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Abstract

We explore loss functions for fact verification
in the FEVER shared task. While the cross-
entropy loss is a standard objective for training
verdict predictors, it fails to capture the hetero-
geneity among the FEVER verdict classes. In
this paper, we develop two task-specific objec-
tives tailored to FEVER. Experimental results
confirm that the proposed objective functions
outperform the standard cross-entropy. Perfor-
mance is further improved when these objec-
tives are combined with simple class weighting,
which effectively overcomes the imbalance in
the training data. The source code is available.1

1 Introduction

The Fact Extraction and VERification (FEVER)
shared task (Thorne et al., 2018) challenges sys-
tems to verify a given claim by referencing Wikipe-
dia articles. A system for FEVER typically begins
by extracting sentences from Wikipedia that poten-
tially support or refute the claim. Subsequently, the
verdict predictor in the system classifies the claim,
in conjunction with the retrieved sentences, into
one of three verdict classes:

• Supported (SUP): The retrieved sentences
contain evidence supporting the given claim.

• Refuted (REF): The retrieved sentences con-
tain evidence that refutes the claim.

• Not Enough Information (NEI): The retrieved
sentences do not contain sufficient evidence
to support or refute the claim.

As this verification step is a multiclass classifi-
cation task, verdict predictors are usually trained
using the cross-entropy loss function. However,

†Work conducted during an internship at STAIR Lab.
‡Corresponding author.
1https://github.com/yuta-mukobara/RLF-KGAT

cross-entropy treats all misclassification types uni-
formly, which is problematic given the heterogene-
ity among the verdict classes in FEVER; labels
SUP and REF both assume evidence is present in
the retrieved sentences, whereas a claim is deemed
NEI only when such evidence is missing. Conse-
quently, it is debatable, for example, whether mis-
classifying a SUP claim as REF or as NEI should be
considered equally severe errors, especially when
the retrieved sentences indeed contain support-
ing evidence, such as when a verdict predictor is
trained with oracle sentences.

In this paper, we explore objective functions de-
signed to capture the heterogeneity among verdict
classes.

Notation For a 𝐾-class classification problem,
let y = (𝑦1, . . . , 𝑦𝐾 ) ∈ {0, 1}𝐾 denote a one-hot
class representation vector where each index rep-
resents a class. Depending on the context, we also
use y to denote the corresponding class itself. Let
p = (𝑝1, . . . , 𝑝𝐾 ) ∈ [0, 1]𝐾 denote a predicted
class distribution (i.e.,

∑𝐾
𝑖=1 𝑝𝑖 = 1). For FEVER

verdict prediction, 𝐾 = 3, and let the indexes 1, 2, 3
correspond to SUP,REF,NEI, respectively.

2 Proposed Method

2.1 Cross-entropy Loss Function
We first review the (categorical) cross-entropy loss,
which is a common objective function for multi-
class classification, including FEVER verdict pre-
diction (Liu et al., 2020; Tymoshenko and Mos-
chitti, 2021).

In a 𝐾-class classification task, the cross-entropy
loss for a sample with its one-hot class vector y =

(𝑦1, . . . , 𝑦𝐾 ) is defined as:

𝐿CE(y, p) = −
𝐾∑︁
𝑖=1

𝑦𝑖 log 𝑝𝑖 , (1)

where p = (𝑝1, . . . , 𝑝𝐾 ) is the class probability
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distribution derived from the output of a classifier
through a softmax function.

2.2 Loss Functions for Verdict Prediction
To address the heterogeneity of verdict classes out-
lined in Section 1, we implement penalties of vary-
ing magnitudes contingent on the type of predic-
tion errors. To be precise, our objectives impose
more severe penalties for incorrectly classifying
SUP claims as REF, or REF claims as SUP, consid-
ering that classes SUP and REF are contradictory
when the retrieved sentences contain correct evi-
dence. Note that this last condition is constantly
met during training with oracle sentences in the
FEVER dataset.

2.2.1 Multi-label logistic loss
Before presenting our loss functions for FEVER,
we introduce the multi-label logistic (MLL) loss
(Baum and Wilczek, 1988). Although this loss is
not suited for FEVER verdict prediction, its inclu-
sion of loss terms for complementary classes helps
illustrate our approach.

The MLL loss is defined as the sum of logistic
losses (binary cross-entropy) over 𝐾 components
of the predictor’s output p:

𝐿MLL(y, p) = −
𝐾∑︁
𝑖=1

[𝑦𝑖 log 𝑝𝑖 + 𝜆�̄�𝑖 log(1 − 𝑝𝑖)],

= 𝐿CE(y, p) + 𝜆𝑅MLL(y, p) (2)

where:

𝑅MLL(y, p) = −
𝐾∑︁
𝑖=1

�̄�𝑖 log(1 − 𝑝𝑖), (3)

with �̄�𝑖 = 1 − 𝑦𝑖. As Eq. (2) shows, the MLL loss
consists of the primary cross-entropy term and an
auxiliary term 𝑅MLL for complementary classes.
Also note that, in the original MLL loss, 𝜆 = 1,
but we treat 𝜆 ≥ 0 as a hyperparameter that can
also take a different value to control the balance
between two terms.

Originally, since the MLL loss was designed for
multi-label classification, the 𝐾 outputs of a predic-
tor are treated as independent variables. Therefore,
each component of the prediction vector p is inde-
pendently normalized using the sigmoid function.
In contrast, within the scope of this paper, p forms
a probability distribution via the softmax function,
suitable for a multi-class setting of FEVER.

One interpretation of this loss is that the pre-
dicted class distribution p = (𝑝1, . . . , 𝑝𝐾 ) is

viewed not as the outcome of a single 𝐾-class
classification task, but as the outcomes of 𝐾 “one-
versus-rest” binary classification tasks; in each of
these tasks, one of the 𝐾 classes is treated as the
positive class, while the remaining 𝐾 − 1 classes
are treated collectively as the negative class, and
then individual tasks evaluated by the logistic loss.

Application to verdict prediction In Eqs. (2)
and (3), �̄�𝑖 = 1−𝑝𝑖 indicates the membership of the
𝑖th class in the complement of class y, i.e., in the set
𝑌 \ {y}. In the context of FEVER, the complement
sets for individual verdict classes are SUP = {REF,
NEI}, REF = {SUP,NEI}, and NEI = {SUP,REF}.
Now, setting 𝐾 = 3 and recalling that class indexes
1, 2, 3 represent SUP,REF,NEI, respectively, we
have:

𝑅MLL(y, p)

=



− log(1 − 𝑝2) − log(1 − 𝑝3), if 𝑦1 = 1,
− log(1 − 𝑝3) − log(1 − 𝑝1), if 𝑦2 = 1,
− log(1 − 𝑝1) − log(1 − 𝑝2), if 𝑦3 = 1.

(4)

Eq. (4) is symmetric over classes, which shows
that the MLL loss does not account for the het-
erogeneity among verdict classes, much like the
cross-entropy loss. Later experiments in Section 3
indeed demonstrate that the MLL loss does not im-
prove over the standard cross-entropy in terms of
prediction accuracy.

2.2.2 Reducing penalties for false NEI

We address the issue of heterogeneous verdict
classes by modifying the composition of comple-
ment sets in the MLL loss.

Specifically, in our first FEVER-specific loss
function, we treat classes SUP and REF as their sole
complementary class, excluding NEI. To be pre-
cise, we let SUP = {REF}, REF = {SUP}, whereas
NEI = {SUP,REF} is unchanged. Accordingly, the
membership indicator �̄�𝑖 is changed to:

�̄� SRN
𝑖 =

{
1 − 𝑦𝑖 , if 𝑖 = 1, 2,
0, if 𝑖 = 3,

(5)

which results in:

𝑅SRN(y, p) = −
3∑︁
𝑖=1

�̄� SRN
𝑖 log(1 − 𝑝𝑖)

= −
2∑︁
𝑖=1

(1 − 𝑦𝑖) log(1 − 𝑝𝑖)
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=



− log(1 − 𝑝2), if 𝑦1 = 1,
− log(1 − 𝑝1), if 𝑦2 = 1,
− log(1 − 𝑝1) − log(1 − 𝑝2), if 𝑦3 = 1.

(6)

Comparing the last formula with Eq. (4), we see
that 𝑅SRN effectively reduces penalties for misclas-
sifying SUP or REF claims (i.e., 𝑦1 = 1 or 𝑦2 = 1)
as NEI. Combining the auxiliary loss with the cross
entropy loss, we obtain the overall objective:

𝐿SRN(y, p) = 𝐿CE(y, p) + 𝜆𝑅SRN(y, p)

= −
3∑︁
𝑖=1

𝑦𝑖 log 𝑝𝑖 − 𝜆
2∑︁
𝑖=1

(1 − 𝑦𝑖) log(1 − 𝑝𝑖).

(7)

2.2.3 Exclusive penalties for SUP/REF
confusion

Alternatively, we can define an auxiliary loss fo-
cusing only on the contradictory nature of SUP
and REF and disregarding NEI entirely. To this
end, we define NEI = ∅. For SUP and REF, their
complementary sets are defined in the same way
as the SRN loss term, namely, SUP = {REF} and
REF = {SUP}. The corresponding membership
indicator is given by:

�̄� SR
𝑖 =

{
(1 − 𝑦𝑖) (1 − 𝑦3), if 𝑖 = 1, 2,
0, if 𝑖 = 3.

The newly introduced factor (1 − 𝑦3) ensures �̄� SR
𝑖

remains 0 when the gold label is NEI (and thus
𝑦3 = 1). This produces our second auxiliary loss
function for FEVER:

𝑅SR(y, p) = −
3∑︁
𝑖=1

�̄� SR
𝑖 log(1 − 𝑝𝑖)

= −(1 − 𝑦3)
2∑︁
𝑖=1

(1 − 𝑦𝑖) log(1 − 𝑝𝑖)

=



− log(1 − 𝑝2), if 𝑦1 = 1,
− log(1 − 𝑝1), if 𝑦2 = 1,
0, if 𝑦3 = 1.

(8)

In this loss term, any misclassification involving
label NEI is disregarded; 𝑅SR imposes no penalty
for prediction errors on NEI claims, nor for misclas-
sifying SUP and REF claims as NEI.

The overall objective function, combining 𝑅SR
with 𝐿CE, is given as follows:

𝐿SR(y, p) = 𝐿CE(y, p) + 𝜆𝑅SR(y, p)

= −
3∑︁
𝑖=1

𝑦𝑖 log 𝑝𝑖

− 𝜆(1 − 𝑦3)
2∑︁
𝑖=1

(1 − 𝑦𝑖) log(1 − 𝑝𝑖). (9)

2.3 Class Imbalanced Learning
Another non-negligible issue in verdict prediction
is the imbalanced training data in the FEVER
dataset, whose class frequency is shown in Table 1.

A popular approach to class imbalance problems
(Zhang et al., 2023; Chawla et al., 2002) is class
weighting (Ren et al., 2018; Cui et al., 2019), where
each term in the objective function is assigned a dif-
ferent weight depending on the class it is associated
with.

For example, after weighting applied, the SRN
objective in Eq. (7) becomes:

𝐿SRN+weighting(y, p)

= −
3∑︁
𝑖=1

𝑤𝑖
[
𝑦𝑖 log 𝑝𝑖 + �̄� SRN

𝑖 log(1 − 𝑝𝑖)
]
, (10)

where 𝑤1, 𝑤2, and 𝑤3 are the fixed class weights.
The same weighting scheme can be applied to SR
and MLL objective functions; see Appendix A.

In our experiments in Section 3, we use the class-
balanced weights of Cui et al. (2019). They define
the weight for the 𝑖th class as:

𝑤𝑖 =
1 − 𝛽

1 − 𝛽𝑛𝑖 , (11)

where 𝑛𝑖 is the number of training samples in the
𝑖th class and 𝛽 is a hyperparameter. Setting 𝛽 = 0
results in uniform weights 𝑤1 = 𝑤2 = 𝑤3 = 1,
which reduces Eq. (10) to the unweighted one in
Eq. (7). As 𝛽 → 1, the weights approach the
inverse class frequency 1/𝑛𝑖 .

3 Experiments

Due to limited space, only the main experimental
results are presented below. Additional results and
analysis can be found in Appendix B.

3.1 Setups
Dataset and evaluation criteria The FEVER
2018 dataset (Thorne et al., 2018) consists of
185,445 claims (Table 1). Each claim is assigned
a gold class labels, SUP, REF, or NEI. The gold
labels for the test set are not disclosed.

Models are evaluated by prediction label accu-
racy (LA) and FEVER score (FS). LA is a standard
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Split #SUP #REF #NEI

Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 1: Number of samples (claim-evidence pairs) in
the FEVER 2018 dataset.

evaluation criterion for multiclass classification
where classification accuracy is computed with-
out considering the correctness of the retrieved
evidence. In FS, a prediction is deemed correct
only if the predicted label is correct and the correct
evidence is retrieved (in the case of SUP and REF
claims). The scores for the test set, for which the
gold labels are not disclosed, are computed on the
official FEVER scoring site.

Compared models and hyperparameters We
use KGAT2 (Liu et al., 2020) for both evidence
retrieval and verdict prediction. Multiple prediction
models are trained, each with a different objective
function. The objectives employed are:

• CE: The cross-entropy loss of Eq. (1). This
is the standard objective function for FEVER.
It is used by the original KGAT, and is the
baseline in our experiments.

• MLL: The multi-label logistic loss of Eq. (2).
As our proposed objectives can be consid-
ered its modifications, it is included as another
baseline in this comparative study.

• SRN: Our first proposed objective (Eq. (7)),
which combines the cross-entropy loss with
the 𝑅SRN auxiliary loss.

• SR: Our second proposed objective (Eq. (9)),
which augments the cross-entropy loss with
the 𝑅SR auxiliary loss.

Each objective is assessed with and without the
class weighting scheme of Eq. (11). A summary
of all objective functions evaluated can be found
in Appendix A. Additionally, all objectives are
evaluated with three different backbone networks:
BERT Base, BERT Large (Devlin et al., 2019), and
RoBERTa Large (Liu et al., 2019).

Hyperparameters 𝜆 in Eqs. (2), (7), and (9), and
𝛽 in Eq. (11) are tuned on the development set.
For other hyperparameters (e.g., learning rate and
batch size), the default values set in the KGAT

2https://github.com/thunlp/KernelGAT

Objective function Weighting LA FS

Backbone: BERT Base

CE (baseline) – 77.81 75.75
CE yes 78.08 (+0.27) 76.02 (+0.27)
MLL (𝜆=0.0625) – 77.84 (+0.03) 75.65 (-0.10)
MLL (𝜆=0.125) yes 78.13 (+0.32) 76.06 (+0.31)
SRN (𝜆=0.0625) – 77.84 (+0.03) 75.70 (-0.05)
SRN (𝜆=0.0625) yes 77.83 (+0.02) 75.79 (+0.04)
SR (𝜆=0.0625) – 78.16 (+0.35) 75.87 (+0.12)
SR (𝜆=0.25) yes 78.29 (+0.48)* 76.06 (+0.31)

Backbone: BERT Large

CE (baseline) – 78.20 75.98
CE yes 78.85 (+0.65)* 76.74 (+0.76)
MLL (𝜆=0.25) – 78.94 (+0.74)* 76.78 (+0.80)
MLL (𝜆=0.03125) yes 78.85 (+0.65)* 76.74 (+0.76)
SRN (𝜆=0.125) – 78.68 (+0.48)* 76.57 (+0.59)
SRN (𝜆=0.25) yes 78.83 (+0.63)* 76.71 (+0.73)
SR (𝜆=0.25) – 79.02 (+0.82)* 76.86 (+0.88)
SR (𝜆=0.125) yes 79.19 (+0.99)* 77.01 (+1.03)

Backbone: RoBERTa Large

CE (baseline) – 80.19 78.03
CE yes 80.55 (+0.36) 78.54 (+0.51)
MLL (𝜆=0.0625) – 80.00 (-0.19) 77.88 (-0.15)
MLL (𝜆=0.0625) yes 80.62 (+0.43)* 78.55 (+0.52)
SRN (𝜆=0.03125) – 80.24 (+0.05) 78.18 (+0.15)
SRN (𝜆=0.03125) yes 80.73 (+0.54)* 78.56 (+0.53)
SR (𝜆=0.0625) – 80.41 (+0.22) 78.19 (+0.16)
SR (𝜆=0.03125) yes 80.70 (+0.51)* 78.63 (+0.60)

Table 2: Label accuracy (LA) and FEVER score (FS)
of KGAT models on the development set, using differ-
ent loss functions and backbones. For class-balanced
weighting, 𝛽 is set to 0.999999 in all cases. The paren-
thesized figures after LA indicate differences from the
baseline cross-entropy loss (CE) without class-balanced
weighting. Asterisks (*) denote the change in prediction
from CE (baseline) is statistically significant (𝑝 < 0.05),
as determined by the McNemar test (McNemar, 1947).

implementation are used. Each model is trained
three times and the one achieving the highest LA
on the development set is selected for evaluation.

3.2 Results

Effectiveness of the proposed objective func-
tions Table 2 shows the results. Trends observed
are: (i) The imbalance weighting consistently im-
proves both LA and FS. (ii) The proposed SRN
and SR losses enhance LA in all cases and FS in
most cases. (iii) The simultaneous use of the class-
balance weighting and the proposed losses further
improves the performance.

Of the two proposed loss types, SR achieves
higher scores across all backbone architectures,
with the exception of the LA score with RoBERTa
Large. Even in the latter case, the difference is
marginal (0.03). For SR with weighting, the change
in predictions from CE (baseline) is statistically sig-
nificant irrespective of the backbones. The same
is true for SRN with weighting, except when it is
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Dev Test

Method LA FS LA FS

Backbone: BERT Base

KGAT (Liu et al., 2020) 78.02 75.88 72.81 69.40
KGAT (reproduced) 77.81 75.75 73.01 69.29
KGAT + SR + weighting 78.29 76.06 73.44 69.88

Backbone: BERT Large

KGAT (Liu et al., 2020) 77.91 75.86 73.61 70.24
KGAT (reproduced) 78.20 75.98 73.66 70.06
KGAT + SR + weighting 79.19 77.01 73.97 70.71

Backbone: RoBERTa Large

KGAT (Liu et al., 2020) 78.29 76.11 74.07 70.38
KGAT (reproduced) 80.19 78.03 75.40 72.04
KGAT + SR + weighting 80.70 78.63 75.72 72.53

Non-KGAT SOTA Methods

Stammbach (Stammbach, 2021) – – 79.20 76.80
LisT5 (Jiang et al., 2021) 81.26 77.75 79.35 75.87
ProoFVer (Krishna et al., 2022) 80.74 79.07 79.47 76.82
BEVERS (DeHaven and Scott, 2023) – – 80.24 77.70

Table 3: Label accuracy (LA) and FEVER score (FS)
on the development (Dev) and test sets. The bold values
indicate the best performer in the group.

used with BERT Base.
Although the MLL loss explicitly has the ad-

ditional penalty term for the complement sets, it
does not account for the label heterogeneity as in
the cross-entropy loss (see Section 2.2.1). Indeed,
there is little difference in the results between CE
and MLL, excluding the BERT Large backbone
without weighting.

Comparison with SOTA models As KGAT with
the proposed SR objective and class-balanced
weighting showed consistent performance on the
development set, we submit its predictions on the
test set to the FEVER scoring site. Table 3 presents
the results, along with those of the original KGAT
and state-of-the-art (SOTA) FEVER models. The
proposed methods (KGAT + SR + weighting) con-
sistently outperform the original KGAT (using the
standard CE loss) on the test set as well, regardless
of the backbone architecture. These results suggest
that the cross-entropy objective is not necessarily
optimal for the FEVER task, and our approach of-
fers a means of improvement.

The scores of KGAT models, including our pro-
posed approach, are lower than those of the SOTA
models (Stammbach, 2021; Jiang et al., 2021; Kr-
ishna et al., 2022; DeHaven and Scott, 2023). How-
ever, it should be noted that these models owe their
better performance in part to the improved retriev-
ers and backbones they use. Indeed, DeHaven and
Scott (2023, Table 12) report an LA of 76.60 and
an FS of 73.21 on the test set, when their BEVERS

model is used in combination with the KGAT re-
triever and the RoBERTa Large backbone. These
figures represent a notable regression from those
presented in Table 3, consequently reducing the
advantage over our model (with a test LA of 75.72,
and a test FS of 72.53) to less than a 1-point.

4 Related Work

The FEVER shared tasks (Thorne et al., 2018,
2019; Aly et al., 2021a,b) have been the subject
of extensive research. Most proposed approaches
utilize Transformer-based models to embed claims
and evidence (Tymoshenko and Moschitti, 2021;
Jiang et al., 2021; Stammbach, 2021; DeHaven
and Scott, 2023), whereas some researchers (Zhou
et al., 2019; Liu et al., 2020) use graph-based meth-
ods to aggregate information from multiple pieces
of evidence. None of these studies focus on the
objective function to optimize, and most employ
the standard cross-entropy objective.

Recently, DeHaven and Scott (2023) have used
class weighting to mitigate class imbalance in the
FEVER dataset, although the detailed weighting
scheme is not reported.

In machine learning, Zhang (2004) analyzes vari-
ous loss functions used for multiclass classification,
including a general form of one-versus-rest (or one-
versus-all) loss functions, which also have terms ac-
counting for the complement set of the ground-truth
class. Ishida et al. (2017) study complementary-
label learning scenarios (Ishida et al., 2017; Yu
et al., 2018; Ishida et al., 2019) extending Zhang’s
losses.

5 Conclusion

We introduced loss functions that take into account
the heterogeneity of verdict classes in the FEVER
task. In empirical evaluation, they consistently
outperformed the standard cross-entropy loss.

In future work, we will evaluate the proposed
loss functions in other fact verification tasks. We
also plan to apply them to SOTA models for
FEVER. As these models use the cross-entropy
loss, our auxiliary loss terms are readily applicable.

Limitations

Our empirical evaluation was conducted in limited
situations.

• Task (dataset): Although our approach proved
effective in the FEVER task and dataset
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(Thorne et al., 2018), whether it works equally
well in other similar tasks and datasets re-
mains unverified.

• Verdict predictor: The effectiveness of our ap-
proach was demonstrated only in combination
with KGAT (Liu et al., 2020), a popular pre-
diction model frequently used for benchmark-
ing FEVER methods. Being model-agnostic,
our loss functions need to be evaluated in com-
bination with more recent models that opti-
mize the cross-entropy loss.
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A Summary of Objective Functions

In the following, we list the formulas for the objec-
tive functions used in our experiments.

Cross-entropy objective The cross-entropy ob-
jective presented in Eq. (1) is repeated here for
convenience.

𝐿CE(y, p) = −
3∑︁
𝑖=1

𝑦𝑖 log 𝑝𝑖 .

Its class-weighted version is:

𝐿CE+weighting(y, p) = −
3∑︁
𝑖=1

𝑤𝑖𝑦𝑖 log 𝑝𝑖 .

MLL objective The MLL objective of Eq. (2) is:

𝐿MLL(y, p) = 𝐿CE(y, p) + 𝜆𝑅MLL(y, p)

= −
3∑︁
𝑖=1

[𝑦𝑖 log 𝑝𝑖 + 𝜆(1 − 𝑦𝑖) log(1 − 𝑝𝑖)] ,

and its weighted version is:

𝐿MLL+weighting(y, p)

= −
3∑︁
𝑖=1

𝑤𝑖 [𝑦𝑖 log 𝑝𝑖 + 𝜆(1 − 𝑦𝑖) log(1 − 𝑝𝑖)] .

SRN objective The SRN objective 𝐿SRN, orig-
inally presented in Eq. (7), is restated below, ac-
companied by its instantiation for individual gold
classes:

𝐿SRN(y, p) = 𝐿CE(y, p) + 𝜆𝑅SRN(y, p)

= −
3∑︁
𝑖=1

𝑦𝑖 log 𝑝𝑖 − 𝜆
2∑︁
𝑖=1

(1 − 𝑦𝑖) log(1 − 𝑝𝑖)

=




− log 𝑝1 − log(1 − 𝑝2), if 𝑦1 = 1,
− log 𝑝2 − log(1 − 𝑝1), if 𝑦2 = 1,
− log 𝑝3 − log(1 − 𝑝1)

− log(1 − 𝑝2), if 𝑦3 = 1.

With class weighting, the objective becomes
Eq. (10), as shown in Section 2.2. The correspond-
ing expressions for individual gold classes are as
follows:

𝐿SRN+weighting(y, p)

=




−𝑤1 [log 𝑝1 + log(1 − 𝑝2)] , if 𝑦1 = 1,
−𝑤2 [log 𝑝2 + log(1 − 𝑝1)] , if 𝑦2 = 1,
−𝑤3 [log 𝑝3 + log(1 − 𝑝1)

+ log(1 − 𝑝2)] , if 𝑦3 = 1.

SR objective The objective 𝐿SR is shown below:

𝐿SR(y, p) = 𝐿CE(y, p) + 𝜆𝑅SR(y, p)

= −
3∑︁
𝑖=1

𝑦𝑖 log 𝑝𝑖

− 𝜆(1 − 𝑦3)
2∑︁
𝑖=1

(1 − 𝑦𝑖) log(1 − 𝑝𝑖)

=



− log 𝑝1 − log(1 − 𝑝2), if 𝑦1 = 1,
− log 𝑝2 − log(1 − 𝑝1), if 𝑦2 = 1,
− log 𝑝3, if 𝑦3 = 1.

And the weighted version is:

𝐿SR+weighting(y, p)
438

https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/D19-6601
https://doi.org/10.18653/v1/2021.findings-acl.426
https://doi.org/10.18653/v1/2021.findings-acl.426
https://link.springer.com/chapter/10.1007/978-3-030-01246-5_5
https://link.springer.com/chapter/10.1007/978-3-030-01246-5_5
https://www.jmlr.org/papers/v5/zhang04b.html
https://www.jmlr.org/papers/v5/zhang04b.html
https://doi.org/10.1109/TPAMI.2023.3268118
https://doi.org/10.1109/TPAMI.2023.3268118
https://doi.org/10.18653/v1/P19-1085
https://doi.org/10.18653/v1/P19-1085


=



−𝑤1 [log 𝑝1 + log(1 − 𝑝2)] , if 𝑦1 = 1,
−𝑤2 [log 𝑝2 + log(1 − 𝑝1)] , if 𝑦2 = 1,
−𝑤3 log 𝑝3, if 𝑦3 = 1.

B Additional Experimental Results

B.1 Confusion Matrices
To provide a comprehensive view of the compared
prediction models, the confusion matrices of their
predictions are presented in Tables 4–6. We ob-
serve that the sample weighting mitigates the im-
balance bias in most cases. Specifically, weighting
decreases the number of predictions for the major-
ity class (SUP), for example, from 7497 to 7211
in the case of the BERT Base backbone; compare
Table 4(a) and (b).

B.2 Effect of 𝜆
We introduced in the MLL objective of Eq. (2)
a hyperparameter 𝜆 to balance the primary and
auxiliary terms in the objective.

To evaluate the efficacy of calibrating the 𝜆 pa-
rameter, we specifically examine the performance
for fixed 𝜆 = 1 (i.e., direct application of original
MLL loss), and that of 𝜆 tuned over the develop-
ment set. Table 7 shows the results. We note that
the scores of 𝜆 = 1 are considerably lower than
those achieved when 𝜆 is optimized on the devel-
opment set.

C License of the Assets

The FEVER 2018 dataset3 is licensed under the
CC BY-SA 3.0. The KGAT implementation4 is
licensed under the MIT License.

3https://fever.ai/dataset/fever.html
4https://github.com/thunlp/KernelGAT
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Prediction

SUP REF NEI

SUP 5976 222 468
Gold REF 470 5153 1043

NEI 1051 1184 4431

Total 7497 6559 5942

(a) Loss = CE, Weighting = no (FS=75.75, LA=77.81)

Prediction

SUP REF NEI

SUP 5862 214 590
Gold REF 427 4906 1333

NEI 922 897 4847

Total 7211 6017 6770

(b) Loss = CE, Weighting = yes (FS=76.02, LA=78.08)

Prediction

SUP REF NEI

SUP 5976 201 489
Gold REF 510 4981 1175

NEI 1066 991 4609

Total 7552 6173 6273

(c) Loss = MLL, Weighting = no (FS=75.65, LA=77.84)

Prediction

SUP REF NEI

SUP 5785 303 578
Gold REF 372 5098 1196

NEI 845 1079 4742

Total 7002 6480 6516

(d) Loss = MLL, Weighting = yes (FS=76.06, LA=78.13)

Prediction

SUP REF NEI

SUP 5919 196 551
Gold REF 455 4876 1335

NEI 1001 894 4771

Total 7375 5966 6657

(e) Loss = SRN, Weighting = no (FS=75.70, LA=77.84)

Prediction

SUP REF NEI

SUP 5766 239 661
Gold REF 444 4958 1264

NEI 864 962 4840

Total 7074 6159 6765

(f) Loss = SRN, Weighting = yes (FS=75.79, LA=77.83)

Prediction

SUP REF NEI

SUP 5948 221 497
Gold REF 461 4969 1236

NEI 1014 939 4713

Total 7423 6129 6446

(g) Loss = SR, Weighting = no (FS=75.87, LA=78.16)

Prediction

SUP REF NEI

SUP 5979 228 459
Gold REF 457 5031 1178

NEI 1080 939 4647

Total 7516 6198 6284

(h) Loss = SR, Weighting = yes (FS=76.06, LA=78.29)

Table 4: Confusion matrices on the development set, with the BERT Base backbone. The “Total” row shows the
number of times each class is predicted.
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Prediction

SUP REF NEI

SUP 5985 222 459
Gold REF 436 5061 1169

NEI 1032 1042 4592

Total 7453 6325 6220

(a) Loss = CE, Weighting = no (FS=75.98, LA=78.20)

Prediction

SUP REF NEI

SUP 5817 238 611
Gold REF 349 5171 1146

NEI 854 1032 4780

Total 7020 6441 6537

(b) Loss = CE, Weighting = yes (FS=76.74, LA=78.85)

Prediction

SUP REF NEI

SUP 6011 188 467
Gold REF 437 5068 1161

NEI 1019 940 4707

Total 7467 6196 6335

(c) Loss = MLL, Weighting = no (FS=76.78, LA=78.94)

Prediction

SUP REF NEI

SUP 5858 258 550
Gold REF 359 5214 1093

NEI 858 1112 4696

Total 7075 6584 6339

(d) Loss = MLL, Weighting = yes (FS=76.74, LA=78.85)

Prediction

SUP REF NEI

SUP 5942 214 510
Gold REF 406 5076 1184

NEI 922 1028 4716

Total 7270 6318 6410

(e) Loss = SRN, Weighting = no (FS=76.57, LA=78.68)

Prediction

SUP REF NEI

SUP 5806 246 614
Gold REF 323 5148 1195

NEI 852 1004 4810

Total 6981 6398 6619

(f) Loss = SRN, Weighting = yes (FS=76.71, LA=78.83)

Prediction

SUP REF NEI

SUP 6024 165 477
Gold REF 411 4989 1266

NEI 1007 869 4790

Total 7442 6023 6533

(g) Loss = SR, Weighting = no (FS=76.86, LA=79.02)

Prediction

SUP REF NEI

SUP 5938 187 541
Gold REF 397 5087 1182

NEI 884 971 4811

Total 7219 6245 6534

(h) Loss = SR, Weighting = yes (FS=77.01, LA=79.19)

Table 5: Confusion matrices on the development set, with the BERT Large backbone.
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Prediction

SUP REF NEI

SUP 6073 153 440
Gold REF 357 5127 1182

NEI 964 865 4837

Total 7394 6145 6459

(a) Loss = CE, Weighting = no (FS=78.03, LA=80.19)

Prediction

SUP REF NEI

SUP 5783 220 663
Gold REF 238 5291 1137

NEI 693 938 5035

Total 6714 6449 6835

(b) Loss = CE, Weighting = yes (FS=78.54, LA=80.55)

Prediction

SUP REF NEI

SUP 6032 148 486
Gold REF 321 5092 1253

NEI 913 878 4875

Total 7266 6118 6614

(c) Loss = MLL, Weighting = no (FS=77.88, LA=80.00)

Prediction

SUP REF NEI

SUP 5995 159 512
Gold REF 299 5151 1216

NEI 826 864 4976

Total 7120 6174 6704

(d) Loss = MLL, Weighting = yes (FS=78.55, LA=80.62)

Prediction

SUP REF NEI

SUP 6117 129 420
Gold REF 361 4996 1309

NEI 962 771 4933

Total 7440 5896 6662

(e) Loss = SRN, Weighting = no (FS=78.18 LA=80.24)

Prediction

SUP REF NEI

SUP 5913 227 526
Gold REF 275 5410 981

NEI 780 1064 4822

Total 6968 6701 6329

(f) Loss = SRN, Weighting = yes (FS=78.56, LA=80.73)

Prediction

SUP REF NEI

SUP 6072 162 432
Gold REF 314 5239 1113

NEI 915 981 4770

Total 7301 6382 6315

(g) Loss = SR, Weighting = no (FS=78.19, LA=80.41)

Prediction

SUP REF NEI

SUP 5901 213 552
Gold REF 237 5238 1191

NEI 766 901 4999

Total 6904 6352 6742

(h) Loss = SR, Weighting = yes (FS=78.63, LA=80.70)

Table 6: Confusion matrices on the development set, with the RoBERTa Large backbone.

Backbone Loss Weighting LA FS

BERT Base MLL (𝜆 = 0.125) yes (𝛽 = 0.999999) 78.13 76.06
MLL (𝜆 = 1) yes (𝛽 = 0.99999) 77.96 75.91

BERT Large MLL (𝜆 = 0.03125) yes (𝛽 = 0.999999) 78.85 76.74
MLL (𝜆 = 1) yes (𝛽 = 0.999999) 78.68 76.56

RoBERTa Large MLL (𝜆 = 0.0625) yes (𝛽 = 0.999999) 80.62 78.55
MLL (𝜆 = 1) yes (𝛽 = 0.99999) 80.05 77.97

Table 7: Effect of tuning 𝜆 in the MLL objective.
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