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Abstract

Language models (LMs) are statistical mod-
els trained to assign probability to human-
generated text. As such, it is reasonable to
question whether they approximate linguistic
variability exhibited by humans well. This form
of statistical assessment is difficult to perform
at the passage level, for it requires acceptability
judgments (i.e., human evaluation) or a robust
automated proxy (which is non-trivial). At the
word level, however, given some context, sam-
ples from an LM can be assessed via exact
matching against a prerecorded dataset of alter-
native single-word continuations of the avail-
able context. We exploit this fact and evaluate
the LM’s ability to reproduce variability that
humans (in particular, a population of English
speakers) exhibit in the ‘next word prediction’
task. This can be seen as assessing a form of
calibration, which, in the context of text classifi-
cation, Baan et al. (2022) termed calibration to
human uncertainty. We assess GPT2, BLOOM
and ChatGPT and find that they exhibit fairly
low calibration to human uncertainty. We also
verify the failure of expected calibration error
(ECE) to reflect this, and as such, advise the
community against relying on it in this setting.

1 Introduction

Language models (LMs) are trained to assign prob-
ability to human-generated text. The typical LM
treats a piece of text as a sequence of tokens whose
joint probability it factorises autoregressively, with
conditional token probabilities predicted from the
available context by a neural network (Mikolov
et al., 2010; Radford et al., 2019; Scao et al.,
2022). An LM can be viewed as a representation
of uncertainty about human linguistic production
(Serrano et al., 2009; Takahashi and Tanaka-Ishii,
2019; Meister and Cotterell, 2021; Giulianelli et al.,
2023), specifically, one that reflects the production
variability exhibited by the population(s) who gen-
erated the training data. Despite how plausible this
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Figure 1: Estimated human and model distributions for
contexts (15 most probable words of each distribution).

variability is, LMs are not consistently exposed to
it at the level of individual contexts (i.e., due to
data sparsity, most contexts are unique) leading us
to investigate their ability to predict it well.

One way to appreciate plausible variability is to
ask humans to perform next word prediction: show
multiple participants the same prefix of a passage
and ask each of them to contribute a word that plau-
sibly extends it. An LM that assigns probability to
any next-word candidate similar to the proportion
of the human population contributing it as the next
word serves as a good proxy to the production vari-
ability of that human population—a desideratum
Baan et al. (2022) termed calibration to human
uncertainty.1 Studying different notions of cal-

1Such calibration might be assessed against any population
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ibration of text classifiers, Baan et al. (2022) show
that the very popular expected calibration error
(ECE; Guo et al., 2017) is flawed in the presence
of data uncertainty (e.g., due to the task’s inherent
ambiguity (Plank, 2022)). As data uncertainty is
hardly avoidable in language modelling, we must
entertain the possibility that ECE is not a reliable
tool to assess the predictive distributions of an LM,
despite its widespread use (Kumar and Sarawagi,
2019; Wang et al., 2020; Tian et al., 2023).

To assess calibration to human uncertainty, we
compare the uncertainty exhibited by LMs to the
uncertainty exhibited by humans in the next word
prediction task (Figure 1)—for which we use Provo
Corpus (Luke and Christianson, 2018), a dataset
(in English) with multiple human responses per
available context. We analyse three pretrained LMs
of different sizes and training objectives (i.e., GPT2
(Radford et al., 2019), BLOOM (Scao et al., 2022)
and ChatGPT (OpenAI, 2022)) and find that they
exhibit low calibration to human uncertainty. We
verify ECE’s unreliability in this setting and advise
the community against relying on it as a meaningful
notion of calibration of generative models.

2 Background

Given context, an autoregressive LM predicts a
conditional probability distribution (cpd) over the
model’s vocabulary of known tokens (i.e., subword
units). Hence, at this level, an LM can be regarded
as a probabilistic multi-class classifier. This mo-
tivates research (Müller et al., 2019; Kumar and
Sarawagi, 2019; Wang et al., 2020) assessing the
extent to which probabilities predicted by LMs are
interpretable as ‘rate of correctness’, a property re-
ferred to as calibration (Niculescu-Mizil and Caru-
ana, 2005; Naeini et al., 2015; Guo et al., 2017).

A multi-class classifier is said to be confidence-
calibrated if its probabilities predict the classifier’s
accuracy, specifically, if (100× q)% of its predic-
tions made with probability (close to) q are judged
to be correct. The ECE estimator (Guo et al., 2017)
is the average absolute difference between average
confidence and frequency of correctness across con-
fidence bins.2 Baan et al. (2022) uncovered a logi-
cal flaw in measuring ECE under data uncertainty—

of interest, e.g. a specific target audience in a human-machine
interaction setting (e.g. Williams and Reiter (2008)).

2Correctness is determined by comparing the mode of
the predicted cpd to the target label (as pre-recorded in a
dataset); the mode’s probability is regarded as the classifier’s
confidence; closeness to q is determined via a binning scheme.

settings in which human disagreement is a plausible
property of the task and hence not to be dismissed
as error (Aroyo et al., 2019; Plank, 2022).3 They
show this in theory and empirically, and propose
to assess predicted probabilities against estimates
of target probabilities. The idea is to exploit mul-
tiple judgments per input to obtain the maximum
likelihood estimate (MLE) of the target cpd and
compare that to the model cpd at the instance level.

3 Methodology

We compare the uncertainty that LMs and humans
exhibit in next word prediction. For that, we must
represent their uncertainty over a shared space.

Human distributions. Given some context c, we
assume that human uncertainty is captured by a
single underlying cpd and, hence, regard human
responses to the next word prediction task as i.i.d.
draws from it. Then, given multiple responses,
the MLE for this cpd assigns probability p(w|c) to
word w given c equal to the relative frequency with
which humans predict w to follow c.

Model distributions. LMs decompose sentences
as sequences of subword units, rather than words.
However, humans predict complete words, hence,
we establish a process for re-expressing the model
cpds over the space of complete words.4 For a
given context c, we sample unbiasedly complete
words from the model and use an empirical esti-
mate of their probabilities; a word w drawn given
c is assigned probability q(w|c) equal to its rela-
tive frequency in the sample. To generate complete
words, we (i) sample a token sequence generally
long enough to include a word boundary; (ii) merge
subword units and slice the first complete word
from each generation (using a basic tokeniser); and,
finally, (iii) reject samples that failed to generate a
full word.5 This procedure samples potentially dif-
ferent segmentations of the same word(s) approxi-

3There are many variants of ECE in the literature (Kumar
et al., 2018; Widmann et al., 2019; Gupta et al., 2021; Si et al.,
2022; Dawkins and Nejadgholi, 2022). Some variants, in
particular, evaluate all probabilities of a cpd (not only the mode
probability; e.g., class-wise (Vaicenavicius et al., 2019; Kull
et al., 2019), static and adaptive (Nixon et al., 2019)), these still
assume no aleatoric uncertainty in the data generating process
and, hence, remain inadequate tools for our setting. Besides,
they are not common in language generation literature.

4Though artificial, one could tokenise the human data and
analyse cpds over subword units, we do that in Appendix D.

5In Appendix A, we explore an estimator that uses model
probabilities, as it is biased and does not show advantages
over MC estimation, we do not adopt it for our main analysis.
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mately marginalising out tokenisation ambiguity—
which Cao and Rimell (2021) show to be an impor-
tant and unduly neglected aspect of LM evaluation.

4 Experiments

Data. Provo Corpus (Luke and Christianson,
2018) contains 55 passages (50 words long on aver-
age) in English from various sources e.g. news, fic-
tion, science. Each prefix sequence of all passages
(2687 prefixes) is given as context to 40 humans,
on average, who predict a one-word completion.
We use this corpus to estimate target cpds.

Models. For each context, we estimate cpds for
different models. First, GPT2 Small (Radford et al.,
2019), for which we use 1000 unbiased samples
per context.6 To investigate whether a potential
mismatch of training and test domain has an effect
on our analysis, we fine-tune GPT2 on a subset of
the original passages from Provo; we call this set-
ting GPT2FT (the complete experimental setup is
described in Appendix F). Additionally, we investi-
gate the effect of temperature scaling (temperature
= 0.5),7 and, to reduce computational costs, we opt
for 40 generations per context in this analysis (a
choice we motivate empirically in Appendix C).
To test the effect of scale on calibration to human
uncertainty, we also analyse BLOOM-176B (Scao
et al., 2022). Again, we opt for sampling 40 gener-
ations per context. Due to limited API access, we
use a random subset of 669 Provo contexts. We
are also interested in the effect of reinforcement
learning from human feedback (RLHF; Christiano
et al., 2017; Ibarz et al., 2018), hence we analyse
ChatGPT (OpenAI, 2022). As before, we draw
40 samples per context and use a random subset
of 500 Provo contexts. In one setting we prompt
ChatGPT 40 independent times, in another setting
(ChatGPTD) we prompt it once to generate a list
with 40 options (prompt and additional details in
Appendix C). For each context, we also have a ‘con-
trol cpd’ formed by splitting the human annotation
in two disjoint parts from which we estimate two
cpds, one regarded as target, one regarded as an

6To obtain generations for GPT2-Small and Bloom-176B
we used the Hugging Face API with arguments: do_sample =
True, num_beams = 1, top_k = 0/None (GPT2/Bloom), and
temperature = 0.5, where relevant. For ChatGPT (i.e. gpt-3.5-
turbo), the OpenAI API was used. Code and generations
available from: https://github.com/evgeniael/
predict_next_word.git.

7This biases the sampling procedure. While this often has
a positive effect on ECE, there is no reason to expect a positive
effect on calibration to human uncertainty.

oracle model; this allows us to form an expectation
about realistic levels of calibration.

Metrics. For each context, we compare a pair of
cpds (a model vs the target for that context) in terms
of their total variation distance (TVD).8 To study
a whole dataset, we plot TVD’s distribution across
contexts; for a numerical summary, following Baan
et al. (2022), we report expected TVD (average
TVD for all contexts) as a measure of calibration
to human uncertainty. Finally, we compute ECE
by comparing the mode of each model cpd to the
original corpus word and ECE variants that use as
targets the human or oracle majority per context.

5 Results

Main findings. Table 1 presents ECE and Ex-
pected TVD results. As predicted, ECE ranks most
models as better calibrated than human oracles,
confirming that it cannot be trusted in this setting.
Figure 2 illustrates kernel density estimate (KDE)
plots of instance-level TVD values between our
models’ cpds and the target (human) cpds, along
with the KDE plot of TVD values between two dis-
joint oracles. We observe how the distributions of
all models are skewed towards higher TVD values,
with ChatGPT performing the worst. The inability
of models to reproduce variability cannot be at-
tributed to population mismatch alone, as GPT2FT
displays similar trends to GPT2, and it persists in
larger models, while RLHF worsens the issue (for
both sampling strategies). Lastly, we observe how
temperature scaling does not meaningfully address
the issue (regardless of its effect on ECE).

What do TVD differences mean? We measure
a difference of around 0.2 TVD units between
GPT2’s and oracles’ means, but, we lack under-
standing of the practical significance of this dif-
ference. To gain some insight, we conduct a con-
trolled experiment. We artificially improve k% of
the model’s cpds by replacing them by an oracle
estimate. We then measure TVD between this arti-
ficial improvement and a disjoint oracle allowing
us to associate units of TVD with an interpretable
rate of improvement (i.e., percentage of plausible
cpds). We find that we need to replace about 60%
of GPT2’s cpds to achieve TVDs that distribute
similarly to human performance.9

8TVDc(p, q) =
1
2

∑
w |p(w|c)− q(w|c)|, where the sum

is over the union of model- and human-generated words.
9In Appendix E, we verify that our findings a robust to

choices of k, random seed and sample size.
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Gold Label ECE ↓
Human Oracle2 GPT2 GPT2F GPT2T Bloom ChatGPT ChatGPTD

Original 0.14 0.11 0.02 0.03 0.35 0.07 0.45 0.10
Human Maj. 0.60 0.57 0.20 0.22 0.13 0.09 0.37 0.08
Oracle1 Maj. 0.19 0.32 0.19 0.19 0.15 0.07 0.37 0.08

Avg TVD ↓ - 0.42 0.64 0.66 0.61 0.61 0.76 0.82

Table 1: ECE (the row indicates the target, the column indicates the system) and Expected TVD results. We resample
the disjoint oracles 20 times and report the mean ECE (standard deviations < 0.1).
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Figure 2: KDE plot of TVD values between a model and
the estimated human target cpd, and between oracles.

Why can’t models reproduce human variabil-
ity? For further insight, we analyse GPT2’s in-
ability to reliably reproduce human variability. In
Figure 1, we visualise target cpds and GPT2’s (for
the top-15 highest probability words) for two con-
texts; Appendix H lists a full passage. We choose
the distributions of Figure 1 to demonstrate some
observations; (1) GPT2’s cpd fails to align with the
human one in samples where the outcome is barely
constrained (true for the majority of the many in-
stances we examined), and (2) when the outcome
is fairly constrained, such as when completing a
prepositional verb, GPT2 performs much better.

We attempt to quanitfy the effect of our observa-
tions. We perform Bayesian regression with auto-
matic relevance determination (ARD; Neal, 2012)
using, for each context, TVD between GPT2 and
the oracle cpd as the regression target, and pre-
dictors that are indicative of how constraining a
context is (TVD between oracles, entropy of tar-
get cpd), as well as context length and the entropy
of the model cpd; with the former two being high
precisely for contexts that admit more plausible
variability. We also add as predictor the POS-tag of
the context’s last word, according to a POS-tagger.
Figure 3 presents the feature’s coefficients and cred-
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Figure 3: Regression coefficients and their credible inter-
vals. Features, in order: Human entropy, Model Entropy,
TVD between oracles, Context Length, Punctuation, and
10 universal POS tags.

ible intervals10. ARD ranked TVD between oracles
as most important, confirming that GPT2 struggles
precisely in those cases of higher plausible variabil-
ity (discussion in Appendix B).

Beyond exact word matching. From our anal-
ysis, it is evident that models do not manage to
reproduce human variability well at the surface
word level. We investigate whether they manage to
reproduce it on a more abstract level. We consider
a (shallow) syntactic level, where models might
produce words with parts-of-speech similar to hu-
mans; and a semantic level, where models might
produce words that have similar meanings as hu-
mans. To measure this, we introduce syntactic
TVD (TVDsyn) and semantic TVD (TVDsem).

We employ a POS-tagger on the concatenation
of each context and human generation, so that we
obtain the POS-tags of the human samples. Sim-
ilarly, we obtain the POS-tags of the model gen-
erations. As in Section 3, we obtain the human,
model and oracle POS-tag distributions via their
MLE estimates, so as to compute TVDsyn.

10In a previous version of the paper, this Figure was plotting
variances instead of standard deviations.
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Figure 4: Histogram of TVDsyn and TVDsem for all
contexts

For the semantic analysis, we use clustering to
identify words with similar meaning and repartition
the support of the distributions. For each context,
we create the joint set of human and model genera-
tions and cluster their word2vec embeddings using
k-means. Words that do not have a word2vec em-
bedding form a group on their own. Then, under
each model, the probability of a word cluster is the
sum of probabilities of the words in it. TVDsem

is computed between two such distributions, for
humans and the model and between oracles. Ap-
pendix G contains further details on the experimen-
tal setup. As POS tagging and word clustering are
not free of errors, TVDsyn and TVDsem may be
under- or over-estimated in some cases. Figure
4 shows histograms for all contexts. We observe
similar trends as in previous experiments.

6 Related Work

There has been work that exploits predictive dis-
tributions of LMs in various ways. LeBrun et al.
(2022) analyses such distributions and finds that
they overestimate the probability of ill-formed se-
quences. Others investigate alternative training
signals that minimise the distance between the data
and model distributions (Ji et al., 2023; Labeau
and Cohen, 2019; Zhang et al., 2023). Our work
exploits predictive distributions as an uncertainty
representation of human linguistic production and
study their calibration. Several works study how
well-calibrated LMs are and how to alleviate mis-
calibration (He et al., 2023; Lee et al., 2022; Xiao

et al., 2022; Ahuja et al., 2022; Chen et al., 2022;
Kumar and Sarawagi, 2019; Li et al., 2022; Xiao
and Wang, 2021) — the majority using ECE to sub-
stantiate their findings, whose inadequacy makes
us believe that a new round of studies is needed to
assess this matter; our work being an example.

There is a line of work that stresses the value of
obtaining multiple human labels per input (Plank,
2022; Basile et al., 2020; Grossmann et al., 2022;
Prabhakaran et al., 2021), embracing data uncer-
tainty in classification; Baan et al. (2022) propose
calibration metrics that accommodate label variabil-
ity in natural language inference (NLI; Bowman
et al., 2015). In concurrent work, Lee et al. (2023)
measure the calibration of LM-based classifiers to
human uncertainty on ChaosNLI (Nie et al., 2020),
also using Baan et al.’s expected TVD.

Other work further investigates uncertainty in an
NLG setting. Zhou et al. (2023) and Kadavath et al.
(2022) prompt LMs to output uncertainty linguisti-
cally. Kuhn et al. (2023a) prompt LMs to ask for
clarifying questions when faced with ambiguous
inputs. Similarly, Cole et al. (2023) sample re-
peatedly from LMs to assess whether they are able
to answer ambiguous questions. Giulianelli et al.
(2023) analyse various NLG tasks, their variability,
and the ability of LMs to capture it. Additionally,
Kuhn et al. (2023b) introduce semantic entropy,
which incorporates linguistic invariances such as
meaning equivalence, while Santurkar et al. (2023)
prompt LMs to assess whether they represent the
political views of US Americans from different de-
mographics. Finally, Eisape et al. (2020) analyse
the miscalibration of LMs from a psycho-linguistic
lens, and fine-tune an LSTM model using multiple
labels. Our work is an addition to this line of work.

7 Conclusion

Our work joins a stream of work acknowledging
and better incorporating data uncertainty into evalu-
ation protocols (Baan et al., 2022; Giulianelli et al.,
2023). In particular, we find empirical evidence
for ECE’s unreliability in this setting and advise
further research into calibration of LMs not to use
it. With a more appropriate tool, we analyse three
modern pretrained LMs and find that they are not
well calibrated to human uncertainty, unlike ECE
might suggest. We believe that this inability stems
from models not being consistently subjected to
human production variability during training, and
plan to investigate this further in future work.
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Limitations

The assessment of calibration to human uncertainty
we have conducted is only one aspect of a system’s
quality and is not meant to de-emphasise the im-
portance of any other sound form of evaluation,
but rather to offer a complementary tool that sup-
ports an insightful set of observations about mod-
ern LMs. The computational costs of generating
a large amount of continuations can be restrictive;
as well as the cost of multiple annotations for each
context. However, we believe that the benefits of
obtaining such data and measuring uncertainty with
more reliable methods, outweigh these costs. To
foster research, we share the generations that sup-
ported this research. The high cost of obtaining
data with multiple references per prompt results in
another limitation: the limited availability of such
labelled data. The limited number of human an-
notations per context is another limitation which
is hard to alleviate. We considered all human an-
notations to be draws from the same underlying
distribution, which is an assumption we cannot ver-
ify easily (e.g. we do not know if all participants
had similar perspectives and backgrounds). Lastly,
we only studied models trained for English. For
less resourced languages, data-scarcity is expected
to have worse effects on LMs’ calibration. Simul-
taneously, English has a relatively fixed word order
and simple morphology. Other languages might
exhibit even greater variability due to their own ty-
pological features. In turn, we might be required to
annotate larger datasets or study the phenomenon
at a different level of granularity.
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Appendix

A Method 2 - Biased Model Estimate

We attempted constructing another estimator of
the model distribution. Unlike the MC estimator
in the main text, this estimator is biased due to
it overestimating the probability of words in the
distribution support and underestimating ones not
belonging to it. This estimator forces the model to
assign non-zero probabilities to humans responses;
in an attempt to see if the model will, in this case,
be able to predict human variability better.

We construct the support of the distribution as
words that are ‘likely’ under the model. These in-
clude words generated with unbiased and nucleus
sampling, the greedy word, as well as the original
corpus word and human-answered words. For the
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Figure 5: Histogram of TVD values for (biased) model
and oracle distributions when compared to the full hu-
man distribution

words requiring sampling from the model, we fol-
low a procedure similar to the unbiased estimator
for ensuring sampled words are complete.

The probability for each word is computed by
renormalising the joint probabilities the model as-
signs for the corresponding token sequences:

log q(w|c) = log f(c, w)− log f(c)

− logsumexpk[log f(c, k)− log f(c)] ,
(1)

where f(.) is the joint probability of the tokenised
sequence, as assigned by the neural model.

We also evaluated the model’s performance us-
ing such distributions. We use the same 1000 un-
biased samples as before and an additional 100
nucleus samples for each of p ∈ 0.7, 0.8, 0.9. Re-
sults for ECE and TVD are shown in Table 2 and
Figure 5 respectively. We observe similar results
with the unbiased model in terms of both ECE and
TVD.

Gold Label
ECE

Model Oracle 1 Oracle 2

Corpus Word 0.068 0.116 0.185
Human Majority 0.138 0.563 0.458

Table 2: ECE results for the (Biased) Model and Oracle
Distributions when considering the Gold-Label to be
the corpus word or the human majority

B Predictors of TVD between model and
oracle

We plot the target variable, TVD between the hu-
man and the model cpds against different predictors
of interest (Figure 6 - 10). One particular predictor,
the TVD between Oracles (Figure 6) is of inter-
est, since it provides support for the claim made

in Section 5; regarding GPT2’s ability to predict
variability well when the next word prediction task
is less constrained. The results seem to support
this theory - in the very low disagreement range
between humans (TVD < 0.15), the model seems to
predict variability well - or better, the lack of it. We
also investigate context length as a predictor of the
model’s ability to predict human variability (Fig-
ure 7) - but surprisingly, we observe how the two
seem to not be correlated. The plot with the human
entropy and model entropy as the predictors, show
a positive correlation (Figure 8 and 9 respectively).
This seems to be reinforced by the ARD results.
Regarding the POS-tag predictors, when the last
context word is an adjective, this seems to be an
indicator of models being worse at reproducing
human variability. Since nouns commonly follow
adjectives - this might imply that when models pre-
dict nouns, their predictions do not align well with
human ones. This might stem from the fact that
nouns are content words, and that might inherently
allow for higher variability. For a similar reason,
the numerical POS-tag (which again is commonly
followed by nouns), appears to be a predictor of
worse model performance. We observe how ad-
positions have a negative coefficient, meaning that
when models predict words that follow prepositions
or postpositions, their predictions align better with
human ones. This might be related to the obser-
vation discussed in Section 5 (when the outcome
is fairly constrained GPT2 performs much better).
Punctuation also seems to exhibit a similar trend.
The results from the Bayesian regression with auto-
matic feature determination are in Table 3, where
each predictor and its coefficient are shown.

C Model Sampling Details

C.1 Subsampling experiment

Due to the high computational inference costs of
large models, sampling 1000 ancestral generations
for each context is infeasible. Hence, we opt for a
lower number of samples - chosen on the basis of
a subsampling experiment based on GPT-2. From
the 1000 ancestral samples, we randomly selected
subsamples of varying sizes (size = 10, 20, 40 and
100). For each of these, we re-computed the model
distribution and computed the TVD values with
an oracle. The Mean Squared Error between the
TVD values of the subsampled distributions and
the full-sampled distributions were computed and
visualised through a histogram, as seen in Figure
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Figure 7: TVD values (between model and oracle)
against Context Length
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Figure 8: TVD values (between model and oracle)
against Human Entropy
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Figure 10: TVD values (between model and oracle)
against Pos-tags of last context word

Predictor Coefficient

Human Entropy 0.053
Model Entropy 0.095
TVD between Oracles 0.117
Context Length 0
Punctuation -0.010
Adjective 0.016
Adposition -0.026
Adverb 0
Conjunction 0
Determiner 0
Noun 0
Numerical 0.049
Pronoun 0
Particle 0
Verb 0

Table 3: Bayesian Regression Predictors and Coeffi-
cients
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Figure 11: Histograms of MSE values between TVD
values

11. We opted for a sample size of 40, since we
considered it to be a good trade-off between com-
putational costs and error.

C.2 ChatGPT prompting
Since ChatGPT is a conversational model - we
prompt it to provide us with possible continuations
to given contexts. We prompt it in two ways:

1. You are ChatGPT, a large language
model trained by OpenAI. I want
you to answer which word is a
plausible continuation to the
context <CONTEXT>. I have no
specific intent, I just want your
guess. Return only the word and
nothing else.

2. You are ChatGPT, a large language
model trained by OpenAI. I want
you to answer which 40 words are
plausible continuations to the
context <CONTEXT>. I have no

243



specific intent, I just want your
guess. Return only the words and
nothing else.

For the former, we request 40 generations and
for the latter only one (for both, temp = 1); both
ways returning eventually 40 continuations - which
are ensured to be whole words. The first procedure
imitates unbiased sampling more closely than the
second - but due to the fact that minimal variability
was observed, we implemented both methods.

C.3 Statistics of failed generations

Rejecting samples that failed to generate a full word
proved to be a quite rare occurrence and it mostly
corresponded to producing the ‘end of sentence’
marker rather than failing to compute a full word.
More specifically, for GPT2 generations, 0.05%
times we failed to produce a full word (1489 out
of 2.7 million times). For Bloom, 0.2% of times
we failed to produce a word, (56 out of 27k gen-
erations), and for ChatGPT 0.04% of times (7 out
of 20k generations) - for the ‘unbiased’ sampling.
‘Diverse’ sampling did not necessarily ‘fail’ to gen-
erate any full words, but sometimes the model re-
turned less than 40 words despite being prompted
to return 40.

C.4 TVD Differences

We additionally visualise the histograms of the dif-
ference in TVD values between the model and the
human distribution minus the oracle and human
distributions (Figure 12).

C.5 Sampling Resources

For both BLOOM and ChatGPT generations we
used the Hugging Face and OpenAI API subscrip-
tions respectively, for two months. Regarding
GPT2, we run generations using 1 NVIDIA A100
GPU, each passage needing approximately 2 hours
to compute 1000 generations for all contexts in the
passage.

D Token-Level Experiment

One could claim that by estimating next-word dis-
tributions instead of next-token ones, we introduce
some level of bias towards the model - since they
are trained on BPE tokens rather than words. De-
spite finding this artificial, we repeat a subset of
the experiments on a token level: instead of find-
ing a method to sample sequences of tokens that
form complete words from the model, we tokenize
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Figure 12: Histogram of TVD differences for model and
oracle distributions when compared to the full human
distribution. The vertical axis corresponds to density
(normalizing counts so that the total histogram area
equals 1).

human answers and create the target distribution
of tokens. More specifically, we obtain from the
model the distribution of next-tokens given a con-
text. For the human distribution, we tokenize all
human responses and take the first token of each
one. We obtain the MLE of the human next-token
distribution (and oracles) in a similar fashion to
Section 3. Then, we perform a similar analysis for
ECE and TVD values. Results are similar to the
word-level analysis (Table 4 and Figure 13). We re-
frain from using token level analysis for calibration
because it’s not clear how to compare LMs with
different tokenizers, whose vocabulary sizes differ.

Gold Label
ECE

Model Oracle 1 Oracle 2

Human Majority 0.141 0.500 0.396

Table 4: ECE results for the Biased Model and Oracle
Distributions
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Figure 14: We artificially improve the Model-Oracle
TVD histogram, by randomly replacing k% of the TVD
values with the respective TVD values between oracles.

E Improving Model Experiments

We repeat the experiment where we artificially im-
prove GPT2’s performance (Section 5). This time,
we create two types of disjoint oracles (by sam-
pling from the human cpd without replacement)
varying in size - a pair of size 20 and a pair of size
10. For each size, we sample 10 different pairs (us-
ing different seeds). For each pair, we compute the
TVD value between them and the TVD value be-
tween an oracle and the model. As before, we ran-
domly choose k% of model-oracle TVD instances
to be replaced by the respective oracle-oracle in-
stances. The aggregated results for the 10 seeds
can be found in Figures 15 and 16 for the oracles
of size 10 and 20 respectively. Results are very
similar as before, showing that results are robust to
the oracle size and the sampled split itself.

F Out-Of-Distribution Effect Experiment

One could claim that we evaluate on a dataset,
Provo Corpus, that does not necessarily originate
from the distribution of the training dataset. To
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Figure 15: Improving the Model-Oracle TVD his-
togram, by randomly replacing k% of the TVD values
with the respective TVD values between oracles, with
an oracle size of 10, repeated on 10 seeds. k=0 corre-
sponds to model performance and k = 100 to human
performance.
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Figure 16: Improving the Model-Oracle TVD his-
togram, by randomly replacing k% of the TVD values
with the respective TVD values between oracles, with
an oracle size of 20, repeated on 10 seeds. k=0 corre-
sponds to model performance and k = 100 to human
performance.
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reinforce the validity of our results and establish
that they are not just stemming from a domain mis-
match of training and evaluation data, we complete
experiments by fine-tuning on a subset of Provo
Corpus. This way we, at least partly, remove the po-
tential out-of-distribution effect - and re-evaluating
calibration. Due to the Provo Corpus’ limited size,
the fine-tuning procedure has the following two
aspects:

(1) A k-fold cross validation split (k=4), using
the first 40 passages (Paragraphs 1-40) of Provo
Corpus to create the 4 equal splits - each 10 pas-
sages long. We iteratively train on 3 of the splits
and evaluate on the last 15 passages of Provo Cor-
pus (Paragraphs 41-55). The paragraphs from the
unused split are used for the evaluation of uncer-
tainty. Overall, we end up with 4 different models,
each used to create model distributions for 10 para-
graphs - which, in turn, are used to measure TVD
values for all their contexts.

(2) We do not fine-tune on the whole model - we
freeze all parameters except those of the last two
layers of GPT2-Small, since our training dataset
is very small. We train using the cross-entropy
loss, the AdamW optimizer (epsilon = 1e-8), for
10 epochs, with a 5e-4 learning rate, a batch size of
5, using 0 as the seed value.

The TVD results for the fine-tuned models’,
along with the respective perplexity curves during
fine-tuning are in Figure 17 and 18 respectively.

G Semantic & Syntactic Analysis

For TVDsyn, we use the default nltk POS-tagger
using as arguments tagset=’universal’ on the con-
catenation of the context and each generation to
obtain the POS-tag of the generation. We repeat
this process for human and model generations.

For TVDsem, we cluster the set of human
and model words using the Kmeans implemen-
tation from the sklearn library (using arguments
n_clusters, random_state = 0, n_init = 20, max_iter
= 400). The number of clusters was decided based
on a selection of k using SSE (Within-Cluster-
Sum of Squared Errors, i.e. Squared Error from
each point to its predicted cluster center) — in-
cremental ks tested included k in range(2, k_max,
k_max//3), where k_max the number of words to
be clustered. To obtain word feature representa-
tions, we use their respective word2vec embed-
dings (’word2vec-google-news-300’ from the gen-
sim library) — scaled using the sklearn Standard-

Scaler, after filtering out words without a word2vec
representations. To obtain human, oracle and
model distributions for each context, we assign
for each cluster one element in the support (as well
as one support element representing filtered-out
words). The probability of the cluster elements is
the summed probability of words assigned to the
cluster (where probabilities are computed similarly
to Section 3).

H Visual Analysis of Distributions

We randomly choose one full passage (Paragraph
8) to illustrate further our conclusions. For all con-
texts, we provide the human and GPT2 distribu-
tions for the 15 most probable words of each cpd.
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Figure 17: TVD histograms for all contexts between
models (original and fine-tuned) and humans
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Figure 18: Training and Validation loss during the fine
tuning of our model on a subset of Provo Corpus
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range of temperature, especially when the person

 is engaged in vigorous activity. Heat reactions
 usually occur when large amounts of water and/or 
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