
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 2: Short Papers, pages 380–392

March 17-22, 2024 c©2024 Association for Computational Linguistics

Flow Matching for Conditional Text Generation
in a Few Sampling Steps

Vincent Tao Hu1,2 Di Wu2 Yuki M Asano2 Pascal Mettes2

Basura Fernando3 Björn Ommer1,† Cees G. M. Snoek2,†

1LMU, Munich, DE
2University of Amsterdam, NL

3A*STAR, SG

Abstract

Diffusion models are a promising tool for high-
quality text generation. However, current mod-
els face multiple drawbacks including slow
sampling, noise schedule sensitivity, and mis-
alignment between the training and sampling
stages. In this paper, we introduce FlowSeq,
which bypasses all current drawbacks by lever-
aging flow matching for conditional text gen-
eration. FlowSeq can generate text in a few
steps by training with a novel anchor loss, alle-
viating the need for expensive hyperparameter
optimization of the noise schedule prevalent in
diffusion models. We extensively evaluate our
proposed method and show competitive per-
formance in tasks such as question generation,
open-domain dialogue, and paraphrasing.

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021b) have demonstrated
impressive generative performances across many
domains and have started to gain traction in the
NLP domain as well. Diffusion models shine in
their ability to generate diverse and high-quality
samples but require many sampling steps leading
to a long generation time (Li et al., 2022). Further-
more, they require careful tuning of hyperparame-
ters such as the noise schedule (Gao et al., 2022;
Yuan et al., 2022; Ye et al., 2023; Hoogeboom et al.,
2023), time-step interval (Chen et al., 2023; Lin
et al., 2023), and sampling algorithm (Tang et al.,
2023). A suboptimal choice can drastically degrade
the performance.

A recently proposed generative model, Flow
Matching (Lipman et al., 2023; Liu et al., 2023;
Neklyudov et al., 2022; Albergo et al., 2023; Tong
et al., 2023), represents a superclass of diffusion
models and has seen successful adoption to differ-
ent applications such as image generation (Lipman
et al., 2023; Hu et al., 2024b; Dao et al., 2023;
Hu et al., 2023), video prediction (Davtyan et al.,

Figure 1: FlowSeq: Competitive BLEU scores using
a single sampling step, demonstrated here for question
generation on the Quasar-T dataset.

2022), human motion generation (Hu et al., 2024a;
Mehta et al., 2024) point cloud generation (Wu
et al., 2022), and generative modelling on mani-
folds (Chen and Lipman, 2023). This model di-
rectly learns a vector field between the trajectory
of instance data and random noise, formulating a
nearly straight trajectory between data and noise
which can significantly accelerate the sampling
speed. In this paper, we propose FLOWSEQ, a
flow matching model for sample-efficient text gen-
eration.

We perform generation at the continuous em-
bedding space (Li et al., 2022; Dieleman et al.,
2022; Gao et al., 2022) instead of the discrete
space (Hoogeboom et al., 2021; Chen et al., 2023),
for improved controllability (Li et al., 2022) and
more flexibility (Strudel et al., 2022). To this end,
a continuous vector field is learned to form a di-
rect trajectory between the text embeddings and
Gaussian noise. Additionally, we formulate an an-
chor loss to facilitate direct sampling from noisy
data at any time step, thus further increasing sam-
pling speed. As a result, our method yields strongly
competitive performance on open domain dialogue,
question generation, and paraphrasing tasks when
compared to various baselines. As demonstrated
in fig. 1, despite relying on as few as a single-step
sampling, we manage to secure competitive results

380

Backward Process Forward Process

𝑧! 𝑧"𝑧"/$ 𝑧%/$
Text 𝑤

𝑃(𝑤|&𝑧" ; 𝜑) Tom is ten years old.

How old is Tom?

E.g. Question Generation

𝑧& = 𝑡 𝑧"+ (1 – t) 𝑧!

Sequence to Sequence&𝑧" = 𝑧&+ (1 – t) ,v(𝑧&, t; 𝜃)

Single-step Estimation

𝐸𝑚𝑏(𝑤 ; 𝜑)

𝑬𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈 𝑧

Figure 2: FLOWSEQ framework . We convert text representations to embeddings to facilitate flow matching on a
continuous state. During the forward process, we uniformly corrupt the embeddings. We learn a vector field that
can recover the original embeddings by a backward pass. Finally, we generate text using an argmax operation.

on the question generation task.

2 Related works

Diffusion Models for Text Modeling. Diffusion
models have been widely applied to NLP in a non
auto-regressive way (Zou et al., 2023; Li et al.,
2023). They can be categorized into two classes:
discrete diffusion, which performs the diffusion
process in token levels (Hoogeboom et al., 2021;
Chen et al., 2023), and embedding diffusion, which
performs sequence-level diffusion (Li et al., 2022;
Dieleman et al., 2022; Gao et al., 2022). Embed-
ding diffusion is more favorable than token dif-
fusion, due to the better parallel generation, text
interpolation and token-level controls, robustness
to input corruption (Zou et al., 2023). To adapt
continuous diffusion models to discrete space, an
embedding is typically learned between the discrete
and continuous states. Then, diffusion is conducted
on the continuous state using standard continuous
diffusion models. Without specific restrictions on
the design space, this approach can result in trivial
embeddings. The Anchor loss in Difformer (Gao
et al., 2022) is key to avoiding this collapse. Our
method is inspired by these approaches but differs
in its focus on increasing the sampling speed while
minimizing performance degradation. We achieve
this by utilizing flow matching models.

Fast sampling for generative models. Despite
the emergence of diffusion models in NLP, thou-
sands of steps are still required to achieve the de-
sired quality. DDIM (Song et al., 2021a) formu-
lates the sampling trajectory process as an ODE.
FastDPM (Kong and Ping, 2021) bridges the gap

between discrete and continuous timesteps, reduc-
ing the sampling process to hundreds of steps. Re-
cently, several other works (Luhman and Luhman,
2021; Salimans and Ho, 2022; Gu et al., 2023;
Song et al., 2023; Tong et al., 2023) have been
proposed that use distillation to further boost the
sampling speed. In contrast, we propose to utilize
ODE sampling from flow matching (Lipman et al.,
2023; Liu et al., 2023; Neklyudov et al., 2022).
This method can formulate a straight trajectory be-
tween the Gaussian distribution and the real data
distribution, potentially enabling faster sampling
speed.

3 Method

Problem Statement. We address sequence-to-
sequence text generation tasks. In particular, given
a source sequence wx={wx

1 , ..., w
x
m} of length M ,

we aim to learn a generative model that can pro-
duce a target sequence wy={wy

1 , ..., w
y
n} of length

N conditioned on the source sequence.
Flow Model for Text Generation. Next, we

introduce our text generation framework. At a
high-level, our approach views text generation as a
process of transporting a noisy version of the text
embedding to the corresponding clean version by
following a learned trajectory. We model these tra-
jectories with an Ordinary Differential Equation
(ODE) that specifies the shortest transport path and
utilize a neural network to fit the vector field of
the ODE. Our proposed training pipeline is shown
in fig. 2. To generate samples, one can start with a
random Gaussian noise sample and then solve the
ODE in reverse starting from the noise.

Text is inherently discrete but modeling discrete

381

distributions with flow-based models can be chal-
lenging and may require compromises that lose
some of the benefits like fast sampling. Inspired
by prior studies (Li et al., 2022; Gong et al., 2022),
we choose to model the problem in the continuous
text embedding space. We define the text embed-
ding function EMB(·;ϕ) with the word embeddings
ϕ ∈ RV×D and a vocabulary size of V . Then, we
map the discrete text w to continuous embeddings
z. The word embeddings ϕ can be learnable or
fixed. To map continuous embeddings back to the
discrete words, we choose the one with the most
similar embedding wz =argmax (z̃1 · ϕT).

Before we insert the text embeddings into the
neural network, we concatenate both the source and
target sequences z:=x ⊕ y, x = EMB(wx;ϕ) ∈
RM×D,y = EMB(wy;ϕ) ∈ RN×D, z ∈ RL×D,
and L=M+N .

Training. Our objective is to construct a trans-
port flow that moves the text embedding from the
Gaussian distribution to the data distribution. For-
mally, we denote z0 ∈ RL×D as Gaussian noise
and z1 ∈ RL×D as the continuous text embedding
derived from the discrete text. We denote with vθ

the velocity field neural network of the ODE:

dzt = v(zt, t; θ)dt, (1)

where t ∈ [0, 1], and zt represents the intermedi-
ate states at time t. The velocity field v(zt, t; θ) :
RL×D × [0, 1] → RL×D is modeled by a neural
network with parameters θ. Given a noisy version
of the text embedding zt at time t < 1 the veloc-
ity field vθ should move it towards the true data
z1. The shortest path for doing so is the straight
line between z1 and z0. Thus, we encourage our
velocity field to also follow the optimal path that
is described by the ODE dzt=(z1−z0)dt, which
leads to the training objective:

min
θ

∫ 1

0
E
[
∥v(zt, t; θ)− (z1 − z0)∥2

]
dt, (2)

where zt = tz1 + (1− t)z0 t ∈ [0, 1]. (3)

In practice, we do not optimize the loss in eq. (2)
directly because of the nontrivial integral over
t ∈ [0, 1]. Instead, for each data sample z1, we
randomly draw a z0 from Gaussian noise, and a
time t in [0, 1] and minimize the following loss
with equivalent optimum:

min
θ

Et,z0∥v(zt, t; θ)− (z1 − z0)∥2.

Anchor loss. Motivate by (Gao et al., 2022),
to prevent the word embeddings from collapsing
and to encourage straighter paths between z1 and
zt – which will reduce the sampling steps needed –
we introduce an extra term to the training objective.
The anchor loss is a cross-entropy loss based on the
estimation of z1 using z̃1 : − log p(wx⊕y|z̃1;ϕ).
This loss backpropagates gradients to both the word
embeddings ϕ and the neural network parameters
θ of the velocity field. The full training objective
then becomes:

min
θ,ϕ

Et,z0

[
||v(zt, t; θ)− (z1 − z0)||2

− log p(wx⊕y|z̃1;ϕ)
]
,

(4)

where z̃1 is an approximation of data z1 from start-
ing point zt with estimated velocity v(zt, t; θ):

z̃1 = zt + (1− t)v(zt, t; θ). (5)

During training, to achieve the conditioning op-
eration, we only add noise to y instead of x (see ap-
pendix A).

Sampling. We focus on single-step sampling for
maximum efficiency, the anchor loss is designed to
facilitate one-step generation by ODE:

z̃1 := z0 + ṽ(z0, 0; θ).

The discrete token id is retrieved by argmax(z̃1 ·
ϕT).

Algorithm 1 Single-Step Flow for Conditional Text
Generation

Input: dataset D, a neural velocity field vθ with
parameter θ.
Discrete to Continuous state:
z0 = EMB(w0, ϕ)
Training velocity flow model: randomly sample
z0 ∼ N (0, I) and z1 ∼ D, and train vθ follows
the objective function eq. (6) to convergence.
Sampling (output): Randomly sample from
y0 ∼ N (0, I), z0 = x1 ⊕ y0 and output the
desired text z1 with z1 = z0 + vθ(z0, 0).
Continuous to discrete state:
wz = argmax (z1 · ϕT).

4 Experiments

Experimental Details. We focus on the task
of Question Generation, Paraphrasing, and Open-
domain Dialogue. We evaluate our approach on

382

Tasks Methods NFE↓ BLEU↑ R-L↑ Score↑ dist-1↑ selfB↓ div-4↑ Len

Open
Domain
Dialogue

Transformer-base – 0.018 0.104 0.478 0.750 0.370 0.647 19.50
GPT2-large FT – 0.013 0.100 0.529 0.924 0.021 0.994 16.80
GPVAE-T5 – 0.011 0.101 0.432 0.563 0.356 0.555 20.10
NAR-LevT – 0.016 0.055 0.476 0.973 0.710 0.142 4.11
DiffuSeq 2,000 0.014 0.106 0.513 0.947 0.014 0.997 13.60
FLOWSEQ (Ours) 1 0.011 0.119 0.345 0.709 0.027 0.999 30.70

Question
Generation

Transformer-base – 0.166 0.344 0.631 0.931 0.327 0.772 10.30
GPT2-large FT – 0.111 0.322 0.635 0.967 0.291 0.806 9.96
GPVAE-T5 – 0.125 0.339 0.631 0.938 0.357 0.728 11.4
NAR-LevT – 0.093 0.289 0.549 0.891 0.983 0.478 6.93
DiffuSeq 2,000 0.173 0.366 0.612 0.905 0.279 0.810 11.50
DiffuSeq 500 0.016 0.120 0.334 0.543 0.321 0.435 11.50
FLOWSEQ (Ours) 1 0.162 0.370 0.573 0.833 0.460 0.497 11.80

Paraphrase

Transformer-base – 0.272 0.575 0.838 0.975 0.448 0.734 11.20
GPT2-large FT – 0.206 0.542 0.836 0.982 0.733 0.502 9.53
GPVAE-T5 – 0.241 0.589 0.847 0.969 0.561 0.617 9.60
NAR-LevT – 0.227 0.580 0.834 0.979 0.999 0.333 8.85
DiffuSeq 2,000 0.241 0.588 0.837 0.981 0.273 0.864 11.20
FLOWSEQ (Ours) 1 0.143 0.461 0.669 0.862 0.191 0.781 11.90

Table 1: Results for sequence-to-sequence text generation on different tasks. Benchmarking autoregres-
sive transformers, finetuned large pre-trained language models, and non-autoregressive methods. NFE
denotes the number of neural forward evaluations. Len refers to the length of the generated tokens.

Figure 3: Forward process classification accuracy of
embeddings from x1 estimation. 1). Both the noise
schedule of FLOWSEQ and the joint training with the
embedding can more evenly distribute the corruption,
thereby aiding the denoising process. 2). Our empirical
findings suggest that learnable embeddings are superior
because they can more uniformly corrupt the data, and
resulting in worse accuracy.

Method Iters BLEU↑ R-L ↑ Score↑
FLOWSEQ 40k 0.162 0.345 0.573
w/o anchor loss 40k 0.001 0.001 0.143

Table 2: Ablation study on Question Generation task.
The anchor loss is important.

the widely used datasets: Quasar-T (Dhingra et al.,
2017), QQP dataset1, and the Commonsense Con-
versation Dataset (Zhou et al., 2018).

We report the BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and BERTScore (Zhang
et al., 2019) for string and sentence-based simi-
larity. To evaluate the diversity, we report unique
unigram (dist-1), sentence-level self-BLEU (Zhu
et al., 2018), and diverse 4-gram (div-4) (Desh-
pande et al., 2019). We use a transformer archi-
tecture to model v(zt, t; θ). More details about
architecture structure, evaluation, and training de-
tails are given in the appendix B.

Main Results. We compare our model to three
groups of baselines, which cover both autoregres-
sive (AR) and non-autoregressive (NAR) architec-
tures. The first group of methods use an encoder-
decoder-based Transformer (Vaswani et al., 2017).
The second group uses a finetuned large-scale pre-
trained language model, i.e., GPT2 (Radford et al.,
2019). We also compare our model to GPVAE (Du
et al., 2022), which augments a pretrained T5 (Raf-
fel et al., 2020) with VAE to improve generation
diversity. For the last group of baselines, we con-
sider two strong iterative NAR models: LevT (Gu
et al., 2019) and DiffuSeq (Gong et al., 2022). The
results of the baseline are from (Gong et al., 2022).

The results in table 1 show that our approach
is competitive when compared to the three strong
baseline groups but requires much less compute.

1
https://www.kaggle.com/c/quora-question-pairs

383

https://www.kaggle.com/c/quora-question-pairs

Importantly, our model only uses a single sampling
step, which is a significant reduction in compute
when compared to DiffuSeq (Gong et al., 2022),
which requires 2,000 steps to perform well. For
example, when we reduce the number of sam-
pling steps for DiffuSeq (Gong et al., 2022) to 500
on the Question Generation dataset, we observe
a significant performance drop. Running 2,000
sampling steps required 520 seconds, while our
single-step sample merely required 0.26 seconds
per sentence2. Overall, our method does not exhibit
obvious performance advantage over the baseline
model. Our goal is to enhance the balance be-
tween sampling speed and generation capability
(see fig. 1). This could unlock new potential for
non-autoregressive models, as the number of net-
work forwards is significantly smaller compared
to related non-autoregressive baselines. In some
cases, BLEU and BertScore metrics do not align,
highlighting well-known inconsistencies in evalu-
ating surface-level (BLEU) versus representation-
level (BertScore) aspects (Freitag et al., 2022).

Sampling steps. We primarily compare the sam-
pling steps with DiffuSeq, Difformer (Gao et al.,
2022) in table 3. Our findings indicate that our
method achieves strong results while Difformer
fails. Furthermore, we consistently observe gains
as the number of sampling steps increases.

Amortizing the corruption by flow. In fig. 3,
we contrast the classification accuracy of embed-
dings from the x1 estimation conditioned on xt,
as well as under different embeddings in the for-
ward pass. For diffusion models, we apply the
linear noise schedule as in DDPM (Ho et al.,
2020). We consider 64 sentences, resulting in a
total of 64× 128 tokens. During the forward pass
over 100 steps, we note that the corruption of our
FLOWSEQ is significantly more intense than that
of the diffusion model, indicating a more uniformly
distributed noising process. When comparing the
curve in the flow model with and without trainable
embedding, we can observe that trainable embed-
ding can lead to a higher level of corruption. This
emphasizes the significance of training the embed-
ding along with the network.

Anchor loss. In table 2, we evaluate the im-
pact of anchor loss (Gao et al., 2022). The results
emphasize the critical need to use anchor loss in
preventing the collapse of word embeddings. Sim-
ply applying flow matching loss is insufficient for

2with batch size=128 on single A5000 GPU.

Method Steps BLEU↑ R-L ↑ Score↑
DiffuSeq 1 0.08 0.141 0.412
Difformer 5 0.00 0.01 0.000
Difformer 1 0.00 0.000 0.412
FLOWSEQ 1 0.14 0.461 0.669

Table 3: Ablation study about few-step sampling on
Paraphrase task.

Figure 4: Curvedness. The Curvedness will gradu-
ally decrease after a short peak. This suggests that the
trajectory becomes increasingly straight as training pro-
gresses.

efficient network performance. We hypothesize
that the anchor loss implicitly improves stability
and performance, thereby facilitating a more direct
training trajectory in the ODE. This enhancement
could potentially lead to increased sampling speed.

Curvedness. In fig. 4, we quantitatively show
the change in curvedness during training. Curved-
ness is a metric used to evaluate the curvedness of
the ODE trajectory, and its definition can be found
in Appendix eq. (8). We can see that, after a short
temporary peak, the curvedness continues to de-
crease, indicating that the trajectory becomes pro-
gressively more straight. This trajectory straighten-
ing is crucial for generating high-quality samples
with fewer steps.

5 Conclusion and Future Work

In this paper, we propose a flow-based method for
sequence-to-sequence generation. We utilize the
regression of the vector field and an anchor loss
to encourage single-step generation. Our approach
achieves competitive results compared to several
autoregressive and non-autoregressive baselines.
Importantly, it achieves a remarkable 2,000-fold
acceleration in sampling speed relative to the re-
cent diffusion-based baseline. In the future, we
may opt to apply flow matching directly in discrete
space instead of continuous space. Alternatively,
we might explore generative models in a token-free
manner, such as char-level generation.

384

Limitations. Our work is constrained by a few
limitations. Primarily, due to limited computational
resources, we could not validate the performance
on large-scale datasets. Additionally, our method
involves random sampling of x0 and x1 in an in-
dependent manner. An optimized matching ap-
proach (Tong et al., 2023; Pooladian et al., 2023)
could potentially be employed prior to the vector
field regression, which is a point of investigation
we defer to future work. In the last, Furthermore, a
rectification (Liu et al., 2023; Albergo et al., 2023)
based on flow matching may yield a more direct
trajectory and accelerate the sampling speed.

From an ethical standpoint, the generated sen-
tences have the potential to contain inappropriate
content that may require further review by human
inspectors.

References
Michael S Albergo, Nicholas M Boffi, and Eric Vanden-

Eijnden. 2023. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv.

Ricky TQ Chen and Yaron Lipman. 2023. Riemannian
flow matching on general geometries. arXiv.

Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton.
2023. Analog bits: Generating discrete data using
diffusion models with self-conditioning. In ICLR.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran.
2023. Flow matching in latent space. arXiv.

Aram Davtyan, Sepehr Sameni, and Paolo Favaro. 2022.
Randomized conditional flow matching for video pre-
diction. arXiv.

Aditya Deshpande, Jyoti Aneja, Liwei Wang, Alexan-
der G Schwing, and David Forsyth. 2019. Fast, di-
verse and accurate image captioning guided by part-
of-speech. In CVPR.

Bhuwan Dhingra, Kathryn Mazaitis, and William W Co-
hen. 2017. Quasar: Datasets for question answering
by search and reading. arXiv.

Sander Dieleman, Laurent Sartran, Arman Roshan-
nai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris
Dyer, Conor Durkan, et al. 2022. Continuous diffu-
sion for categorical data. arXiv.

Wanyu Du, Jianqiao Zhao, Liwei Wang, and Yangfeng
Ji. 2022. Diverse text generation via variational
encoder-decoder models with gaussian process priors.
In ACL.

Markus Freitag, David Grangier, Qijun Tan, and Bowen
Liang. 2022. High quality rather than high model
probability: Minimum bayes risk decoding with neu-
ral metrics. TACL.

Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang
Zhang, Jiang Bian, and Linli Xu. 2022. Difformer:
Empowering diffusion model on embedding space
for text generation. arXiv.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and LingPeng Kong. 2022. Diffuseq: Sequence to se-
quence text generation with diffusion models. arXiv.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. NeurIPS.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu,
and Josh Susskind. 2023. Boot: Data-free distillation
of denoising diffusion models with bootstrapping.
arXiv.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. NeurIPS.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans.
2023. simple diffusion: End-to-end diffusion for
high resolution images. arXiv.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini,
Patrick Forré, and Max Welling. 2021. Argmax flows
and multinomial diffusion: Learning categorical dis-
tributions. In NeurIPS.

Vincent Tao Hu, Yunlu Chen, Mathilde Caron, Yuki M.
Asano, Cees G.M. Snoek, and Björn Ommer. 2023.
Guided diffusion from self-supervised diffusion fea-
tures. In Arxiv.

Vincent Tao Hu, Wenzhe Yin, Pingchuan Ma, Yunlu
Chen, Basura Fernando, Yuki M. Asano, Efstratios
Gavves, Pascal Mettes, Björn Ommer, and Cees G.M.
Snoek. 2024a. Motion flow matching for human
motion synthesis and editing. In Arxiv.

Vincent Tao Hu, David W Zhang, Pascal Mettes, Meng
Tang, Deli Zhao, and Cees G.M. Snoek. 2024b. La-
tent space editing in transformer-based flow match-
ing. In AAAI 2024.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In EMNLP.

Zhifeng Kong and Wei Ping. 2021. On fast sampling of
diffusion probabilistic models. arXiv.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S
Liang, and Tatsunori B Hashimoto. 2022. Diffusion-
lm improves controllable text generation. NeurIPS.

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong
Wen. 2023. Diffusion models for non-autoregressive
text generation: A survey. arXiv.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang.
2023. Common diffusion noise schedules and sample
steps are flawed. arXiv.

385

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Max-
imilian Nickel, and Matt Le. 2023. Flow matching
for generative modeling. ICLR.

Xingchao Liu, Chengyue Gong, and Qiang Liu. 2023.
Flow straight and fast: Learning to generate and trans-
fer data with rectified flow. ICLR.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Eric Luhman and Troy Luhman. 2021. Knowledge dis-
tillation in iterative generative models for improved
sampling speed. arXiv.

Shivam Mehta, Ruibo Tu, Simon Alexanderson, Jonas
Beskow, Éva Székely, and Gustav Eje Henter. 2024.
Unified speech and gesture synthesis using flow
matching. In ICASSP.

Kirill Neklyudov, Daniel Severo, and Alireza Makhzani.
2022. Action matching: A variational method for
learning stochastic dynamics from samples. arXiv.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles
Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky Chen. 2023. Multisample flow match-
ing: Straightening flows with minibatch couplings.
ARXIV.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.

Tim Salimans and Jonathan Ho. 2022. Progressive dis-
tillation for fast sampling of diffusion models. arXiv.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics. In ICML.

Jiaming Song, Chenlin Meng, and Stefano Ermon.
2021a. Denoising diffusion implicit models. In
ICLR.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. 2023. Consistency models. arXiv.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole.
2021b. Score-based generative modeling through
stochastic differential equations. In ICLR.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,
Nikolay Savinov, Sander Dieleman, Laurent Sifre,
et al. 2022. Self-conditioned embedding diffusion
for text generation. arXiv.

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao
Li, Ziqiang Cao, and Min Zhang. 2023. Can diffu-
sion model achieve better performance in text gener-
ation? bridging the gap between training and infer-
ence! ACL.

Alexander Tong, Nikolay Malkin, Guillaume Huguet,
Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras,
Guy Wolf, and Yoshua Bengio. 2023. Conditional
flow matching: Simulation-free dynamic optimal
transport. arXiv.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NeurIPS.

Lemeng Wu, Dilin Wang, Chengyue Gong, Xingchao
Liu, Yunyang Xiong, Rakesh Ranjan, Raghuraman
Krishnamoorthi, Vikas Chandra, and Qiang Liu.
2022. Fast point cloud generation with straight flows.
arXiv.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and
Mingxuan Wang. 2023. Dinoiser: Diffused con-
ditional sequence learning by manipulating noises.
arXiv.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang,
and Songfang Huang. 2022. Seqdiffuseq: Text diffu-
sion with encoder-decoder transformers. arXiv.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In ICLR.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao,
Jingfang Xu, and Xiaoyan Zhu. 2018. Commonsense
knowledge aware conversation generation with graph
attention. In IJCAI.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In SIGIR.

Hao Zou, Zae Myung Kim, and Dongyeop Kang. 2023.
Diffusion models in nlp: A survey. arXiv.

386

A Method Details

Partial noising to conditioning on x. Since our
goal is to generate a target text conditioned on
the source text, we can simply replace xt with its
clean version x0 both during training and sampling.
Hence, it is only necessary to add noise to the tar-
get sequence part y and we can remove the terms
corresponding to the source sequence from the loss
in eq. (4):

min
θ,ϕ

Et,z0

[
||ṽ(yt, t; θ)− (y1 − y0)||2

− log p(wy|ỹ1;ϕ)
]
,

(6)

here we use ṽ(yt, t; θ) to denote the velocity field
of yt conditioned on x1.

Single-step sampling. The anchor loss is de-
signed to facilitate one-step generation. First, we
randomly select y0, and concatenate it with the
source text x1 to form z0 = x1 ⊕ y0. Following
this, we proceed to sample:

z̃1 := z0 + ṽ(z0, 0; θ).

The discrete token id is retrieved by argmax(z̃1 ·
ϕT). We focus on single-step sampling for max-
imum efficiency, but our approach generalizes to
multi-stage sampling, as shown in the appendix A.

To perform SEQ2SEQ generation, we initiate by
randomly sampling y0 ∼ N (0, I). Starting from
y0, we append x1 to form z0 = x1 ⊕ y0. Follow-
ing this, samples are generated by discretizing the
ODE process using an Euler solver, as described
in eq. (1), into N steps (e.g., N = 1000), as shown
below,

z′
(t̂+1)/N

←− z′
t̂/N

+
1

N
vθ(z

′
t̂/N

,
t̂

N
), (7)

the integer time step t̂ is defined as t̂ ∈
{0, 1, · · · , N − 1}. Here z′1 denotes our generated
samples and z′0 = z0. We summarize the overall
algorithm of training and sampling in algorithm 1.

Padding tokens. We pad the sequence to a fixed
length. The flow matching model will learn when
to generate PADDING tokens based on the distri-
bution learning process. This way, our method
can generate sentences of diverse lengths. It’s
worth noting that the potential issue of padding
is not exclusive to the diffusion models in sen-
tence generation, but is a general problem for non-
autoregressive generation as well.

B Experimental Details

In evaluating the generated sequences, we regard
both quality and diversity. For quality, we em-
ploy standard metrics like BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004). However, as string-
similarity-based metrics can sometimes be inade-
quate for open-ended generation tasks, we also
resort to BERTScore (Zhang et al., 2019), which
assesses the semantic similarity between the gener-
ated sentences and the references. Higher BLEU,
ROUGE, and BERTScore values indicate better
performance.

Regarding diversity, we use distinct unigram
(dist-1) to measure the intra-sentence diversity,
where lower dist-1 denotes more word repetition in
the generated sentence. For the sentence-level di-
versity evaluation, we apply self-BLEU (Zhu et al.,
2018) to measure the n-gram overlap within the set
of outputs related to one source sentence. Further-
more, we utilize diverse 4-gram (div-4) (Deshpande
et al., 2019) to estimate the ratio of distinct 4-grams
in the set of outputs per source sentence. Lower
self-BLEU and higher div-4 imply greater diversity
in generation.

To enhance the generation quality, we apply the
widely used Minimum Bayes Risk (MBR) decod-
ing strategy (Koehn, 2004). We first generate a
set of candidate samples S from different random
seeds and select the output sequence that yields
the minimum expected risk under a meaningful
loss function (e.g., BLEU or other less expensive
metrics like precision). We compute the accuracy
metrics using MBR with a candidate sample size
of |S| = 10.

Our method incorporates a Transformer with 12
layers and 12 attention heads, treating the time step
embedding in a manner similar to the position em-
bedding. We set the maximum sequence length
at 128, with an embedding dimension of d = 128.
To minimize out-of-vocabulary generation, we ap-
ply Byte Pair Encoding (Sennrich et al., 2016) for
vocabulary construction.

The learning rate is set at 0.0001 and under-
goes annealing during the training process. We
use AdamW (Loshchilov and Hutter, 2019) for
optimization. The experiments are conducted on
NVIDIA A100 Tensor Core GPUs, utilizing 4
GPUs for training and a single GPU for sampling.
We maintain the same parameter count as the Dif-
fuSeq baseline.

For simplicity, we avoid applying Gaussian cor-

387

Figure 5: The comparison of BLEU between our
method and DiffSeq under different Number of Func-
tion Evaluation (NFE).

ruption to the embedding, as performed in (Li et al.,
2022).

For the details of training, please refer to table 4.
For the details of the baseline, we follow the (Gong
et al., 2022). For complexity, we list them in ta-
ble 5.

C Extra Experiment

Curvedness. The curvedness of the trajectories
can be quantified using the following formula:

Curvedness =
1

N

N−1∑

t̂=0

[
∥ (z1 − z0) −

vθ(zt̂/N , t̂/N) ∥2
]
,

(8)

where t̂/N represents the discretized timestep rang-
ing from 0 to N. We illustrate the change in curved-
ness as the training progresses in fig. 4.

Minimum Bayes Risk (MBR) . We further ex-
plore the impact of the number of candidates in
MBR, as depicted in fig. 6. Our observations sug-
gest that performance in terms of BLEU and Rouge-
L improves as we incrementally increase the num-
ber of candidates.

The accuracy of x1 estimation in 100-step back-
ward process. We demonstrate it in fig. 7.

The embedding corruption visualization. We
demonstrate the visualization in fig. 8.

Many-step sampling. We show the many step
sampling result in table 6.

Training progress. The accuracy of the classi-
fication on the embedding from x1 estimation are
shown in fig. 9 (training set) and fig. 10 (validation
set).

Figure 6: Ablation of MBR. As we progressively in-
crease the number of candidates, we observe a slight in-
crease in BLEU and Rouge-L scores. However, the rate
of increase is not as significant. Notably, our method,
FLOWSEQ, is less sensitive to changes in candidate
number compared to DiffuSeq.

Figure 7: Classification Accuracy of Embeddings.
The accuracy of embeddings from the x1 estimation,
which is conditioned on x0, slightly decreases during
the backward process over 100 steps. This decrease
is anticipated, as our anchor loss primarily encourages
single-step sampling, which can negatively impact the
vector field prediction for shorter step sizes.

388

Task Question Generation Paraphrasing Open-domain Dialogue

Dataset Quasar-T (Dhingra et al., 2017) QQP3 Commonsense Conversation (Zhou et al., 2018)
Dataset Size 117k 144k 3382k

Input shape 128×128 128×128 128×128
Transformer type bert-base-uncased bert-base-uncased bert-base-uncased
Vocabulary Size 30,522 30,522 30,522
depth 12 12 12
embedding dim 768 768 768
num of head 12 12 12

Batch size 1,024 1,024 1,024
Micro Batch size 64 64 64
Training iterations 40k 50k 50k
Training Time 5 days 5 days 5 days
GPU 4 × A5000 4 × A5000 4 × A5000

Optimizer AdamW AdamW AdamW
Learning rate 1e-4 1e-4 1e-4
Betas (0.99, 0.999) (0.99, 0.999) (0.99, 0.999)

Table 4: The training details of three tasks. bert-base-uncased denotes a transformer type other than the pretrained
BERT.

Models # Parameters Learning Paradigm Diversity Source

Transformer-base 80M encoder-decoder Temperature/DBS

GPT2-large FT 774M pretrain-finetune Hybrid strategy
GPVAE-T5 220M pretrain+VAE Gaussian sampling

NAR-LevT 80M non-autoregressive -
DiffuSeq 91M non-autoregressive Gaussian sampling
FLOWSEQ 91M non-autoregressive Gaussian sampling

Table 5: The comparison for different models.

389

Step 1 10 500
DiffuSeq 0/0/0 0/0/0 0.02/0.12/0.33
FLOWSEQ 0.162/0.37/0.57 0.17/0.38/0.61 0.17/0.37/0.60

Table 6: Ablation study about sampling steps on Ques-
tion Generation task. BLEU↑/ R-L ↑/ Score↑ are listed.

Figure 8: Visualization Comparison of Embed-
dings. The comparison visualizes the embeddings of
a diffusion-based model (left) and a flow-based model
(right) during the forward process. Both visualizations
share the same colormap. Our FLOWSEQ method man-
ages to corrupt the embedding more uniformly than
diffusion models, significantly facilitating the denoising
process.

The loss trend of the vector field regression loss
and anchor loss are shown in fig. 11, fig. 14 respec-
tively.

D Qualitative Result

We show our qualitative result of the question gen-
eration task in table 7.

Figure 9: Accuracy of Embedding Classification from
x1 Estimation. The accuracy is measured using train-
ing batches for the task of question generation on the
Quasar-T dataset.

Figure 10: Accuracy of Embedding Classification
from x1 estimation. The accuracy is measured using
validation batches for the task of question generation on
the Quasar-T dataset.

Figure 11: Vector field regression loss trend for train-
ing set.

390

Figure 12: Vector field regression loss trend for vali-
dation set.

Figure 13: Total loss trend for training set.

Figure 14: Anchor loss trend.

391

Statement: The Japanese yen is the official and only currency recognized in Japan.
Question: What is the Japanese currency?

GPVAE-T5 NAR-LevT
* What is the japanese currency * What is the basic unit of currency for Japan ?
* What is the japanese currency * What is the basic unit of currency for Japan ?
* What is the japanese currency * What is the basic unit of currency for Japan ?

GPT2-large finetune DiffuSeq
* What is the basic unit of currency for Japan? * What is the Japanese currency
* What is the Japanese currency * Which country uses the “yen yen” in currency
* What is the basic unit of currency for Japan? * What is the basic unit of currency?

FLOWSEQ
* What is the basic unit for Japan currency?
* What is the currency in Japanese?
* What is the currency for Japanese?

Table 7: Sample outputs with different random seed in Question Generation test set.

392

