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Abstract

As large language models are becoming more
embedded in different user-facing services, it
is important to be able to distinguish between
human-written and machine-generated text to
verify the authenticity of news articles, product
reviews, etc. Thus, in this paper we set out to
explore whether it is possible to use one language
model to identify machine-generated text pro-
duced by another language model, in a zero-shot
way, even if the two have different architectures
and are trained on different data. We find that
overall, smaller models are better universal
machine-generated text detectors: they can more
precisely detect text generated from both small
and larger models, without the need for any
additional training/data. Interestingly, we find that
whether or not the detector and generator models
were trained on the same data is not critically
important to the detection success. ecFor instance
the OPT-125M model has an AUC of 0.90 in de-
tecting GPT4 generations, whereas a larger model
from the GPT family, GPTJ-6B, has AUC of 0.65.

1 Introduction

With the rapid improvement in fluency of the text
generated by large language models (LLMs), these
system are being adopted more and more broadly in a
wide range of applications, including chatbots, writing
assistants, and summarizers. Generations from these
models are shown to have human-like fluency (Liang
et al., 2022; Yuan et al., 2022), making it difficult for
human readers to differentiate machine-generated text
from human-written text. This can have significant
ramifications, as such LLM-based tools can be abused
for unethical purposes like phishing, astroturfing, and
generating fake news (He et al., 2023). As such, we
need to be able to reliably and automatically detect
machine generated text.

While there has been work on training specialized
classifiers for distinguishing between machine-
generated text of specific models and human-written
text (Verma et al., 2023; OpenAI), such approaches

are not always applicable as access to training data
might be limited, the classifier might overfit to a given
model’s generation, and it would need to be constantly
updated to account for distribution shifts. As such,
zero-shot methods are developed that can detect
machine generated text without any training, using
the generator model and its likelihood distribution
over tokens (Mitchell et al., 2023; Gehrmann et al.,
2019; Solaiman et al., 2019; Ippolito et al., 2020).
In practice, however, we often need to detect
machine-generations in situations where we do not
know which model could have been used as the text
generator — and even if we do know the generator,
we might not have white-box access to it or its logits,
or access might be behind a paywall (e.g. GPT3).

Therefore, in this paper we set out to explore
the zero-shot detection of machine-generated text
without any knowledge of the generator, or access
to it. We do this by exploring whether it is possible
to use signals from one language model (a detector
model) to identify machine-generated text generated
by another language model (the generator). We use
surrogate detector models, whose likelihood functions
we do have access to, and run zero-shot tests using
different signals such as likelihood, rank, log rank,
and curvature of the detector model over text (Ippolito
et al., 2020; Gehrmann et al., 2019; Mitchell et al.,
2023) to distinguish between machine-generated and
human written text. We call this cross-detection.

We conduct an extensive empirical analysis by
experimenting on a slew of models with different
sizes (from tens of millions to billions of parameters),
architectures (GPTs, OPTs, Pythias) and pre-training
data (Webtext and the Pile). Our main finding is
that zero-shot cross-detection can come very close
to self-detection and non-zeroshot oracle in terms of
distinguishablity, with smaller models being the best
universal detectors, regardless of the generator archi-
tecture or training data. For instance for GPT4 the
AUC of using OPT-125M as a cross-detector is 0.90,
whereas OPT 6.7B’s AUC is 0.71. We then further in-
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Figure 1: Overview of our methodology: We study how models can cross-detect, i.e. distinguish between human-written
text and machine-generated text generated by another model. We create a target pool of both human-written and
machine-generated text and feed the pool to the surrogate detector model to get the value of the signal we want to use
(likelihood, curvature, etc.) and use this signal to test if the sequence is machine-generated or not.

vestigate some possible reasons for this phenomenon
by analyzing curvature and log-likelihood of the
different models, and find that larger models are more
conservative in terms of the likelihood and curvature
they assign to generations from other models. Smaller
models, however, assign higher curvature to genera-
tions of models their size or larger, therefore they can
be used to cross-detect on a broader range of models.

2 Methodology and Experimental Setup

Figure 1 shows the methodology of our work, where
for a given target pool of sequences (with a 50%/50%
composition of machine-generated/human-written
text), the task is to determine if each sequence is
human-written or machine-generated by running
a detection test using the likelihood surface of a
surrogate detector model.
Detection test. We try various detection test-based
zero-shot methods that rely on the predicted token-
wise conditional distributions of the generator model
for detection. However, these methods were originally
intended for self-detection (i.e. detecting text from
a known, available generator using the model itself),
whereas we test them in a cross-detection setup (i.e.
using the surrogate detector model). We use four dif-
ferent signals for our detection tests. (1) log-likelihood:
average token-wise log probability, with the intuition
that sequences with higher log probability are more
likely to be machine-generated. (2) & (3) rank and log-
rank (Solaiman et al., 2019) which is the average ob-
served rank or log-rank of the tokens based on the de-
tector model, with the intuition that machine generated
text tends to have lower rank. (4) curvature (Mitchell
et al., 2023; Mattern et al., 2023), which uses the local-
optimality of a point with respect to its neighbors (i.e.
perturbations), in the likelihood surface of the detec-
tor model. The intuition is that if the likelihood of
a point is much higher than most of its neighbors,
then it is more likely to be machine-generated. For all
these signals, the detection test places a threshold on
the value and determines human-written vs. machine

generated based on that. We compare results to an Or-
acle, non-zero shot baseline, which is the openai-
roberta-base model, a classifier specifically
trained by OpenAI to detect machine-generated text.
Success metric. We evaluate the success of the
detector by measuring the area under the ROC curve
(AUC), i.e. the false positive vs. true positive rate
curve. The higher the AUC, the more distinguishing
power the detection mechanism has. We use this
measure as it is threshold independent and measures
the true power of the method.
Models and datasets. For full details of the
experimental setup refer to Appendix A. Here we
discuss a brief summary. We use models ranging
from 70 Million to 6.7B parameters as detectors,
including the OPT, GPT, GPT-J, GPTNeo and Pythia
families (Biderman et al., 2023; Zhang et al., 2022;
Wang and Komatsuzaki, 2021). For our evaluations,
We use a subsample of the SQuAD (Rajpurkar et al.,
2016) and WritingPrompts (Fan et al., 2018) datasets,
where the original dataset sequences are used as the
human-written text in the target sequence pool. We
then use the first 20 tokens of each human-written
sequence as a prompt, and feed this to the target
model, and have it generate completions for it. We
report results averaged over these datasets.

3 Does cross-detection work?

In this section we present our experimental results
and show that cross-detection can perform as well as
self-detection and come very close to a non-zero shot
oracle baseline. We also experiment with partially
trained checkpoints of different detector models, and
find that for larger models, partially trained check-
points are better cross-detectors than fully trained ones.
We provide extensive heatmaps, ablations of choosing
the neighborhood, and a study of the performance of
detection under a paraphrasing attack in Appendix B .

3.1 Smaller Models Are Better Detectors
Figure 2 shows distinguishablity results using
curvature as the test signal, where the rows are the

279



OP
T-

6.
7B

GP
TJ

-6
B

Py
th

ia
-2

.8
B

Py
th

ia
-2

.8
B-

dd

GP
TN

eo
-2

.7
B

GP
T2

-X
L

Py
th

ia
-1

.4
B

Py
th

ia
-1

.4
B-

dd

OP
T-

1.
3B

GP
TN

eo
-1

.3
B

GP
T2

-L
ar

ge

Py
th

ia
-4

10
M

Py
th

ia
-4

10
M

-d
d

GP
T2

-M
ed

iu
m

OP
T-

35
0M

Py
th

ia
-1

60
M

Py
th

ia
-1

60
M

-d
d

OP
T-

12
5M

GP
TN

eo
-1

25
M

GP
T2

Di
st

ilG
PT

2

Py
th

ia
-7

0M

Py
th

ia
-7

0M
-d

d

Or
ac

le

Detector Model

GPT4

ChatGPT

GPT3

OPT-6.7B

GPTJ-6B

GPTNeo-2.7B

GPT2-XL

OPT-1.3B

GPTNeo-1.3B

GPT2-Large

GPT2-Medium

OPT-350M

OPT-125M

GPTNeo-125M

GPT2

DistilGPT2

Mean

Ge
ne

ra
tiv

e 
M

od
el

0.71 0.65 0.73 0.73 0.76 0.83 0.78 0.80 0.84 0.82 0.87 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.90 0.91 0.86 0.90 0.90 0.75

0.67 0.62 0.67 0.67 0.72 0.79 0.72 0.75 0.80 0.79 0.83 0.80 0.82 0.84 0.84 0.82 0.83 0.86 0.84 0.86 0.84 0.83 0.83 0.73

0.70 0.69 0.73 0.73 0.74 0.78 0.75 0.76 0.77 0.78 0.79 0.79 0.79 0.79 0.81 0.82 0.82 0.82 0.84 0.80 0.80 0.84 0.84 0.70

0.93 0.64 0.74 0.74 0.78 0.81 0.79 0.81 0.91 0.84 0.84 0.84 0.84 0.84 0.91 0.85 0.86 0.90 0.87 0.85 0.83 0.85 0.85 0.77

0.72 0.88 0.77 0.77 0.81 0.78 0.82 0.82 0.84 0.85 0.82 0.85 0.85 0.82 0.86 0.86 0.86 0.87 0.87 0.83 0.82 0.86 0.86 0.76

0.62 0.56 0.72 0.71 0.95 0.81 0.83 0.83 0.83 0.87 0.86 0.87 0.89 0.87 0.88 0.88 0.88 0.89 0.89 0.88 0.84 0.87 0.87 0.78

0.61 0.52 0.68 0.68 0.78 0.98 0.81 0.82 0.86 0.86 0.94 0.89 0.90 0.95 0.93 0.91 0.91 0.93 0.92 0.94 0.90 0.89 0.90 0.86

0.69 0.53 0.66 0.65 0.74 0.82 0.79 0.79 0.98 0.83 0.88 0.87 0.89 0.89 0.95 0.91 0.90 0.95 0.91 0.91 0.89 0.89 0.90 0.79

0.55 0.49 0.67 0.65 0.80 0.80 0.83 0.84 0.84 0.99 0.88 0.92 0.93 0.90 0.93 0.94 0.93 0.94 0.95 0.91 0.90 0.92 0.92 0.77

0.55 0.46 0.64 0.63 0.75 0.89 0.81 0.82 0.85 0.86 0.99 0.91 0.92 0.96 0.95 0.93 0.93 0.95 0.94 0.96 0.93 0.92 0.92 0.84

0.40 0.33 0.53 0.49 0.64 0.81 0.72 0.73 0.77 0.80 0.92 0.90 0.91 1.00 0.95 0.94 0.93 0.95 0.95 0.97 0.94 0.92 0.93 0.83

0.46 0.35 0.52 0.50 0.63 0.73 0.72 0.73 0.82 0.80 0.86 0.91 0.91 0.91 1.00 0.96 0.96 0.99 0.97 0.96 0.97 0.97 0.96 0.76

0.33 0.25 0.38 0.37 0.47 0.57 0.57 0.57 0.67 0.67 0.73 0.84 0.83 0.83 0.96 0.96 0.96 1.00 0.97 0.96 0.98 0.97 0.97 0.75

0.24 0.21 0.32 0.30 0.41 0.48 0.51 0.50 0.52 0.60 0.65 0.82 0.80 0.77 0.91 0.96 0.96 0.96 1.00 0.96 0.97 0.98 0.97 0.73

0.24 0.21 0.34 0.32 0.43 0.58 0.55 0.56 0.58 0.64 0.77 0.84 0.84 0.89 0.93 0.96 0.95 0.98 0.97 1.00 0.99 0.97 0.97 0.81

0.15 0.14 0.19 0.18 0.27 0.24 0.33 0.34 0.33 0.42 0.39 0.62 0.60 0.54 0.76 0.89 0.88 0.91 0.93 0.88 1.00 0.97 0.97 0.71

0.54 0.47 0.58 0.57 0.67 0.73 0.71 0.72 0.76 0.78 0.81 0.85 0.85 0.85 0.90 0.91 0.90 0.92 0.92 0.91 0.90 0.91 0.91 0.77

AUC of Distinguishing Human Text from Generations using Curvature Test

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors.
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(b) Curvature: OPT-350M as Detector
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(c) Curvature: OPT-6.7B as Detector
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(e) Logliklihood: OPT-350M as Detector
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Figure 3: Comparison of curvature and log likelihood values (mean and standard deviation) for the best universal
detector (OPT-125M), a medium sized detector (OPT-350M), and a larger detector from the same family (OPT-6.7B)
on generations from models of various sizes (x-axis). The ‘Detector Model’ line shows values for when the generator
and detector are the same model. Detectors tend to show higher curvature on generations than human-written text only
for generations from models of the same size or larger.

generator models (sizing up from bottom row to top)
and the columns show the detector models (sizing
up from right to left). Each cell shows the detection
power (AUC). The last row is the mean, which is an
overall metric of how good of a detector that model
is. Figure 4 shows a summary of it for the other three
signals, with extensive heatmaps in Appendix B.6.

We see that the bottom left has the lowest values,

showing that larger models are not good at detecting
machine generated text from other models, and they
are particularly bad at it for detecting small model
generations. We can also see that smaller models
are much better detectors, as the right side of the
graph has much higher AUC values. This trend
holds across all the four different detection tests.
Another observation is the correlations between the
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Figure 4: Summary of AUC results for signals other than
curvature. We see a similar trend, with smaller models
providing a better distinguishing signal.

dataset and model architecture of the generator
and detector models. As the heatmap shows, models
from the same architecture family and trained on
the same/overlapping dataset are better at detecting
their own text, compared to models from a different
family. For instance, for detecting text generated by
OPT-6.7B the other models from the OPT family
are the best cross-detectors, with AUCs ranging
from 0.89-0.87 (OPT-6.7B self-detects with AUC
0.91). The next best cross-detector is the smallest
GPTNeo-125M with AUC 0.86. However, the Ope-
nAI GPT2 model of the same size has a lower AUC
of 0.84 (and overall the GPT2 family has the lowest
cross-detection AUC on OPT), which we hypothesize
is due to the larger gap in the training data, as the
OPT and GPTNeo/GPTJ models are all trained on
the Pile dataset, but GPT2 is trained on the Webtext.
All in all, the difference due to the dataset/architecture
differences is small as most of the dataset for all
these models is comprised of web-crawled data.
The right-most column is the non-zero shot oracle
baseline, and as we can see cross-detection comes
close to it, especially for larger models.

One noteworthy observation is that OPT-125M can
detect generations from models like GPT3 and Chat-
GPT with relatively high AUC (0.82). However, if the
intuitive approach of taking another large, “similar”
model were to be taken and we were to use OPT-6.7B,
we would get AUC of 0.70 and 0.67 for these models,
respectively, which are both close to random (0.5).

3.2 Partially
Trained Models are Better Detectors

We take different training checkpoints of the Pythia
models (Biderman et al., 2023) at different steps (steps
1k, 5k, 10k, 50k, 100k and 143k) with different sizes
(2.8B, 410M, and 70M), and use them as detectors of
generations from the 4 target models. Figure 14 shows

the results for this experiment (Figures 10 and 11
show entire heatmaps of this experiment). For each
model we can see that the final checkpoint is consis-
tently the worst one in terms of machine-generated
text detection, and it is one of the middle checkpoints
that has the best performance. Our hypothesis for
this is similar to that of the previous section, where
we believe that partially trained models have not yet
fit to the training data tightly (and have a smoother
surface), so they over claim other models’ generations
as their own, whereas the longer a model is trained,
the sequences it ranks higher as its own narrow down.

3.3 Curvature and Loglikelihood Breakdown

We plot a breakdown of the curvature metric
(Section 2) and log-likelihood values for the best
universal detector (OPT-125M), a medium sized
detector of the same family (OPT-350M) and a larger
one from the same family (OPT-6.7B), shown in
Figure 3. The y-axis is the curvature/log likelihood
of the target generations under the detector models
(OPT-125M, 350M or 6.7B). The x-axis is the
number of parameters of the generator model.

We can see that for the smaller detector model
(Figures 3a and 3d), the mean curvature and
log-likelihood values for the generated text are consis-
tently higher than the curvature for the human-written
text. However, for the larger model (Figure 3c and 3f),
the curvature and log-likelihood values for the
machine-generated text is in most cases smaller than
or around the same value as the human written text.
The curvature and log-likelihood values for human
written text for both graphs are stable since the text
is the same and doesn’t depend on the target model.

We can also see that overall the curvature and
likelihood values for the larger model are higher,
especially for the original text, than those of the
smaller model, and the values for text generated by
the other models have lower curvature and likelihood
value. This shows that the larger model places higher
likelihood on the human written text and fits it better.
The smaller model, however, assigns lower curvature
and likelihood to the human-written text compared to
generations by a large gap, and the assigned values are
overall lower than those of the large model. Broadly
we observe that all models respond similarly to
machine generated text from other models, so long
as the other model is same size or bigger. In other
words, they place high likelihood on text from larger
models. However, for models smaller than them-
selves, they place lower likelihood and curvature. As
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Figure 5: Summary of the results for cross-detection power of different detector models trained for different number
of steps. Each subfigure shows a different detector model, and the x-axis shows the training step for the checkpoint used
as a detector. The results for all 15 generator models are shown in Figure 10.

such, smaller models are better universal detectors,
as the size of the set of sequences they assign higher
likelihood and curvature to is bigger than it is for large
models, and this higher curvature is much higher than
the curvature assigned to the human written text. The
spikes in all the sub-figures of Figure 3 graphs are
for the detector model detecting its own text.

4 Related Work

The problem of machine-generated text detection has
already been studied for multiple years using a variety
of different approaches (Ippolito et al., 2020; Jawahar
et al., 2020; Uchendu et al., 2020, 2021): Both
Gehrmann et al. (2019) and Dugan et al. (2022) have
found that humans generally struggle to distinguish
between human- and machine-generated text, thereby
motivating the development of automatic solutions.
Among those, some methods aim to detect machine-
generated text by training a classifier in a supervised
manner (Bakhtin et al., 2019; Uchendu et al., 2020),
while others perform detection in a zero-shot manner
(Solaiman et al., 2019; Ippolito et al., 2020). There is
also a line of work that relies on bot detection through
question answering (Wang et al., 2023; Chew and
Baird, 2003), which is outside the scope of this paper.

Most recently, Mitchell et al. (2023) introduced the
zero-shot method DetectGPT, which is based on the
hypothesis that texts generated from a LLM lie on
local maxima, and therefore negative curvature, of the
model’s probability distribution. Other strategies have
been proposed to enable the detection of machine-
generated text in the wild. One such method is wa-
termarking, which injects algorithmically detectable
patterns into the released text while ideally preserving
the quality and diversity of language model outputs.
Watermarks for natural language have already been
proposed by Atallah et al. (2001) and have since been
adapted for outputs of neural language models (Fang

et al., 2017; Ziegler et al., 2019). Notable recent at-
tempts for transformer based language models include
work by Abdelnabi and Fritz (2021), who propose an
adversarial watermarking transformer (AWT). While
this watermarking method is dependent on the model
architecture, Kirchenbauer et al. (2023) propose a
watermark that can be applied to texts generated by
any common autoregressive language model.
Relationship to Membership Inference Attacks.
Prior work (Mattern et al., 2023) demonstrated that
the same optimality test can be used to distinguish
between training set members and non-training
members, i.e. as a membership inference attack.
As our experiments showed, when models size up
the detection power (i.e. distinguishablity between
machine-generated and human-written text) decreases.
For MIA, however, prior work demonstrate inverse
scaling, as in larger models demonstrate higher
distinguishing power (Mireshghallah et al., 2022). We
attribute this to the higher memorization capablities
of these models, as shown by (Tirumala et al., 2022),
making it easier for them to recognize their training
data.

5 Conclusion

With the increasing prevalence of LLMs it becomes
crucial to differentiate between text written by
humans and text generated by machines so as to avoid
fake news and impersonations. As such, we set out
to explore the possibilities of using existing models
to detect generations from unknown sources, and
distinguish them from human written text. We find
that when using zero-shot detection methods, smaller
models are overall better at detecting generations, and
larger models are poor detectors. Our results offer
hope of robust general purpose protection against
LLMs used with nefarious intentions.
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Limitations

Although we see high AUCs for black-box detection
of machine generated text in our experiments, this
does not necessarily mean that these detection meth-
ods are not avoidable, and that they can be applied to
all models and achieve high performance. We present
further experiments in Appendix B.7 to see the
performance degradation when paraphrasing is used
to avoid detectors, and find it to be not significant.
However, further experiment are needed to evaluate
the generalization of our findings to other architec-
tures and setups. As LLMs continue to change and
detection evasion methods become more prevalent,
so must methods for detection and validation studies.
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A Extended Experimental Setup

A.1 Models

We want to experiment with a wide range of mod-
els, with different architectures, parameter counts
and training datasets, therefore we use the following
model families in our experiments: Facebook’s OPT
(we use the 125M, 350M, 1.3B, and 6.7B models),
EleutherAI’s GPT-J, GPTNeo and Pythia (Biderman
et al., 2023) (we use GPTNeo-125M, GPTNeo-1.3B,
GPTNeo-2.7B, GPTJ-6B and Pythia models ranging
from 70M to 2.8B parameters), and OpenAI’s GPT
models (distilGPT, GPT2-Small, GPT2-Medium,
GPT2-Large, GPT2-XL, GPT-3 and ChatGPT).

We also have experiments where we use partially
trained models as detectors. For those experiments,
we only use the Pythia models as they are the only
ones with available, open-source partially trained
checkpoints. For each Pythia models, there is also
a de-duplicated version available, where the model
is trained on the de-duplicated version of the data, as
opposed to the original dataset. All the models we use
are obtained from HuggingFace (Wolf et al., 2019).

A.2 Dataset

Evaluation dataset. We follow Mitchell et al.
(2023)’s methodology for pre-processing and feed-
ing the data. We use a subsample of the SQuAD
dataset (Rajpurkar et al., 2016), where the original
dataset sequences are used as the human-written text
in the target sequence pool. We then use the first 20 to-
kens of each human-written sequence as a prompt, and
feed this to the target model, and have it generate com-
pletions for it. We then use this mix of generations and
human-written text to create the target pool for which
we do the detection. In all cases, following the method-
ology from Mitchell et al. (2023), our pool consists of
300 human-written target samples, and 300 machine-
generated samples, so the overall pool size is 600.

Pre-training datasets for the generative models.
The ElutherAI and Facebook models (GPTJ, GPT-
Neo, Pythia and OPT families) are all trained on the
Pile dataset (Gao et al., 2020), a curated collection
of 22 English language datasets (consisting of
web-crawled data, academic articles, dialogues, etc.).
As mentioned above there are two versions of each
Pythia model (Biderman et al., 2023), one version is
trained on Pile, the other is trained on de-duplicated
Pile. The de-duplicated Pile is approximately 207B
tokens in size, compared to the original Pile which
contains 300B tokens. There is limited information
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Figure 6: AUC of the three cross-detectors from Figure 3
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Figure 7: Summary of the cross-detection area under the
ROC curve (AUC) results for a selection of generative
(the 4 models over the X axis) and detector (OPT-125M
and OPT-6.7B) models. We can see that the smaller OPT
model is a better universal cross-detector. Full results are
shown in Figure 2.

and access to the training data of the OpenAI models.
The GPT-2 family is reportedly trained on the
WebText dataset, GPT-3 is trained on a combination
of the Common Crawl 1, WebText2, books and
Wikipedia, and there is not any information released
about the training data of ChatGPT.

B Additional Plots and Experiments

B.1 Does neighborhood choice matter?

Our estimation of “curvature” hinges upon generating
numerous perturbations (neighbors) and comparing
their loss with that of a target point. Therefore, if
these perturbed neighbors are not sufficiently nearby
and lie in a different basin of the likelihood surface,
our measure of curvature is not accurate (the closer
the perturbed points are, the more accurate estimation
of curvature we achieve). The perturbation method di-
rectly impacts the size and shape of the neighborhood
we create. Therefore, we compare different pertur-

1https://commoncrawl.org
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bation schemes in order to see how sensitive detectors
of different sizes are to neighborhood choice.

We investigate two different methods for changing
the distance of the generated perturbations: (1) we
change the mask filling model size, by experimenting
with T5-Small, T5-Large and T5-3B (Wolf et al., 2019;
Raffel et al., 2020) to test the intuition that larger mask-
filling models, generate semantically closer neighbors
than a smaller model, we present the extended results
for this in Appendix B.4. A similar analysis is also
conducted in (Mitchell et al., 2023), we however, do
a more extensive analysis on numerous models of
different sizes and probe the curvature values. (2) We
change the percentage of the tokens that get masked
and replaced by the mask-filling model, as the more
tokens we mask and replace, the farther the generated
perturbations would be. (3) Finally, we look into how
many tokens we actually need in the generated/human-
written sequences to create a neighborhood and be
able to accurately distinguish the texts.

B.2 Masking Percentage

Figure 8 shows the results for the experiment where
we change the percentage of tokens that are masked,
to produce the neighbors. In all previous experiments,
we used 15% masking with mask span length of 2 to-
kens following the experimental setup in Mitchell et al.
(2023). In this section, however, we change the per-
centage of the masked tokens (and we set the masking
to be contiguous) to see how it affects the curvature
mean and standard deviation values, and the AUCs.
We can see that as the masking percentage decreases
(from 90% to 2%), the AUCs and the self-detection
power of models increase rather consistently. When
we go to 1%, however, we see the AUC drop. If we
look at Figure 8e which depicts the curvature measures
for the 1% masking, we see that the curvatures over-
lap between machine-generated and human-written
text, which we hypothesize is because our implemen-
tation does not enforce that re-sampled words must
differ from the words they are replacing. Thus, for the
smallest masking percentage, it is possible that some
perturbations are identical to the target, which may
explain reduced detection accuracy in this setting2.

B.3 How many tokens do we need for detection?

Figure 9 shows how the length of the target sequence
affects the sequence’s detectablity (AUC of detection),
and how many tokens we need to be able to do
precise detection. We compare sequences of different
lengths, ranging from 10 tokens to 200, for four
different models with four different parameter
counts, on the SQuAD dataset. In this setup we
target self-detection. We can see that the longer
the sequence, the easier it is to distinguish if it is
human-written or machine-generated, and 75-100
tokens seems like the point where we hit diminishing
returns. We can also see that across different sequence
lengths, as models get smaller, the detection power
increases, as seen throughout the rest of the paper.

B.4 Ablating Mask Filling Models

Figure 13 shows the curvature numbers for each
model trying to detect its own generations, so for
each model the generator is also the detector. We
experiment with three perturbation generating models,
with three different sizes: (1) T5-small (60 million
parameters) (2) T5-Large (770 million parameters)
(3) T5-3B (3 billion parameter). The intuition behind
using three model sizes is to see the effect of having a
better replacement model on the measured curvatures
and the detection power of the detector models.

We can see that as the masking model sizes down
(going from top to the bottom subfigures), the overall
curvature values for both human-written and machine-
generated text increases (going from 0.2 maximum
in Figure 13a to 0.6 maximum in Figure 13c), and
the two sets of texts become less distinguishable. T5-
Small produces low-quality (low-fluency) neighbors
that are assigned lower likelihoods by the detector
model, resulting in high curvature numbers for both
human and machine generated text, making them
indistinguishable. As we improve the mask filling
model, however, the generated neighbors become of
higher quality (and semantically closer to the target
point), thereby creating a more accurate estimate of
the curvature and providing better distinguishablity,
as shown by the AUC numbers in Figure 13d.

2Its noteworthy that the slight discrepancy between the results
for 15% masking in this section and the previous section is that
there, the mask span length was 2 so the masked portion of the
sequence is not contiguous. In this experiment, however, we use
contiguous masking.
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Figure 9: Detectability as a function of candidate
utterance length. As expected, longer utterances are more
cross-detectable – though it’s worth noting that utterances
as short as 60 tokens long are still cross-detectable with
relatively high accuracy.

B.5 Partially
Trained Models are Better Detectors

We take different training checkpoints of the Pythia
models (Biderman et al., 2023) at different steps (steps
1k, 5k, 10k, 50k, 100k and 143k) with different sizes
(2.8B, 410M, and 70M), and use them as detectors of
generations from the 4 target models. Figure 14 shows
the results for this experiment (Figures 10 and 11
show entire heatmaps of this experiment). For each
model we can see that the final checkpoint is consis-
tently the worst one in terms of machine-generated
text detection, and it is one of the middle checkpoints
that has the best performance. Our hypothesis for this
is similar to that of Section 3, where we believe that
partially trained models have not yet fit to the training

data tightly (and have a smoother surface), so they
over claim other models’ generations as their own,
whereas the longer a model is trained, the sequences
it ranks higher as its own narrow down.

B.6 Extensive Heatmaps

We provide the full heatmaps from experiments of
Section 3 here, to provide a detailed breakdown.
Figures 2 and 14 (full heatmap is Fig. 10 in Appendix)
show the AUC of cross-detection for different models.
Figures 12 and 11 in Appendix show how close each
detector comes, in terms of AUC, to self-detection.
Figures 15, 16 and 17 show the full heatmaps for
signals other than curvature.

We provide a summary of Figure 2 in Figure 7,
where we have presented the numbers from the best
overall detector with mean AUC of 0.92 (OPT-125M)
and the biggest model of the same family, OPT-6.7B
with average AUC of 0.46.

B.7 Detection
performance under a paraphrase attack

We present additional results where we perform
an adaptive paraphrasing attack (Sadasivan et al.,
2023) on the machine generated text and then
evaluate cross-detection performance. We conducted
experiments on the SQuAD test set. You can find the
results in Tables 1 and 2.

We can see that paraphrasing machine-generated
text does reduce detection performance to some
degree. However, the detection accuracy after the
paraphrase attack is high enough for detection to still
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Figure 10: AUC heatmap for cross-detection, where the rows are generative models and columns are the surrogate detector
models from the Pythia family, at different training step checkpoints (1k, 5k, 10k, 50k, 100k and 143k), both sorted
by model size. We can see that partially trained models are better detectors.
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Figure 11: AUC difference between self-detection and cross-detection heatmap (to better see how close cross-detection
comes to self detection), here the rows are generative models and columns are the surrogate detector models from the
Pythia family, at different training step checkpoints (1k, 5k, 10k, 50k, 100k and 143k), both sorted by model size. This
plot is basically Figure 10, where each cell in a row is subtracted by the self-detection AUC for that row.

be practically useful (the mean AUC for OPT 125M
goes from 0.946 without paraphrase to 0.84 with para-

phrase). While at first this might seem surprising, in a
sense, detecting the outputs of the paraphrase system
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Figure 12: AUC difference between self-detection and cross-detection heatmap (to better see how close cross-detection
comes to self detection), where the rows are generative models and columns are the surrogate detector models, both sorted
by model size. This plot is basically Figure 2, where each cell in a row is subtracted by the self-detection AUC for that row.

(we use T5, according to the (Sadasivan et al., 2023))
is just another type of cross-detection: the paraphrase
system is itself a language model. We’ve already seen
in other experiments that small detectors are capable
of accurate detection of outputs from completely unre-
lated language models – the paraphrase model seems
to be no different, if somewhat further afield with
respect to its training data and architecture (encoder-
decoder). Finally, the trend of smaller models being
better detectors holds up even after paraphrasing.

C Related Work

The problem of machine-generated text detection has
already been studied for multiple years using a variety
of different approaches (Ippolito et al., 2020; Jawahar
et al., 2020; Uchendu et al., 2020, 2021): Both
Gehrmann et al. (2019) and Dugan et al. (2022) have
found that humans generally struggle to distinguish
between human- and machine-generated text, thereby
motivating the development of automatic solutions.
Among those, some methods aim to detect machine-
generated text by training a classifier in a supervised
manner (Bakhtin et al., 2019; Uchendu et al., 2020),
while others perform detection in a zero-shot manner

(Solaiman et al., 2019; Ippolito et al., 2020). There is
also a line of work that relies on bot detection through
question answering (Wang et al., 2023; Chew and
Baird, 2003), which is outside the scope of this paper.

Most recently, Mitchell et al. (2023) introduced the
zero-shot method DetectGPT, which is based on the
hypothesis that texts generated from a LLM lie on
local maxima, and therefore negative curvature, of the
model’s probability distribution. Other strategies have
been proposed to enable the detection of machine-
generated text in the wild. One such method is wa-
termarking, which injects algorithmically detectable
patterns into the released text while ideally preserving
the quality and diversity of language model outputs.
Watermarks for natural language have already been
proposed by Atallah et al. (2001) and have since been
adapted for outputs of neural language models (Fang
et al., 2017; Ziegler et al., 2019). Notable recent at-
tempts for transformer based language models include
work by Abdelnabi and Fritz (2021), who propose an
adversarial watermarking transformer (AWT). While
this watermarking method is dependent on the model
architecture, Kirchenbauer et al. (2023) propose a
watermark that can be applied to texts generated by
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Table 1: Detection power w/o using a praphrasing attack to avoid detection.

Generator/Distinguisher OPT-6.7b OPT-1.3b OPT-350m OPT-125m

OPT-6.7b 0.915 0.888 0.881 0.867
OPT-1.3b 0.565 0.978 0.937 0.931
OPT-350m 0.320 0.780 1.000 0.989
OPT-125m 0.186 0.588 0.960 0.999
mean 0.496 0.808 0.944 0.946

Table 2: Detection power with using a praphrasing attack to avoid detection.

Generator/Distinguisher OPT-6.7b OPT-1.3b OPT-350m OPT-125m

OPT-6.7b 0.752 0.730 0.677 0.698
OPT-1.3b 0.458 0.879 0.756 0.789
OPT-350m 0.239 0.521 0.954 0.895
OPT-125m 0.131 0.409 0.811 0.978
mean 0.395 0.635 0.800 0.840

any common autoregressive language model.
Relationship to Membership Inference Attacks.
Prior work (Mattern et al., 2023) demonstrated that
the same optimality test can be used to distinguish
between training set members and non-training
members, i.e. as a membership inference attack.
As our experiments showed, when models size up
the detection power (i.e. distinguishablity between
machine-generated and human-written text) decreases.
For MIA, however, prior work demonstrate inverse
scaling, as in larger models demonstrate higher
distinguishing power (Mireshghallah et al., 2022). We
attribute this to the higher memorization capablities
of these models, as shown by (Tirumala et al., 2022),
making it easier for them to recognize their training
data.
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power of different models with different sizes (AUC).
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Figure 14: Summary of the results for cross-detection power of different detector models trained for different number
of steps. Each subfigure shows a different detector model, and the x-axis shows the training step for the checkpoint used
as a detector. The results for all 15 generator models are shown in Figure 10.
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Figure 15: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors and larger models are the worst
models in terms of detection power. The signal used here is Log Rank.
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Figure 16: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors and larger models are the worst
models in terms of detection power. The signal used here is Rank.
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Figure 17: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors and larger models are the worst
models in terms of detection power. The signal used here is Loglikelihood.
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