S(5)

with E(l) \ j being E(l) except j. We write
s(m,n) for the similarity between the embeddings
of the target tokens in examples m and n (s can
be any vector similarity function), and 7 is a scalar
temperature hyperparameter.

In order to cope with known flaws of cosine
similarity for high-dimensional spaces, we also
experiment with a simple PCA reduction of the
PLM embeddings, with or without whitening.

4 PLM fine-tuning experiments

Training dataset More precisely, our training
data includes the examples for all verbs having
from 1 to 10 senses, except verbs having a single
sense with a single example, and multiword verbs.
In total, we obtained a dataset of 13,118 verbs hav-
ing in total 26,398 senses, with a total of 68,271
examples. Mean number of examples per sense is
2.59 (std. dev. is 5.41). Mean number of senses per
verb is 2.01 (std. dev. is 1.54). Mean number of
examples per verb is 5.21 (std. dev. is 12.68). Each
example concerns a target verb occurrence. For

'Khosla et al. (2020) test two formulations, varying in
the precedence of log and summation over the same-class
examples. They empirically show the superiority of applying
log first. Gunel et al. (2021) also adopt this formulation.

hyperparameter tuning and evaluation, we split the
dataset into 95/5/5% for training, development and
test sets, ensuring that verb lemmas do not overlap
between the three sets.

Training details We report experiments using
the bert-base-uncased model (Devlin et al., 2019).?
For the similarity metric (the s function), we settled
for cosine after a few experiments with various
similarity metrics (euclidean distance, dot product).

The training procedure iterates for £ epochs,
each epoch looping over shuffled training batches
(one batch per lemma). We limited the batches’
size by randomly selecting at most 64 examples
per lemma (max(|E(l)|) = 64). For a given batch,
each example sentence j is encoded using the cur-
rent version of the PLM. The similarities s(m, n)
are computed by extracting the embedding, at the
last layer, of the target tokens in m and in n.?

Intrinsic evaluation: Word-in-Context (WiC)
is a binary classification task taking as input a pair
of sentences containing the same target lexical unit,
and predicting whether this target unit is used with
the same meaning or not (Pilehvar and Camacho-
Collados, 2019). We use this task both to tune our
CL method and to evaluate its benefits. We stress
that since our objective is to evaluate contextual
embeddings, we only consider the unsupervised
scenario of the WiC task. Hence, we do not use the
training WiC data at all.

For our hyperparameter tuning and evaluation,
we use three kinds of WiC data (i) WiktWiC is the
data closest to our training data, namely the dev and
test Wiktionary example set mentioned in § 4, (ii)
OrigWiC are the original dev and test sets of the
WiC task dataset* and (iii) FramenetWiC, contain-
ing FrameNet 1.7 example pairs for the same verb,
annotated with the same or different frames. Statis-
tics for these datasets are provided in Appendix
A.1, Table 3. Each dataset is balanced for posi-
tive and negative pairs, hence the default metric is
macro-averaged accuracy.

We perform the WiC task by applying a thresh-
old on the cosine similarity between the target to-

2Pilehvar and Camacho-Collados (2019) report BERT as
the best-performing model in the unsupervised setting for the
WiC task (§ 4). We used the -base instead of -large model to
reduce the computational cost.

3Sub-word token embeddings are averaged per word.

*The original WiC dataset contains examples from Verb-
Net, WordNet and Wiktionary (Pilehvar and Camacho-
Collados, 2019). We deleted from all our Wiktionary dataset
(train, dev, and test) all examples in OrigWiC.

36

FT PCA Wikt Frame Orig

WwiC WwiC WiC

- - 55.9 67.3 65.4

- + 59.6 72.4 68.4
+ - 70.0(£0.9) 69.6(£0.4)° 69.6(£0.6)
+ + 70.5(+0.8) 73.1(+0.4) 71.4(£0.2)

MirrorWiC - - 69.6

Table 1: Results on WiC test sets. FT: with or without
fine-tuning. PCA: with or without PCA dimensionality
reduction (100 components, with whitening). FT=+
rows are averages of 5 runs (std. dev. in parentheses).

ken embeddings (at the last layer) for the input
sentences. Thus, we evaluate the impact of fine-
tuning on the embeddings, without the influence
of any additional classifier. The threshold is tuned
with step size 0.02 on the development sets.

Hyperparameter tuning To tune the hyperpa-
rameters, we used as a criterion the WiC accuracy,
macro-averaged on the three development sets (Ta-
ble 3). The tested values and their results are pro-
vided in Appendix A.2, Table 4. We chose the
hyperparameter combination leading to the high-
est accuracy on average for the five runs, namely:
learning rate = 5e-6, 2 epochs, temperature=0.5,
PCA with whitening and 100 components.

Unsupervised WiC results As a baseline, we
use the bert-base-uncased model, without applying
PCA (first row of Table 1). The results are statisti-
cally significant® in comparison with the baseline
according to McNemar’s test with o = 0.05. We
observe that our fine-tuning improves results for
the three test sets. The best improvement is for the
test set of the closest kind (WiktWiC), but improve-
ments are also substantial for the two other test sets,
which shows the method generalizes to other kinds
of sense definitions, of varying granularity. We fur-
ther observe that PCA is beneficial when applied
to plain BERT embeddings, and the improvements
add up when applying both fine-tuning and PCA.
We also compare our results on the OrigWiC
dataset to MirrorWiC (Liu et al., 2021b), which
leverages self-supervised CL to improve the last 4
layers of the token-level PLM embeddings. Our
approach outperforms MirrorWiC, which shows
that supervision even from a crowd-sourced lexi-
con surpasses the use of self-augmented examples.

SExcept for the result of the fine-tuned model without
PCA on the Frame WiC dataset, where the improvement was
statistically significant on 3 runs out of 5.

Model Layer «g #pLU #C Pu/iPu/PiF; BcP/BcR/BcF; Pu/iPu/PiF BcP/BcR/BceF
B 1172 0.6 1059 313 95.3/99.6/96.8 94.4/99.5/96.0 65.0/75.5/69.8 56.3/67.1/61.3
B+P 10/2 0.5 1083 307 95.5/99.2/96.7 94.7/98.9/95.9 65.3/72.2/68.6 54.7/62.4/58.3
B+FT 1172 0.1 1228 394 97.4/96.3/96.3 96.7/95.3/95.2 68.4/72.2/70.2 59.8/62.9/61.3
B+FT+P 11/2 0.2 1157 381 96.6/97.8/96.7 95.8/97.2/95.7 69.9/73.6/71.7 60.5/63.9/62.1

Table 2: Results on the frame induction test set of Y21. B: bert-base-uncased, P: with PCA (100 components, with
whitening), FT: with our fine-tuning. Layer x/y: layer x used for st step, and y for 2nd step clustering. a: weight
of the masked embedding for the 2nd step. #pLU: number of pseudo-lexical units after the 1st step, #C: number of
clusters after the 2nd step. Clustering algorithms are X-means (1st step) and group-average (2nd step). Gold number
of LUs is 1,188, actual number of frames is 393. FT=+ rows report averages of 5 runs. Pu/iPu/PiF; : purity, inverse
purity, and Fscore for the first step. BcP/BcR/BcF;: B-cubed precision/recall/Fscore for the first step. Pu/iPu/PiF

and BcP/BcR/BcF: same but for the 2nd step.

To the best of our knowledge, 71.4% is the new
state-of-the-art on the OrigWiC test set in the un-
supervised setting, and it even surpasses some su-
pervised settings that use the OrigWiC training set
(see Loureiro et al. (2022)).

5 Extrinsic evaluation : frame induction

We now turn to evaluating our fine-tuning approach
on semantic frame induction. Compared to word
sense induction, frame induction seeks to identify
semantic classes (or frames) that may group senses
of different lemmas. It is thus a challenging task for
token embeddings. We reuse the dataset of Yamada
et al. (2021) (hereafter Y21), extracted from the
lexicographic part of Framenet 1.7.

We reproduce the approach of Y21 with minor
modifications. It takes as input a set of words, each
in the context of a sentence. Occurrences of the
same lemma are clustered first, and the resulting
clusters (called pseudo-lexical units) are then aver-
aged and further clustered to form frames. To repre-
sent the target words to cluster, Y21 use a weighted
average of two token embeddings obtained after
applying a PLM on the original sentence, with and
without masking the target word. We describe our
minor modifications and hyperparameter tuning on
Y21’s dev set in Appendix A.3.

We select the best hyperparameter combination
(using the F-B-Cubed metric of the second clus-
tering step) for each of the four types of embed-
dings: with and without CL fine-tuning, and with
and without PCA. Results on the test set are pro-
vided in Table 2, for the four systems® (results on
the dev set are in Table 5, Appendix A.4). We

®For plain BERT, we were unable to reproduce Y21’s re-
sults (PiF=73.0%, BcF=064.4%), despite extensive tests. This
might be due to hyperparameters left implicit in their descrip-
tion. We could not obtain answers from the authors.

37

did not perform the statistical significance test for
this task, as it would require using bootstrapping
which is extremely costly given that a new cluster-
ing must be created for each resampled pseudo-test
set. For the first step, fine-tuning improves Purity
and B-Cubed Precision, which means that clusters
identified with the fine-tuned model contain less
noise. However, items from the same frame tend to
be divided into several clusters. With the two-step
algorithm, such errors are recoverable, as the ad-
ditional clusters can be merged during the second
step, whereas over-merging cannot be undone by
the second step.

For frame induction (second step), while for the
dev set our CL fine-tuning is clearly beneficial
(+5.1 points for BcF), the increment on the test
set is more modest and is only obtained with PCA
(62.1 compared to 61.3). The utility of CL fine-
tuning for this task is thus limited, but with PCA
it provides shorter embeddings, reducing computa-
tional cost for downstream tasks.

We also notice that the best layers are high layers
for the first step, but low layers for the second step.
Moreover, after fine-tuning, the tuned as is close
to 0, suggesting that flaws of the original unmasked
token representations that were fixed when combin-
ing with the masked embeddings, were smoothed
away during the fine-tuning step.

6 Conclusions

We presented a new approach for fine-tuning token-
level representations of PLMs, using contrastive
learning with examples from the English Wik-
tionary, a crowd-sourced lexicon. We show its
effectiveness on the Word-in-Context task: we es-
tablish the new SoTA on the WiC test set, in the un-
supervised setting (not using the WiC training set),
and we also obtain substantial gains on two new

WiC test sets, with different sense inventories. We
also report improvements, though more modest, on
the downstream task of semantic frame induction.
Although we experimented on English, our method
is adaptable to the many languages for which large
Wiktionaries exist and provides a simple way to
obtain token-level embeddings more adapted for
lexical semantic tasks. A promising continuation
of this work is to create positive examples using
Wiktionary example sentences for distinct lemmas.

7 Limitations

This paper proposes a new approach for fine-tuning
token-level representations of PLMs. Our study
is based on fine-tuning a single bert-base-uncased
model. We believe that fine-tuning of its large ver-
sion or other PLMs should also be studied to prove
the generalisability of the method. Additionally,
we conduct our experiments only using datasets in
the English language. Our assumption of its appli-
cability to other languages must also be tested in
future work. As for the training dataset, we use
only verbal lemmas for its constriction. However,
it should be verified whether using lemmas of all
parts of speech improves or worsens the fine-tuning
results.

We show the limited utility of CL fine-tuning
for the frame induction task compared to the im-
provements achieved on the WiC datasets. We used
only a single extrinsic task due to space limitations.
Other lexical level tasks, such as word sense induc-
tion, can also be easily applied to investigate further
abilities of the new representations (e.g. Task 14 of
SemEval-2010 (Manandhar et al., 2010)).

Acknowledgements

We thank the reviewers for their valuable feedback
on our work.

This work has been funded by the French
Agence Nationale pour la Recherche, through the
SELEXINI project (ANR-21-CE23-0033-01).

References

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.
DiffCSE: Difference-based contrastive learning for
sentence embeddings. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4207-4218, Seattle,

38

United States. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55-65,
Hong Kong, China. Association for Computational
Linguistics.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. CERT: Contrastive
Self-supervised Learning for Language Understand-
ing. ArXiv:2005.12766 [cs, stat].

Charles J Fillmore and Collin F Baker. 2010. A frame
semantic approach to linguistic analysis. In Oxford
Handbook of Linguistic Analysis. Oxford University
Press.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894—6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves
Stoyanov. 2021. Supervised Contrastive Learn-
ing for Pre-trained Language Model Fine-tuning.
ArXiv:2011.01403 [cs].

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-
ality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735-1742.

Mahmut Kaya and Hasan Sakir Bilge. 2019. Deep
metric learning: A survey. Symmetry, 11(9):1066.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in neural
information processing systems, 33:18661-18673.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT: Driv-
ing some sense into BERT. In Proceedings of the

https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
http://arxiv.org/abs/2005.12766
http://arxiv.org/abs/2005.12766
http://arxiv.org/abs/2005.12766
https://doi.org/https://doi.org/10.1093/oxfordhb/9780199544004.013.0013
https://doi.org/https://doi.org/10.1093/oxfordhb/9780199544004.013.0013
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
http://arxiv.org/abs/2011.01403
http://arxiv.org/abs/2011.01403
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://www.mdpi.com/2073-8994/11/9/1066
https://www.mdpi.com/2073-8994/11/9/1066
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423

58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4656-4667, Online. Asso-
ciation for Computational Linguistics.

Fangyu Liu, Ivan Vuli¢, Anna Korhonen, and Nigel
Collier. 2021a. Fast, effective, and self-supervised:
Transforming masked language models into universal
lexical and sentence encoders. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1442—1459, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Qianchu Liu, Fangyu Liu, Nigel Collier, Anna Korho-
nen, and Ivan Vuli¢. 2021b. MirrorWiC: On elicit-
ing word-in-context representations from pretrained
language models. In Proceedings of the 25th Confer-
ence on Computational Natural Language Learning,
pages 562-574, Online. Association for Computa-
tional Linguistics.

Daniel Loureiro, Alipio Mdrio Jorge, and Jose Camacho-
Collados. 2022. Lmms reloaded: Transformer-based
sense embeddings for disambiguation and beyond.
Artificial Intelligence, 305:103661.

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach,
and Sameer Pradhan. 2010. SemEval-2010 task 14:
Word sense induction &disambiguation. In Proceed-
ings of the 5th International Workshop on Semantic
Evaluation, pages 63—-68, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267-1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Yixuan Su, Fangyu Liu, Zaiqgiao Meng, Tian Lan, Lei
Shu, Ehsan Shareghi, and Nigel Collier. 2022. TaCL:
Improving BERT pre-training with token-aware con-
trastive learning. In Findings of the Association
for Computational Linguistics: NAACL 2022, pages
2497-2507, Seattle, United States. Association for
Computational Linguistics.

39

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4527-4546, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Saeth Wannasuphoprasit, Yi Zhou, and Danushka Bol-
legala. 2023. Solving cosine similarity underesti-
mation between high frequency words by ¢5 norm
discounting. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 8644—-8652,
Toronto, Canada. Association for Computational Lin-
guistics.

Kosuke Yamada, Ryohei Sasano, and Koichi Takeda.
2021. Semantic frame induction using masked word
embeddings and two-step clustering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 811-816.

Kaitlyn Zhou, Kawin Ethayarajh, Dallas Card, and Dan
Jurafsky. 2022. Problems with cosine as a measure
of embedding similarity for high frequency words.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 401-423, Dublin, Ireland.
Association for Computational Linguistics.

Wenjie Zhuo, Yifan Sun, Xiaohan Wang, Linchao Zhu,
and Yi Yang. 2023. WhitenedCSE: Whitening-based
contrastive learning of sentence embeddings. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1213512148, Toronto, Canada. As-
sociation for Computational Linguistics.

A Appendix

A.1 Statistics for the three Word-in-Context
datasets

We provide the statistics for the three WiC datasets
in table 3. We introduce 2 datasets: Wikt-WiC,
which is a derivative of the Wiktionary DBnary
dataset distributed under the Creative Commons
Attribution-ShareAlike 3.0 license, and Framenet-
Wic, which is created from the Framenet 1.7 ex-
amples (Fillmore and Baker, 2010)7 shared un-
der the Creative Commons Attribution-Only li-
cense. We also reuse the original WiC dataset dis-
tributed under the Creative Commons Attribution-
NonCommercial 4.0 license.

"http://framenet.icsi.berkeley.edu/

https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.conll-1.44
https://doi.org/10.18653/v1/2021.conll-1.44
https://doi.org/10.18653/v1/2021.conll-1.44
https://doi.org/https://doi.org/10.1016/j.artint.2022.103661
https://doi.org/https://doi.org/10.1016/j.artint.2022.103661
https://aclanthology.org/S10-1011
https://aclanthology.org/S10-1011
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2022.findings-naacl.191
https://doi.org/10.18653/v1/2022.findings-naacl.191
https://doi.org/10.18653/v1/2022.findings-naacl.191
https://doi.org/10.18653/v1/2021.emnlp-main.372
https://doi.org/10.18653/v1/2021.emnlp-main.372
https://doi.org/10.18653/v1/2021.emnlp-main.372
https://aclanthology.org/2023.findings-acl.550
https://aclanthology.org/2023.findings-acl.550
https://aclanthology.org/2023.findings-acl.550
https://aclanthology.org/2021.acl-short.102.pdf
https://aclanthology.org/2021.acl-short.102.pdf
https://doi.org/10.18653/v1/2022.acl-short.45
https://doi.org/10.18653/v1/2022.acl-short.45
https://aclanthology.org/2023.acl-long.677
https://aclanthology.org/2023.acl-long.677
http://framenet.icsi.berkeley.edu/

Dataset Dev Test
Orig-WiC 638 1400
Wikt-WiC 1200 1200

Framenet-WiC 1800 1700

Table 3: Statistics for three WiC evaluation datasets.

A.2 Hyperparameter tuning of BERT
fine-tuning by contrastive learning with
Wiktionary examples, on the development
sets of the WiC task

We tuned the following hyperparameters using grid
search: learning rate (tested values: Se-7, le-6, Se-
6, le-5, 3e-5, 5e-5), number of epochs (from 1 to
6), temperature®, whether to use PCA or not (with
or without whitening and number of components
(tested values: from 100 to 700 with the step 100).

We made five runs for each hyperparameter
combination to determine the variance of the
results.

Table 4 shows the top 10 hyperparameter com-
binations of the bert-base-uncased CL fine-tuning.
Additionally, we report results without fine-tuning
as a baseline and MirrorWiC results on the devel-
opment set (results from (Liu et al., 2021b)).

The average training time of the bert-base-
uncased model® (110M parameters) for one epoch
is 30 minutes on one 4Gb GPU. For the fine-tuning,
we used Transformers and SentenceTransformers
libraries (Reimers and Gurevych, 2019). We also
use PCA implementation from the scikit-learn li-
brary (Pedregosa et al., 2011).

A.3 Hyperparameter tuning for the frame
induction experiments

To represent the target words to cluster, Y21 use
a weighted average of two token embeddings
obtained after applying a PLM on the original
sentence, with and without masking the target
word. The used embedding for a target word is
a-vpyask + (1 —a) - vworp. Y2l use ag = 1
for the first step, and a tuned ai for the second
step. We also tune aw, but we rather use a; = 0,
namely a plain embedding of the target word, with-
out any masking, as we observed no impact on the
results. Another difference in our implementation

8We did some preliminary tests with all values from 0 to 1
with the step 0.1, and we finally only tested values 0.3 and 0.5
for the grid search.

*https://huggingface.co/
bert-base—uncased

40

is that we may use different BERT layers for the
first and second clustering steps, while Y21 always
use the same. The hyperparameter tuning, on the
development set, is the following:

* First step clustering algorithm:

— X-means with minimum and maximum
number of clusters set to 1 and 15 respec-
tively,

— Agglomerative clustering with group av-
erage linkage.

Combination of BERT layers for first and sec-
ond steps: out of the 144 layer combinations,
we first selected the 10 best combinations us-
ing the bert-base-uncased model with ap = 0
and checked only 10 best combinations with
the rest of hyperparameters.

* g : tested values from 0 to 1 with step 0.1.
We do not tune the following hyperparameters:

* Number of components for PCA is always
100 with whitening application (the best com-
bination identified in the WiC tuning).

* Algorithm for the second step: Agglomerative
clustering with group average linkage (with
termination criterion as defined by Y21).

A.4 Results of the frame induction task on the
development set

In the table 5, we present the results on the devel-
opment set of the frame induction task. We can
see the improvement of all results after fine-tuning
and a small degradation of the results after the PCA
application. However, the clustering time is shorter
by 13% when reduced embeddings are used (2 min-
utes vs 2.3 minutes). Also, we observe that as
values are close to 0 after fine-tuning suggesting
removing the masked embedding completely as
the overall computation time will be reduced by 2
times without its application.

B-Cubed metrics are computed using f-b-cubed
python library'?, purity metrics are computed with
scikit-learn (Pedregosa et al., 2011).

Unttps://github.com/hhromic/
python-bcubed

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/hhromic/python-bcubed
https://github.com/hhromic/python-bcubed

LR E T N comp. Whitening Macro-Accuracy Orig-WiC Framenet-WiC Wikt-WiC

bert-base-uncased - - 65.6 67.9 70.9 58.0

bert-base-uncased 100 True 67.5 69.6 73.9 58.9

5e-6 2 0.5 100 True 71.4(+0.1) 73.5(£0.5) 76.0(+0.2) 64.8(£0.5)
5e-6 3 0.5 100 True 71.4(+0.2) 73.7(+0.4) 75.8(+0.2) 64.8(+0.3)
5e-6 3 0.5 300 True 71.4(+0.4) 72.0(£0.7) 77.6(+0.4) 64.4(+0.4)
S5e-6 2 0.5 300 False 71.3(£0.2) 73.9(+0.4) 74.6(£0.2) 65.3(+£0.4)
S5e-6 2 0.5 300 True 71.3(+£0.4) 71.9(+0.6) 77.8(+0.3) 64.1(40.6)
S5e-6 3 0.5 400 True 71.2(+£0.4) 72.0(£0.8) 77.5(+0.4) 64.1(+0.5)
S5e-6 3 0.5 200 True 71.2(£0.2) 72.6(+0.5) 76.7(+0.2) 64.3(+0.4)
5e-6 2 0.5 200 False 71.2(40.3) 73.5(40.5) 74.6(40.3) 65.4(+0.3)
5e-6 1 0.5 100 True 71.2(+0.1) 72.8(+0.4) 75.8(+0.2) 64.9(+0.4)
5e-6 2 0.5 400 False 71.1(40.3) 73.6(+0.5) 74.5(4+0.2) 65.2(40.4)

MirrorWiC - - - 71.9 - -

Table 4: Results on the development set of the WiC task. LR is learning rate, E - number of epochs, 7 - temperature
parameter of the loss function, N comp. - number of components for PCA. Reported metric is accuracy, all values
are an average of 5 runs (std. dev. in parentheses). First two lines are baseline results before fine-tuning.

Model Layer «y #pLU #C PiF; BcF; PiF BcF
B 112 0.6 266 141 96.6 959 763 70.3
B+P 10/2 0.5 275 144 969 96.1 754 693
B+FT 112 0.1 300 171 97.2 964 80.7 754
B+FT+P 11/2 02 294 163 972 964 80.3 74.8

Table 5: Results on the frame induction development set. Model name corresponds to B - bert-base-uncased, P -
application of PCA (reduction to 100 components with whitening), FT - the fine-tuned version of the BERT model.
The layer column indicates which BERT layer was used: left value stands for the first step clustering layer, right
value is the second step clustering layer. First step clustering algorithm is always X-Means, second step - Group
Average. oo is the weight of the masked embedding for the second step. #pLU is the number of pseudo-lexical
units after the first step clustering, #C is the number of clusters after the second step. Actual number of LUs is 300,
actual number of frames is 169. Every FT=+ row reports an average of 5 runs.

41

