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Abstract

Neural machine translation (NMT) systems are
vulnerable when trained on limited data. This is
a common scenario in low-resource tasks in the
real world. To increase robustness, a solution
is to intently add realistic noise in the training
phase. Noise simulation using text perturba-
tion has been proven to be efficient in writing
systems that use Latin letters. In this study,
we further explore perturbation techniques on
more complex abugida writing systems, for
which the visual similarity of complex glyphs
is considered to capture the essential nature of
these writing systems. Besides the generated
noise, we propose a training strategy to im-
prove robustness. We conducted experiments
on six languages: Bengali, Hindi, Myanmar,
Khmer, Lao, and Thai. By overcoming the in-
troduced noise, we obtained non-degenerate
NMT systems with improved robustness for
low-resource tasks for abugida glyphs.

1 Introduction

Neural machine translation (NMT) systems have
been shown to be vulnerable in noisy settings,
where slightly modified inputs cause serious trans-
lation failures (Belinkov and Bisk, 2018; Ebrahimi
et al., 2018a). Boucher et al. (2022) showed that
techniques using pre-trained language models can-
not prevent this. This drawback is more disastrous
in low-resource scenarios, where the model’s ro-
bustness becomes a crucial issue.

Several text perturbation techniques have been
developed to improve robustness by introducing
synthesized textual noise. Typical techniques are
DeepWordBug (Gao et al., 2018), TextBugger (Li
et al., 2018), and VIPER (Eger et al., 2019). These
techniques mostly focus on languages that use al-
phabetic systems, such as Latin letters. As a more
complex writing system, Chinese characters were
investigated by Nuo et al. (2020); Zhang et al.
(2021). In the present study, we further fill the
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Figure 1: Homoglyph perturbation examples for various
abugida systems. The Unicode of each character is listed
below the glyph. Perturbed characters are emphasized
in bold font. Various patterns cause homoglyphs: 1)
repetition, 2) permutation, and 3) decomposition (e.g.,
BE — C1 B8 in Khmer).

gap in text perturbation techniques for understud-
ied abugida writing systems, which vary and are
used widely in South-East Asia.

A reasonable perturbation technique should pro-
duce meaningful and readable text that is indistin-
guishable for humans, but disastrous for a system’s
prediction (Le et al., 2022). Visually similar glyphs
or homoglyphs! were investigated in Eger et al.
(2019); Boucher et al. (2022), and Le et al. (2022)
obtained realistic samples from large corpora. As a
primary contribution, we further develop these pre-
vious studies for abugida writing systems. Some
exemplary homoglyphs in various abugida systems
are illustrated in Figure 1.

To address noise, we propose a training strategy
that leverages adversarial training, subword regu-
larization, and consistency training. We selected
six languages that use abugida systems, Bengali,
Hindi, Myanmar, Khmer, Lao, and Thai, and exper-
imented on them for low-resource tasks. Overcom-
ing noisy perturbations improved the robustness of
NMT systems, with non-degenerate performance.

'Te., glyphs with identical or similar presentations, but
different compositions and encodings.
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2 Background
2.1 Abugida Writing System

An abugida is a writing system that combines fea-
tures of both syllabic and segmental systems. Text
is written as a sequence of syllables, which resem-
ble Japanese hiragana, but can be broken down into
separate consonants and vowels, as in a segmental
system. A typical abugida syllable consists of a
base consonant accompanied by a default vowel
or additional vowels represented by diacritics. In
computer systems, these syllables are rendered into
glyphs, which are visual symbols in the render-
ing process. A glyph represents a letter or certain
combinations of multiple letters. For example, in
Latin, the letter a is a glyph, and combined with a
grave accent (diacritic), it becomes another glyph a;
similarly, in abugidas, as shown in Figure 2, a con-
sonant is represented by a glyph, as in (a), and com-
bined with multiple diacritics to become another
glyph, as in (b). As in Figure 1, similar glyphs or
homoglyphs commonly occur in the composition of
complex diacritics, which have numerous patterns
and are difficult to engineer. Therefore, we explore
such diacritic composition from human-generated
corpora. Hereafter, we use the term glyph to refer
to a visual symbol and glyph token to refer to its
corresponding Unicode characters.

S TR} e i@y (Leh[Righ
| 1 | 1
o 191 o §rgiy Leftaghen
! b ! F4- Right: Unicode characters
I L2 : diacritics

Figure 2: Examples of Khmer glyphs. (a) is a glyph
without diacritics and (b) with diacritics.

Even though the issue of homoglyphs for abugi-
das seem similar to that of the Latin alphabet, the
perturbation methods applied to the Latin alphabet
cannot be directly extended to abugidas. A crucial
reason is the complexity of abugidas glyphs (com-
prising multiple characters or diacritics) compared
to the Latin alphabet (involving single characters).
Additionally, such complex glyphs are not prede-
fined in the Unicode table like the Latin alphabet.
This work developed a comprehensive process to
derive abugida glyphs and identify their potential
homoglyphs, thereby enabling us to implement ho-
moglyph perturbations.

2.2 Visual-based Text Perturbation

The objective is to perturb text to cause a system
prediction failure while preserving meaning and hu-

man readability by replacing characters with other
visually similar characters. (Eger et al., 2019; Nuo
et al., 2020; Zhang et al., 2021). Eger et al. (2019)
replaced each target character with its stylish vari-
ants from Unicode data or simply added diacritics
above or below the character from a predefined list.
Nuo et al. (2020) and Zhang et al. (2021) leveraged
a list of handcrafted visually similar glyph charac-
ters for replacement. Previous studies represented
each character using its glyph image or keywords
in the Unicode character description. This work
represents each glyph token based on the glyph
image and diacritic count as an embedding vector.

3 Proposed Method

3.1 Perturbation for Abugidas

3.1.1 Overall Processing

Given a sentence x = (z1,. .., Z,), each token x;
has a chance of being replaced with an adversarial
candidate 2’ € V chosen based on its similarity
score w.r.t z; (Eger et al., 2019), where V is vocab-
ulary that contains all possible tokens, including
clean and noisy tokens®. A threshold is necessary
to prevent undesired x’ being assigned to x; (Ren
et al., 2019). The perturbation probability for each
targeted token x; can be formulated as

. score(x’, x;, B)

: /
oo/ |;) = 2wy o TTT
1—aq, otherwise
(1
Z(x;) = Z score(z”,xi, B)  (2)
eV \{z;}

score(a,b, B) = I(s(a,b) > B) - s(a,b), (3)

where [(-) is an indicator function; « and 3 control
the chance of x; being perturbed and the similarity
threshold, respectively; and s(a, b) is a similarity
function between the continuous vectors of two
tokens a and b, for example, the cosine similarity
s(a,b) = cos(v(a),v(b)), and where v(-) is a vec-
tor. The overall perturbation process is illustrated
in Figure 3. Next, we present the process for obtain-
ing V' from corpora that contain diverse adversarial
candidates in Section 3.1.2, and describe how vec-
tor v(+) is represented by an image in Section 3.1.3
and by counting diacritics in Section 3.1.4.

2As V is fixed in practice, we skip the process if z; ¢ V.
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Figure 3: Overall perturbation processing.

3.1.2 Vocabulary Construction

This step is similar to a typical vocabulary prepa-
ration process that consists of tokenization and
unique token extraction to obtain V. Specifically,
we categorize each character as a consonant or dia-
critic based on Unicode Standard data. Then, we
base tokenization on the consonant position such
that each token starts with a consonant followed by
many or zero diacritics. Hence, we extract a list of
unique tokens as V.

Because the similarity is mostly around the dia-
critics, we want to perturb only the diacritic parts
of each targeted token. To achieve this, our trick
is to replace the consonant counterpart of each to-
ken in V' with that of the targeted token z;, which
varies every time step ¢. This trick is based on the
assumption that the visual form of the consonant
never changes when it is combined with diacrit-
ics. However, we discovered one case in Bengali
and Hindi in which the base consonant changed its
visual form. Hence, we simply skipped the pertur-
bation for such case.

3.1.3 Image-based Glyph Embeddings (IGE)

We convert each glyph image? into a linear vector
of m -n dimensions by arranging rows in the m x n
matrix, where each entry corresponds to a pixel in
the grayscale image. The pixel values range from 0
(representing the empty area) to 255 (representing
the visible part of a glyph). Because the image size
varies greatly across glyphs, we predetermine the
maximum size m X n based on all glyphs and then
render them into the m x n size. They must align to
the left on the horizontal axis and to the middle on
the vertical axis. Additionally, we empty the pixels
that correspond to the consonant to ensure that
the similarity value is not affected by the common
pixels of the base consonant. Finally, we use the
cosine similarity function for IGE, which is defined
as s(a,b) = cos(v(a),v(b)).

3.1.4 Diacritic-Count Embeddings (DGE)

A simpler approach involves counting the diacritics
that exist in a glyph token and how many times

SWe used Pillow9.4.0 and Google Noto Serif fonts
with 100px for all languages.

they occur. Specifically, a glyph token is repre-
sented by a frequency vector, where each entry
corresponds to a diacritic in the language and the
value of each entry is the count of the correspond-
ing diacritic in the glyph token. Additionally, we
smooth each frequency value using an exponent
~. For instance, if a language [ has a set of dia-
critics {a, b, c} and a glyph token consists of di-
acritics acc, DGE represents it using a frequency
vector [1, 0, 2]7 because a occurs once and ¢ occurs
twice. Using DGE, we can identify two glyphs
that have similar sets of diacritics, regardless of
the order of the diacritics. We set v = 0.3 in
all experiments and use the inverse Euclidean dis-
tance as the similarity function, which is defined as
s(a,b) = (Buclidean(v(a),v(b)) + 1)~ L.

3.2 Robust NMT Training

To generalize a model in the presence of noisy in-
puts, we propose a training strategy that maximizes
the regularization benefit resulting from combin-
ing adversarial training (AT) (Eger et al., 2019),
subword regularization (SR) (Kudo, 2018), and
consistency training (Wang et al., 2021). During
training, the inputs are first perturbed by AT, and
then various subwords of the perturbed inputs are
sampled by SR to generate variants of the original
inputs. This ensures that the variants do not resem-
ble the original inputs and thereby maximizes the
regularization benefit. Lastly, consistency training
is applied to ensure the consistency of the model’s
predictions between the original inputs and their
variants, as explained in Appendix A.

Various perturbation techniques can be em-
ployed in this training strategy, such as random
character perturbation (RD) (Karpukhin et al.,
2019), which consists of four character-operations
(insert, delete, substitute, and swap), or our pertur-
bation technique, which uses IGE or DGE. Because
our perturbations were used during both training
and inference, we prevented the exposure of the
test set during training by constructing a perturba-
tion vocabulary for inference from external corpora
(Viest) and one for training from the training data
(Virain), while also ignoring all adversarial candi-
dates that exist in V4.4, during inference.

4 Experiments

4.1 Settings

We experimented on six abugida languages: Ben-
gali (bg), Hindi (hi), Myanmar (my), Khmer (km),
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Bengali Hindi Myanmar

Khmer Lao Thai

0

0.0 1.0 0.0 1.0 00 1.0
Figure 4: BLEU scores of NMT with « from 0.0 to 1.0,
with a step of 0.2 on the x-axis, and /3 set to 1.0.

Table 1: BLEU results on perturbed inputs. 1 denotes
statistical significance with p-value < 0.01 compared
with the second best scores.
bg hi my km lo th
Baseline and comparison methods
Base 22 29 41 19 32 39

SR 9.3 83 143 84 11.7 8.1
SRt 94 83 140 85 13.7 87
RD 6.6 9.4 16.7 89 134 11.9
Proposed robust training with 8 = 1, using
RD 10.2 12.1 17.5 13.7 15.5 14.0
DGE 10.9 10.6 1827 14.8 16.3 14.6

127 10.0 164 214 17.0' 187
Improvement of IGE with different 3

IGE

IGEgg; —0.2 3.1 —0.7 —0.1 03 19
IGEggy 0.4 27 —04 05 —0.1 1.9
IGEggs —0.7 1.6 0.7 02 02 2.1

Lao (10), and Thai (th). We constructed Vg
from the cleaned CommonCrawls (Wenzek et al.,
2020; Conneau et al., 2020) and evaluated transla-
tion performance on the Asian Language Treebank
dataset (Riza et al., 2016) from abugida languages
to English using SacreBLEU (Post, 2018). Other
details are presented in Appendix B.

4.2 Results and Discussion

We evaluated the performance of the vanilla model
(Base) with respect to our perturbation technique
using IGE with 5 = 1. Figure 4 illustrates the
performance degradation across all languages. The
worst cases achieved a score close to zero; our
robust training was investigated for these cases.
Table 1 demonstrates the effectiveness of our ap-
proach against perturbation. We trained IGE and
DGE with & = 1 and 8 = 1. First, our robust
training using RD outperformed all baselines; in
particular, it outperformed SR and RD with consis-
tency training (named SR.; and RD ¢, respectively).

22 4
20 1
18 1
16 1

BLEU

144 &
12
10

0.0 0.2 0.4 0.6 0.8 1.0
a

Figure 5: BLEU scores of IGE,, with different .

This indicates the effect of combining AT with SR.
Furthermore, IGE and DGE achieved better results
than RD in most cases, signifying the importance
of performing our perturbation during training to
prevent the models from being affected by similar
attacks. Evaluated on clean inputs, our methods
were comparable with SR.; and outperformed other
baselines because our robust training exploited the
effect of SR, as shown in Table 3 in Appendix C.

The last three rows of Table 1 show the further
improvement resulting from training IGE using a
smaller 8. The motivation for this experiment is
that our training approach does not benefit from
training data that are cleaned or have few homo-
glyphs. Therefore, using a smaller 5 to exploit
more similar glyphs improved the performance for
Hindi and Thai. In addition, because it is possible
that attacks with a smaller 3, e.g., 0.95, may occur
in the real world provided that the readability of the
noise is preserved, this setting may be beneficial
in such circumstances. However, using a smaller
5 has the disadvantage that the perturbation would
generate some random text, which may make the
training of the model more difficult and degrade its
performance on clean inputs.

Figure 5 reveals the impact of « on training IGE.
It is evident that fine-tuning « is crucial for achiev-
ing optimal performance, with o = 0.8 emerging
as the optimal value for the majority of languages
in this study.

5 Related Work

5.1 Text Perturbation

Text perturbation has been extensively studied in
the literature, with two scenarios: white-box and
black-box. In the white-box scenario, the model’s
gradients are leveraged (Li et al., 2018; Ebrahimi
et al., 2018b), whereas in the black-box scenario,
only the model’s input and output are known (Li
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et al., 2018; Ebrahimi et al., 2018b). Various per-
turbation operations have been proposed, such as
randomly characters perturbation (Karpukhin et al.,
2019), perturbation based on the keyboard layout
and natural typos (Belinkov and Bisk, 2018), ex-
traction of visually similar glyphs of characters
(Eger et al., 2019), and similar embedding sub-
words (Park et al., 2020). Our study explores visu-
ally similar glyphs beyond characters.

5.2 Consistency Training

In various studies, researchers have used consis-
tency training in various ways to enhance the per-
formance of natural language processing (NLP)
models. Previously, Wang et al. (2021) used consis-
tency training to improve subword tokenization in
multilingual models. Xie et al. (2020) and Kamb-
hatla et al. (2022) improved data augmentation tech-
niques for NMT using consistency training. Fur-
thermore, Park et al. (2022) used consistency train-
ing on virtual noise to improve the performance of
text classification and natural language inference
tasks. In this study, we adopted consistency train-
ing to regularize our training on the joint sampling
of adversarial text and subwords to enhance the ro-
bustness of the NMT model against perturbations.

6 Conclusion

In this study, we presented a perturbation approach
that leverages visual similarity and introduced a
training strategy to maintain the performance of
the NMT model. We exposed the vulnerability of
the vanilla NMT model through experiments that
perturbed test data using homoglyphs, and demon-
strated the importance of robust training against
text perturbation. The findings of this study can aid
future research effort in evaluating the generaliza-
tion capabilities of NMT models, particularly for
low-resource settings and understudied languages.

Limitations

More abugida writing systems should be experi-
mented with. The methods used in this study re-
quire eight GPUs, which may not be available to
all researchers.

Ethics Statement

Like previous approaches in the NLP text pertur-
bation literature, our approach could be uninten-
tionally used by malicious actors to attack textual
machine learning systems. To mitigate this, we

implemented precautionary measures. First, access
to our perturbation is limited to our private API,
with appropriate security measures. Second, we
proposed a technique that enhances the model’s ro-
bustness against our perturbation, as shown in Sec-
tion 3.2. Thus, we believe that this study will con-
tribute to enhancing the robustness of NLP tasks
for low-resource languages. All datasets used in
this study are either open-source or released by the
original authors.
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A Consistency Training

The purpose of consistency training is to ensure
that a model’s prediction for a sequence x remains
consistent with its prediction for the variant se-
quence x’ (Wang et al., 2021). Given a training
set {(x;,y:)}~,, its objective function can be ex-
pressed as

1 1
L(0) = Z[_§ log po (yilxi) D) log po(yilx;)
+AD(po (yilxi)lIpo(yilxi))],  (4)

where 6 is a set of model parameters and D(-||-)
is a non-negative distance metric between two dis-
tributions that are controlled by the hyperparam-
eter A\. Following Wang et al. (2021), we use
Kullback-Leibler divergence for D(-||-) and set
A=0.2.

B Other Settings

B.1 Dataset

The ALT data were released under CC-BY-4. 0%,
The terms of use of CommonCrawls can be found
on its official website®. We used these data and
followed their intended use for this study. For the
translation, we split the data into training, valida-
tion, and test sets following the ALT standard®. We
tokenized the training, validation, and test sets us-
ing SentencePiece based on the unigram language
model with a joint vocabulary of 4k.

B.2 Implementation

We used the transformer architecture for all the
models and implemented them using Fairseq (Ott
et al., 2019) in our experiments. We trained all the
models on the eight GPUs (Tesla V100 SXM2 with
32 GB memory) and the number of parameters was
approximately 54 million. We mostly based the

4https: //www2.nict.go.jp/astrec-att/member/
mutiyama/ALT/ALT-Parallel-Corpus-20191206/README.
txt

5ht’cps: //commoncrawl.org/terms-of-use/

Shttps://www2.nict.go.jp/astrec-att/member/
mutiyama/ALT
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Table 3: BLEU results on clean inputs.

Khmer Lao Thai
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Figure 6: Average amount of noise per sentence on the
test set with various values of a.

Table 2: chrF++ results on perturbed inputs.

bg hi my km lo th
Baseline and comparison methods

Base 24.0 22.2 28.2 225 224 239
SR 35.5 326 404 349 354 31.2
SRt 35.2 35.6 429 320 37.7 328
RD 327 38.0 43.7 33.8 35.2 338

Proposed robust training with 3 = 1, using
RD 35.5 414 458 41.0 39.9 40.3
DGE 36.8 39.3 44.1 43.1 41.4 404
IGE 393 38.8 44.6 47.6 424 44.5

Improvement of IGEg with different 3

IGEgg; —0.3 29 —06 —05 00 12
IGEggy 0.1 26 —1.3 0.0 —04 16
IGEggs —1.5 1.0 —1.3 —0.2 —0.4 18

configuration on Guzmaén et al. (2019), which was
specifically designed for the Indic low-resource
NMT setting. However, we further fine-tuned the
number of epochs and found that increasing the
number of epochs to 1k achieved improvements
across all models.

The hyperparameters for SR, that is, the n-best
size [ and the distribution smoothness y, were also
fine-tuned and the best setting was [ = oo and
¢ = 0.2. In addition, for RD, the perturbation
probability (which is equivalent to our perturbation
hyperparameter ) was set to 1.

C Additional Results and Discussion

The impact of our perturbation technique with
8 = 1 on the dataset was measured by the amount
of noise introduced, as shown in Figure 6. Figure 6
shows the per-sentence amount of homoglyph noise
that was added during inference. The results plot-
ted in Figure 4 show a strong correlation between
« and the amount of noise per sentence, which ex-
plains why a larger o degrades the translation per-

bg hi my km 1o th

Baseline and comparison methods

Base 17.0 25.6 19.7 22.0 15.8 20.6
SR 172 26.5 19.8 223 172 20.7
SRt 19.6 283 223 241 189 229
RD 176 25.5 21.0 23.8 18.2 223

Proposed robust training with 3 = 1, using

RD 19.7 279 223 239 18.7 23.2
DGE 19.1 282 214 239 189 228
IGE 19.5 281 221 23.6 185 23.0

Improvement of IGE with different 3

IGEgp9s —1.0 -1.3 —-1.1 03 —-04 -1.0
IGEypg99 —0.5 —-1.0 —-1.4 —-0.3 —-0.8 —0.7
IGEpss —1.0 —-0.8 —-1.8 0.2 -0.1 —-0.6

Table 4: chrF++ results on clean inputs.

bg hi my km lo th

Baseline and comparison methods

Base 43.8 52 456 479 4177 46.2
SR 44.0 52.8 45.6 48.3 42.6 46.1
SRt 46.5 544 483 499 443 48.1
RD 44.5 51.8 46.4 49.6 43.7 479

Proposed robust training with 8 = 1, using

RD 469 539 48.2 499 442 484
DGE 46.4 54.3 472 49.7 444 479
IGE 46.4 544 477 49.7 43.8 48.1

Improvement of IGE with different 3

IGEgg9; —0.6 —1.3 —1.2 —0.1 00 —06
IGEggy —0.3 —1.0 —1.3 —0.5 —0.2 —0.4
IGEygs —0.6 —0.8 —1.4 —0.1 02 —0.4

formance more. Table 2 further shows the chrF++
results on noisy inputs.

Table 3 and 4 summarizes the performance of
all NMT models on clean inputs. The results show
that our models achieved performance compara-
ble with that of the state-of-the-art SR.; for all
languages. Additionally, the comparison of RD;
with our robust training using RD reveals that com-
bining AT with SR affected the performance on
the clean inputs in addition to the noisy inputs.
Nonetheless, using a smaller 3 slightly degraded
the performance on clean inputs.

Table 5 highlights the perturbed examples ob-
tained by IGE using 8 = 1, 0.95, and 0.9. The
examples with 5 = 1 are identical to their original
clean examples. For = 0.95 and 0.9, diacrit-
ics with minor visibility were added, mostly above
and below the original glyphs. Even though these
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Table 5: Perturbed examples.

clean: 93 Y32 RGN g b NI (AT QYIS AT 1 |
X B=1 a2 Fio 432 MG g afb TPET M Zoite A |
& p=.os: 92 b Y32 RGPS 8 Qb VT (02 QYITS AL Jel |
B=.9: Q3 FH Y33 MEWS 58 b NOFET (02 RGoITS AT ol |
clean: TR 9eg HohM & ik 39 A H =16l &l TohdT &l
N T, e TR § @ich 38 Al H T € Wbl 1
1 . . .
B=.95: T Hea Hhmah & Qifch 38 Hgsal B -1l gl bl g
B=.9: U] Hea Hohmas § Qifch 28 mgsail B 1t 8t Tahett &)
1 . [ o < ¢ < om < Qo o o 2 § C‘O("]
clean: O?O‘DGOBQ 038 3’3C\8§ 3’3C\gODO’DOR ORo@O’D GOJJC\Dee OﬁOJDthPe ) GQO’JCB?%CO Il
-1 (N o < < < o < (Y C‘° o o Q (& C‘OO’]
B= O?CDGOgo CDe 33c8§ SEQOJQDODOR GRe@CD GQJDC\DEo CRQJD;;&U’Jo ) oo?c:cggﬁco Il
my B s @ Q e e o e & ¢ i S e Saus8sd
B=.95 O?O'JGO’@JS OJE 3’3(\3? 39(\8030‘3(7& ORe@CTJ (lebp[qblob]] CY['OJD:»GU'JS A 90?(73(89?(20 Il
_ (N o < A\ C < b o N Qo A am2 oo 8 (Y @C‘(]
B=.9: CROIEERE RO FCP$ WG FR3OM AN CPEQPE Ay HEROIRCFEO I
clean: IBINAISINWHHIRESHULNUSAIIG] US4
o B IR N WHERInTSUEN TS AIfIg] L
m ' = i, O a v e
B=.95: iﬁiﬂ'ﬁimmwgﬁiﬁﬁsgﬁﬁﬂjﬁ$fd‘ji§‘jﬁf’l
p=.9: iosnmiSen winiRSsHunniuSag] w1
clean: Budnlmguly weunindezvnngy uadawanfodmasuls.
R=1 Bmdnlnduiu wsmnﬁnﬁaxmanag Lmﬁmmnﬁm"ﬁmﬂﬁu‘(ﬁ.
10 o d Vo v o 8 o & o o b+ 5 v
B=.95: Bwanlnduly Wednion2smangs wouaiw JnG0htaauLs.
R=.9: B0 Tmdwiy Wedaniohss %OﬁlﬂL oUFRdnBoOuISULE.
clean: awwudssinusudingniauazaiaiiozdiniilaogaaludnie 2 ou
N p=1 Fuandssinusudingnilauazainitazdensiinogdaludnfe 2 tfau
t a ' Q.l =] L =3 co ou
B=.95: ahuudsiifusudingnilauaz@aidedsniilnogdeludnts 2 ou
p=.9: awdnudoduSudingnilouazAiefiidedonsilaogdoluBnia 2 ou

noisy diacritics are noticeable, the readability of
the examples is probably preserved because hu-
mans have a strong recognition capability. A native
Khmer speaker, who was asked to read the Khmer
examples, could understand the one obtained with
B8 = 0.9 without seeing the highlights or the corre-
sponding original example. However, we observed
that the reading speed was slower than usual be-
cause the speaker was looking at the context to
understand the perturbed glyphs. More extensive
assessments with native speakers are required in
our future study to better understand the potential
glyph attacks using smaller values of j.
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