
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 2: Short Papers, pages 225–233

March 17-22, 2024 c©2024 Association for Computational Linguistics

From Partial to Strictly Incremental Constituent Parsing

Ana Ezquerro, Carlos Gómez-Rodríguez and David Vilares
Universidade da Coruña, CITIC

Departamento de Ciencias de la Computación y Tecnologías de la Información
Campus de Elviña s/n, 15071

A Coruña, Spain
{ana.ezquerro, carlos.gomez, david.vilares}@udc.es

Abstract

We study incremental constituent parsers to
assess their capacity to output trees based on
prefix representations alone. Guided by strictly
left-to-right generative language models and
tree-decoding modules, we build parsers that
adhere to a strong definition of incrementality
across languages. This builds upon work that
asserted incrementality, but that mostly only
enforced it on either the encoder or the decoder.
Finally, we conduct an analysis against non-
incremental and partially incremental models.

1 Introduction

Incremental NLP aims to learn and adapt partial
representations as information unfolds. However,
with the rise of bidirectional LSTMs (Hochre-
iter and Schmidhuber, 1997) and Transformers
(Vaswani et al., 2017), recent research has focused
on non-incremental solutions. These models pro-
cess the full input for contextualization before they
start generating any output. Therefore, this ap-
proach does not capture the progressive unfold-
ing of input over time, giving the sense that all
of it is available all of a sudden (Madureira and
Schlangen, 2020). This is not an issue for most
NLP tasks, but it is relevant for others, such as
real-time NLP, e.g., instant machine translation or
real-time speech. Furthermore, work on incremen-
tal processing holds relevance in interdisciplinary
research, especially where computer science, lin-
guistics, and cognitive studies intersect.

While some studies have addressed the chal-
lenge of outputting incremental structured repre-
sentations - for various definitions of incremental-
ity (Konstas et al., 2014; Köhn, 2018; Shen et al.,
2021) - analyses of trees remain limited, more no-
tably since the popularization of deep learning, and
are mostly partially incremental approaches.

In this context, Titov and Henderson (2007), one
of the first neural parsing models, was also an incre-
mental network based on sigmoid belief networks.

This generative model broke down the probabil-
ity of a structure into probabilities for individual
derivation decisions, each influenced by previous
decision history. However, the computation was
expensive and its evaluation was restricted to sen-
tences of up to 15 tokens in the English Penn Tree-
bank (Marcus et al., 1993). For shift-reduce con-
stituent parsing, Cross and Huang (2016) proposed
an incremental model with minimal features, fo-
cusing on only three sentence positions to predict
the next action. However, input sentences were
contextualized using bidirectional LSTMs, thus re-
lying on non-incremental encoders and effectively
considering all upcoming words; a strategy that
was later widely adopted by most neural syntac-
tic parsing architectures, but that does not adhere
to a definition of strong incrementality. More re-
cently, Kitaev et al. (2022) introduced a span-based
model that incrementally encodes input sentences
into discrete elements using vectors from GPT-2
mapped into a codebook. Despite this, it relied on
bidirectional Transformers and a CYK architecture
(Kitaev and Klein, 2018) for decoding these vec-
tors into trees. Complementarily, Yang and Deng
(2020) proposed an incremental decoder based on
graph neural networks. Although they referred to
their parser as strongly incremental, sentences were
encoded with bidirectional architectures like BERT
or XLNET (Devlin et al., 2019; Yang et al., 2019).

Incrementality has been also explored for other
parsing formalisms. Stanojević and Steedman
(2019) developed an almost fully incremental
parser for combinatory categorical grammars
(CCG), relying on ELMo embeddings (Peters et al.,
2018) and a bidirectional LSTM for these predic-
tions. Later, a genuinely fully incremental CCG
parser was introduced (Stanojević and Steedman,
2020), using only ELMo’s forward pass and a left-
to-right LSTM, addressing biases in incremental
CCG parsing. In the field of dependency parsing,
incrementality has been a focus since the pre-neural

225

era (Beuck and Menzel, 2013; Köhn and Menzel,
2014; Köhn and Baumann, 2016), with some mod-
els rivaling non-incremental ones. Recently, Ez-
querro et al. (2023) found that with current neu-
ral architectures, incremental models for depen-
dency parsing are less effective than bidirectional
approaches. However, incorporating human-like
reading strategies, such as brief delays, can signif-
icantly enhance performance, particularly in lan-
guages with leftward dependencies.

Contribution We study the viability and chal-
lenges of fully incremental constituent parsing
with encoder-decoder architectures. All compo-
nents strictly process the sentence from left to
right, adding each read word to the partial tree
based on the input prefix. For the encoder, we
leverage generative LLMs. For the decoder, we
reassess two options that generate partial trees
based solely on current inputs: (i) an incremen-
tal parsing-as-tagging model (Gómez-Rodríguez
and Vilares, 2018), and (ii) a transition-based de-
coder that uses graph-neural-network representa-
tions (Yang and Deng, 2020). The code is available
at https://github.com/anaezquerro/incpar.

2 Incremental Constituent Parsing

Let w = (w1, ..., wn) be a sequence of tokens such
that wi ∈ V for some vocabulary of tokens V , we
are interested in learning a function that can map w
into a constituent tree T . Different from previous
work, we are interested in modeling this function as
an strictly incremental model. Under this setup, the
decision at time step i is based only on the prefix
w1...wi+k. It creates a partial tree, Ti, where each
word wi is added at its time step i, in a monotonic
way. The delay parameter, k, mimics human read-
ing processes, allowing for a slight look ahead to
the upcoming words. Human parsing is believed
to be very swift, with latencies as short as 250 mil-
liseconds (Pulvermüller et al., 2009; Bemis and
Pylkkänen, 2011). In this work, we will study both
zero and small positive delays, i.e., k ∈ [0, 2]. Next,
we review our encoders (§2.1) and decoders (§2.2).

2.1 Incremental encoders
The incremental encoder is a parameterized func-
tion Ψθ that produces a hidden representation vec-
tor hi ∈ Rh for each input token wi based on its
own prefix, thus hi = Ψθ(w1...wi). As for specific
architectures, will rely on encoders both without
and with pre-training. The former is a lower-bound

baseline made of 4 stacked left-to-right LSTMs
(Hochreiter and Schmidhuber, 1997). For the lat-
ter, we use multilingual GPT (mGPT; Shliazhko
et al., 2022) and BLOOM-560M (Scao et al., 2022).
mGPT has pre-training data for all languages stud-
ied, while BLOOM does not. This lets us measure
the impact of: (i) no pre-training data, (ii) pre-
training data for all languages, and (iii) missing
pre-training data for some languages (see also §3).

2.2 Incremental decoders

We propose two different architectures to imple-
ment our incremental decoders. In both cases, an
intermediate module was added between the en-
coder and decoder to add prefix information up
to word wi+k. At each timestep i, this module
accepts the encoder representations hi...hi+k and
generates a new delayed contextualization hi using
a feed-forward network (hi = FFN(hi...hi+k)).
The delayed sequence H = (h1...,hn) is directly
passed as input to the decoder. Thus, these de-
coders produce an extra piece of the output tree
based strictly on the prefix w1...wi+k.

On the one hand, we use decoders rooted in se-
quence labeling parsing (Gómez-Rodríguez and
Vilares, 2018). Here, at each time step, each repre-
sentation is mapped to a partial label that encodes a
segment of the constituent tree primarily based on
the preceding prefix. On the other hand, we choose
the incremental decoder by Yang and Deng (2020).
They use a graph neural network to contextualize
the partial tree and make a decision (transition) at
each time step based on the read token.

2.2.1 Incremental decoding as tagging
Given a sequence of delayed word contextualiza-
tions H = (h1...hn), a tagging-based decoder
maps each contextualization hi to a label ℓi ∈ L
and defines an injective and complete function to
delinearize the sequence of labels into a valid con-
stituent tree. Following Gómez-Rodríguez and
Vilares (2018), each label is a tuple of the form
ℓi=(di, ci) ∈ L, where di encodes a number li,
the total number of levels in common between wi

and wi+1, and ci encodes the lowest non-terminal
in common between those two words.1 li can be
encoded in di either directly (di = li, absolute en-
coding) or as a difference from the previous value

1The encoding is injective and complete for constituent
trees without unary chains. The specifics can be found in the
reference paper. Here, unary chains were collapsed in a single
artificial constituent and recovered in the decoding step.

226

https://github.com/anaezquerro/incpar

NP

S

VP

Parsing is task ina

NP

NN VBZ DET NN ADP

(1, S+NP) (2, VP) (3, NP) (2, NP) (3, NP)

(1, S+NP) (1, VP) (1, NP) (-1, NP) (1, NP)

NLP

NN

NP

<eos>

<eos>

ABS:

REL:

Figure 1: Absolute (orange) and relative (green) index-
ing from Gómez-Rodríguez and Vilares (2018). Note
that unary chains are collapsed in an artificial constituent
(first label). The final label indicates the end of sentence.

(d1 = l1 and di = li − li−1 for i ≥ 2, relative
encoding). See Figure 1 for an example.

We chose this encoder over newer sequence la-
beling linearizations that have been recently pub-
lished, such as tetra-tagging (Kitaev and Klein,
2020) and shift-reduce parsing through pre-order,
post-order, and in-order linearizations (Amini and
Cotterell, 2022). We did so due to a few practi-
cal reasons: (i) it is more user-friendly with ex-
isting libraries for transforming constituent trees
into label sequences; and (ii) it accommodates non-
binary trees, like the juxtapose model (binarizing
and unbinarizing is trivial, yet necessary for these
mentioned alternatives).2

That said, our decoder is straightforward. Given
an incrementally delayed contextualized input
H = (h1, ...,hn), each label ℓi is computed
as FFNℓ(hi), where FFNℓ is a 1-layered feed-
forward network with a softmax activation.

2.2.2 Incremental decoding as
transition-based parsing

Similar to the tag-based decoders, transition-based
systems incrementally process each word contex-
tualization to generate a sequence of actions of
variable length m. Each action updates the sys-
tem’s inner representation of the partial tree un-
til the sequence is fully processed and the final
state retrieves the complete predicted tree. As a

2Also, even if Kitaev and Klein and Amini and Cotterell
report better results, it is worth noting that the original papers
cannot be directly compared in terms of results due to different
implementations. For instance, Gómez-Rodríguez and Vilares
relied on LSTMs and a simple decoder based on feed-forward
networks, while the tetra-tagging paper used BERT and did
not employ a sequence labeling decoder, but rather an efficient
and simple dynamic programming approach.

transition-based decoder, we use the strong incre-
mental decoder by Yang and Deng (2020). It gener-
ates a sequence of n transitions, adding exactly one
token to the partial tree at each time step. Namely,
each time step is represented by a partial tree Ti−1,
which it is updated based on the subsequent wi and
the rightmost chain of Ti−1 (denoted as R(Ti−1))3

by performing one of these actions:

• attach(φtgt, φprt): Attaches a new subtree to
R(Ti−1). It creates a non-terminal parent
node φprt and puts the wi as its terminal node.
φprt also becomes the rightmost child of an
existing non-terminal node φtgt ∈ R(Ti−1).

• juxtapose(φtgt, φprt, φnew): Replaces the
non-terminal node φtgt ∈ R(Ti−1) with the
node φnew. φtgt takes the role of left child
of φnew (keeping its descendants). The right
child of φnew is a fresh subtree rooted at φprt

with the new read word wi as only child.

Given a partial tree Ti−1, each span extended
from fencepost l − 1 to r is represented according
to Equation 1 as a concatenation of (i) an embed-
ding of the non-terminal symbol of the span (cl,r),
and (ii) an embedding corresponding to the differ-
ence of the positions pl and pr. All the spans of the
partial tree Ti−1 are stacked together in a matrix
Xi = [Ci,Pi] and then passed through a graph
convolutional network (GCN) to obtain a new con-
textualized matrix X̃i = [C̃i, P̃i], where each row
vector x̃l,r is split as x̃l,r = [c̃l,r, p̃l,r] using the
same input dimensions (see Equation 1) to separate
positional from constituent information. Given the
contextualization of a new input word hi with its
positional embedding pi, the scores to select the
target node stgti are computed by two FFNs which
operate with those word and span representations in
the rightmost chain, denoted as X̃R

i = [C̃R
i , P̃

R
i]

(Equation 2). Finally, the scores for the parent and
new nodes (sprt

i and snew
i) are generated from hi

and pi vectors with the weighted representation of
the rightmost chain (Equation 3).

xl,r = [cl,r, (pr − pl)/2] (1)

stgti = FFNc([C̃
R
i ,hi]) + FFNp([P̃

R
i ,pi]) (2)

sprti , snewi = FFN
([

hi,pi, (s
tgt
i X̃R

i)
])

(3)

3Formally, the rightmost chain of a tree Ti−1 is defined
by the set of non-terminal nodes whose rightmost fencepost
coincides with the last word of the sentence (see Figure 2).

227

(a) Partial tree T3 built upon word w3.

S

(b) attach(tgt, prt).

S

tgt

prt

(c) juxtapose(tgt, prt, new).

S

tgt prt

new

Figure 2: Transitions defined by Yang and Deng (2020)
for a partial tree T3 when a new word w4 is added.
Nodes in R(T3) are marked in blue color.

Figure 2 shows the update of a partial tree T3

(Figure 2a) when applying the attach (Figure 2b) or
juxtapose (Figure 2c) actions. Note that the target
node always belongs to the rightmost chain and at
least one non-terminal node is added at each time
step, producing always a valid partial tree Ti.4

3 Experiments

Setup To create our models, we used the
supar5 library as our starting point. It imple-
ments non-incremental parsers for the main pars-
ing formalisms, including constituent parsing, and
allows for plug-and-play integration of most large
language models, including generative ones. For
additional information, see Appendix A.2.

Data We use both the English Penn Treebank
(Marcus et al., 1993) and the set of multilingual
treebanks released as a part of the SPMRL shared
task (Seddah et al., 2013).6

Metrics We use labeled bracketing F1-
score, with the COLLINS.prm (for PTB) and
evalb_spmrl.prm (for SPMRL) files.7

Upper-bound baselines We compare our models
against counterparts that are not fully incremental.

4Yang and Deng (2020) proved that the attach-juxtapose is
injective for constituent trees without unary chains.

5https://parser.yzhang.site/
6We do not report results for the Arabic treebank since it

requires a paid license to be used.
7BLOOM lacks pre-training data for German, Hungarian,

Hebrew, Swedish, Polish, and Korean. As mentioned earlier,
this is still useful to gather additional comprehension on how
an incremental parser with a generative LLM performs on
languages it was not specifically pre-trained for.

On the one hand, we consider Kitaev and Klein
(2018)’s approach as an upper-bound baseline, as it
uses Transformers and a powerful CYK neural de-
coding method. On the other hand, we explore par-
tially incremental versions of our strong incremen-
tal models as control baselines, where the encoder
is replaced with a bidirectional encoder, specifically
XLM-RoBERTa (Conneau et al., 2020).

3.1 Results

Table 1 presents the outcomes for the strict incre-
mental models with k = 0, compared to the upper-
bound and control parsers. The results suggest
that the main challenges in competing with bidi-
rectional systems are primarily associated with the
encoder side. This finding is similar to observa-
tions made by other authors for different paradigms,
such as dependency parsing, as noted by Ezquerro
et al. (2023). Particularly, we observe in Table
1 that models equipped with an incremental de-
coder and a non-incremental encoder (the control
columns) achieve near state-of-the-art results. How-
ever, the F1-score substantially diminishes when
switching to an incremental encoder. Across en-
coders, mGPT performs best overall. For languages
not included in its pre-training data, BLOOM’s per-
formance is closer (yet usually higher) to that of the
LSTM encoders, but it always performs worse than
mGPT. We also observe clear differences across
decoders. The transition-based decoders, while
performing on average 10 points below the upper
bound model, yield reasonable representations. On
the other hand, the incremental sequence-labeling
decoders achieve a subpar F1 score, on average 27
points below state-of-the-art parsers and 17 points
below the transition-based decoder.

Table 2 compares our incremental models with
zero delay to counterpart versions with delays of
1 and 2. The improvements are noticeable in both
decoders, especially from delay zero to one. On
average, for the sequence labeling decoder, mov-
ing from delay zero to one improves performance
by 13.7 and 15.6 percentage points for the LSTM
and mGPT encoders, respectively. Meanwhile, the
improvements from delay 1 to delay 2 show clear
diminishing returns, with only a 0.8 and 2.3 point
improvement. The trend is similar for the transition-
based decoder. When setting k=1, it shows aver-
age improvements of 8.2 points (using the vanilla
LSTM encoder) and 4.5 points (mGPT) compared
to the strict incremental version. However, there is

228

https://parser.yzhang.site/

Incremental Control
KKSL TB SL TB

... en 40.4→a 54.4r 57.4cr 77.2→… 83.5… 85.7c… 93.1r 94.5… 95.5

... eu 59.0→r 60.1r 64.1cr 71.4→… 76.5… 81.8c… 91.1a 92.8… 93.6

.. de 34.6→r 46.3a 52.5ca 51.9→… 67.4… 72.9c… 90.7a 91.7… 88.9

... fr 39.7→a 50.2r 53.8cr 64.9→… 71.7… 74.5c… 86.0a 86.6… 91.5

.. he 66.2→a 66.4r 76.1cr 65.4→… 74.3… 84.4c… 91.8a 93.8… 92.8

.. hu 72.0→r 69.3r 76.6cr 69.8→… 82.2… 89.1c… 94.5a 95.3… 96.3

.. ko 63.8→r 63.7r 70.4cr 75.7→… 77.7… 81.9c… 89.0r 89.8… 91.9

.. pl 71.6→a 71.8r 79.7ca 77.6→… 84.7… 91.4c… 96.2a 96.8… 97.1

. sv 47.6→r 47.3r 60.3cr 60.4→… 64.1… 78.2c… 87.6a 90.2… 92.0

µ 55.0 58.8 65.7 68.3 75.8 82.2 91.1 92.4 93.3

Table 1: Labeled F-score paired with best sequence la-
beling (SL) and transition-based (TB) decoder. µ repre-
sents macro average results. Superscripts denote the encoder
choice: LSTM (→), BLOOM-560M (), mGPT (c), XLM-
RoBERTa (). Subscripts denote the decoder configuration:
absolute (a), relative (r), GCN (…) and FFN (). The upper
bound baseline performance (KK, (Kitaev and Klein, 2018))
is also included. Language codes come from ISO 639-1 and
left colored dots indicate the pretraining availability in LMs.

SL TB
LSTM (→) MGPT (c) LSTM (→) MGPT (c)

... en 68.327.9 72.432.0 82.324.9 86.128.7 83.46.2 84.27.0 90.95.2 91.65.9

... eu 78.019.0 77.218.2 84.820.7 86.822.7 81.710.3 81.29.8 87.15.3 88.06.2

.. de 57.522.9 59.024.4 72.820.3 76.423.9 64.612.7 64.512.6 81.38.4 83.310.4

... fr 59.019.3 60.420.7 75.221.4 78.524.7 73.58.6 76.411.5 81.06.5 83.08.5

.. he 75.79.5 76.310.1 84.78.6 85.59.4 77.712.3 79.714.3 87.53.1 88.03.6

.. hu 76.44.4 79.67.6 84.88.2 87.510.9 82.112.3 85.215.4 92.02.9 92.13.0

.. ko 70.06.2 70.06.2 78.07.6 80.09.6 77.11.4 77.82.1 83.92.0 84.62.7

.. pl 83.111.5 82.010.4 91.411.7 92.412.7 86.28.6 87.810.2 93.62.2 94.22.8

. sv 64.316.7 62.915.3 77.317.0 79.118.8 70.19.7 66.96.5 82.84.6 83.85.6

µ 63.213.7 64.014.5 81.315.6 83.617.9 69.68.2 70.49.0 86.74.5 87.65.4

Table 2: LF scores with delay 1 and 2 (first and second subcol-
umn) Notation as in Table 1. Subscripts denote performance
boost over zero-delay fully incremental results from Table 1.

only a 0.8 and a 0.9 point improvement compared
to the models with delay one. These diminishing
returns indicate that small delays are not enough to
close the gap, and strategies to improve incremental
encoders such as prophecy tokens that can simu-
late larger delays (Madureira and Schlangen, 2020)
may be needed - although tailored for parsing and
contemporary language models.

Finally, some phrases may be more ambiguous
than others in an incremental setting due to fac-
tors such as sentence structure, word order, or se-
mantics. Figure 3 shows F1-scores for the most
common non-terminals in diverse languages: En-
glish, Hebrew, Basque, and Korean, for models
with k ∈ [0, 1, 2]. For space reasons, we include

(a) PTB

NP VP PP S SBAR ADJP QP
0

0.2

0.4

0.6

0.8

(b) Basque

S GV SN GRUP SP COORD SADV
0

0.2

0.4

0.6

0.8

(c) Hebrew

NP PP S SBAR ADJP NNPP VP
0

0.2

0.4

0.6

0.8

(d) Korean

VP NP ADJP AUXP S ADVP IP
0

0.2

0.4

0.6

0.8

Figure 3: F-Score of absolute (orange), relative (green)
and transition-based (purple) decoders with mGPT
(bars) and XLM-RoBERTa (dots) encoders per con-
stituent. Different textures are used for delay 0 (solid),
1 (dotted) and 2 (gridded).

only the most coarse-grained non-terminals. Unary
chains are excluded. Across the board, positive
delays, especially k = 1, have a much greater im-
pact on sequence-labeling decoders, particularly
benefiting longer span types like noun, verb, and
prepositional phrases (span lengths are in Appendix
Table 3). Also, behaviors across non-terminals and
languages can vary greatly with incrementality, e.g.,
while delay is crucial for phrases such as VB for
PTB or SBAR for Hebrew, its need is negligible
for others such as Hebrew ADJP.

4 Conclusion

This paper introduced a set of strictly incremental
encoder-decoder constituent parsers, using gener-
ative language models and two types of decoders:
one based on parsing as tagging, and the other on
transition-based parsing with partial graph neural
network representations. We tested the models in
a diverse multilingual setting and also simulated
human reading processes with positive delays of
a few upcoming words. The results suggest that
a significant portion of future challenges may be
centered on the encoding side, and in how different
phrases might be affected by the absence of bidirec-
tionality. In this context, exploring research lines
to inform the decoder, such as speculative real-time
generation of next tokens in real time, could be a
valuable step to explore parsing methods closer to
human reading processes.

229

Acknowledgments

We thank the anonymous reviewers for their
very complete and useful suggestions. This
work has received funding by the European
Research Council (ERC), under the Horizon
Europe research and innovation programme
(SALSA, grant agreement No 101100615),
ERDF/MICINN-AEI (SCANNER-UDC, PID2020-
113230RB-C21), Xunta de Galicia (ED431C
2020/11), Grant GAP (PID2022-139308OA-I00)
funded by MCIN/AEI/10.13039/501100011033/
and by ERDF “A way of making Europe”, Cát-
edra CICAS (Sngular, University of A Coruña),
and Centro de Investigación de Galicia “CITIC”,
funded by the Xunta de Galicia through the col-
laboration agreement between the Consellería de
Cultura, Educación, Formación Profesional e Uni-
versidades and the Galician universities for the re-
inforcement of the research centres of the Galician
University System (CIGUS).

Limitations

Non-monotonicity Our definition of incremen-
tality applies exclusively to monotonic parsers. In
cases of non-monotonicity, a parser might aban-
don its existing partial output and revise it as new
information comes in. This is carefully discussed
in (Ezquerro et al., 2023) for dependency parsing.
Similarly, we chose to focus solely on monotonic
constituent parsers. First, our goal is to maintain
a straightforward implementation that is on par
with others, avoiding the added complexity that
repair strategies entail. Second, dealing with non-
monotonicity requires thinking a thorough evalua-
tion framework. In this respect, comparing against
(partial) incremental parsers is challenging, as met-
rics must account for partial analysis, which is
not accommodated by the standard bracketing F1-
measure. In turn, such metrics on partial analyses
are meaningless for non-incremental parsers, which
often do not even produce any partial outputs, pre-
cluding direct comparison against them.

Discontinuous constituent parsing We re-
stricted our analysis to continuous constituent pars-
ing and observed that modern incremental parsers
still exhibit shortcomings in this area. Studying
the impact of incrementality on discontinuities, i.e.,
discontinuous spans within a sentence that form
specific constituents, presents a more challenging
aspect of constituent parsing. This phenomenon is

particularly observed in languages with free word
order. In this regard, there are several avenues to
explore. For example, we could draw inspiration
from the incremental transition-based algorithm
described by Coavoux and Crabbé (2017), or the
sequence labeling approach suggested by Vilares
and Gómez-Rodríguez (2020), which shows poten-
tial to be adapted to an incremental setup.

Experiments on lower-resourced languages
Unlike in other paradigms like dependency pars-
ing, the availability of a diverse range of treebanks
spanning various typologies is more limited for con-
stituent parsing. We used the treebanks presently
at our disposal, which include the English Penn
Treebank and the SPMRL treebanks. However,
it is worth noting that we were unable to access
the Arabic dataset due to its paid license. Yet,
our experiments consider: English (Indo-European,
Germanic), Basque, German (Indo-European, Ger-
manic), French (Indo-European, Romance), He-
brew (Afro-Asiatic, Semitic), Hungarian (Uralic,
Ugric), Korean, Polish (Indo-European, Slavic) and
Swedish (Indo-European, Germanic).

Availability of multilingual large language mod-
els Research on generative LLMs is extensive,
and many models are being released contempora-
neously with this paper. However, highly multilin-
gual versions are more rare. Two main available
resources are BLOOM and mGPT, both of which
we evaluated. This double evaluation allowed us to
establish differences in performance, particularly
in terms of incrementality, depending on whether
the models contained pre-training data for a given
target language or not.

Computational capabilities We lacked access
to extensive computing infrastructure or a budget
for cloud-based scaling that would allow us to fine-
tune more powerful multilingual language mod-
els such as the LLaMa family. We had access to
NVIDIA GeForce RTX 3090 servers (each with
24GB) and one NVIDIA A100 GPU (with 80GB).
We managed to fine-tune the smallest BLOOM lan-
guage model (560M parameters) within reasonable
time frames. Although we could technically fit the
3B version on the A100 GPU with a minimal batch
size, the impractical training duration made it infea-
sible for a comprehensive multilingual study like
the one proposed in this work.

230

References

Afra Amini and Ryan Cotterell. 2022. On parsing as
tagging. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 8884–8900, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Douglas K. Bemis and Liina Pylkkänen. 2011. Simple
composition: A magnetoencephalography investiga-
tion into the comprehension of minimal linguistic
phrases. Journal of Neuroscience, 31(8):2801–2814.

Niels Beuck and Wolfgang Menzel. 2013. Structural
prediction in incremental dependency parsing. In
Computational Linguistics and Intelligent Text Pro-
cessing: 14th International Conference, CICLing
2013, Samos, Greece, March 24-30, 2013, Proceed-
ings, Part I 14, pages 245–257. Springer.

Maximin Coavoux and Benoît Crabbé. 2017. Incremen-
tal discontinuous phrase structure parsing with the
GAP transition. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers,
pages 1259–1270, Valencia, Spain. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale.

James Cross and Liang Huang. 2016. Incremental pars-
ing with minimal features using bi-directional LSTM.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 32–37, Berlin, Germany. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing.

Ana Ezquerro, Carlos Gómez-Rodríguez, and David
Vilares. 2023. On the challenges of fully incremen-
tal neural dependency parsing. In Proceedings of
the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics, pages 52–66, Nusa Dua, Bali.
Association for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1314–1324,
Brussels, Belgium. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2020. Tetra-tagging:
Word-synchronous parsing with linear-time inference.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6255–
6261, Online. Association for Computational Lin-
guistics.

Nikita Kitaev, Thomas Lu, and Dan Klein. 2022.
Learned incremental representations for parsing. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3086–3095, Dublin, Ireland. As-
sociation for Computational Linguistics.

Arne Köhn. 2018. Incremental natural language pro-
cessing: Challenges, strategies, and evaluation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 2990–3003, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Arne Köhn and Timo Baumann. 2016. Predictive in-
cremental parsing helps language modeling. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 268–277, Osaka, Japan. The COLING
2016 Organizing Committee.

Arne Köhn and Wolfgang Menzel. 2014. Incremental
predictive parsing with TurboParser. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 803–808, Baltimore, Maryland. Association
for Computational Linguistics.

Ioannis Konstas, Frank Keller, Vera Demberg, and
Mirella Lapata. 2014. Incremental semantic role
labeling with Tree Adjoining Grammar. In Proceed-
ings of the 2014 Conference on Empirical Methods in

231

https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.1523/JNEUROSCI.5003-10.2011
https://doi.org/10.1523/JNEUROSCI.5003-10.2011
https://doi.org/10.1523/JNEUROSCI.5003-10.2011
https://doi.org/10.1523/JNEUROSCI.5003-10.2011
https://aclanthology.org/E17-1118
https://aclanthology.org/E17-1118
https://aclanthology.org/E17-1118
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/P16-2006
https://doi.org/10.18653/v1/P16-2006
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://aclanthology.org/2023.ijcnlp-short.7
https://aclanthology.org/2023.ijcnlp-short.7
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.18653/v1/D18-1162
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/2020.acl-main.557
https://doi.org/10.18653/v1/2020.acl-main.557
https://doi.org/10.18653/v1/2022.acl-long.220
https://aclanthology.org/C18-1253
https://aclanthology.org/C18-1253
https://aclanthology.org/C16-1026
https://aclanthology.org/C16-1026
https://doi.org/10.3115/v1/P14-2130
https://doi.org/10.3115/v1/P14-2130
https://doi.org/10.3115/v1/D14-1036
https://doi.org/10.3115/v1/D14-1036

Natural Language Processing (EMNLP), pages 301–
312, Doha, Qatar. Association for Computational
Linguistics.

Brielen Madureira and David Schlangen. 2020. In-
cremental processing in the age of non-incremental
encoders: An empirical assessment of bidirectional
models for incremental NLU. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 357–374, On-
line. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn treebank. Computational
Linguistics, 19(2):313–330.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Friedemann Pulvermüller, Yury Shtyrov, and Olaf Hauk.
2009. Understanding in an instant: Neurophysiologi-
cal evidence for mechanistic language circuits in the
brain. Brain and Language, 110(2):81–94.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola Galletebeitia,
Yoav Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński,
Alina Wróblewska, and Eric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 shared
task: A cross-framework evaluation of parsing
morphologically rich languages. In Proceedings
of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Yikang Shen, Shawn Tan, Alessandro Sordoni, Siva
Reddy, and Aaron Courville. 2021. Explicitly mod-
eling syntax in language models with incremental
parsing and a dynamic oracle. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1660–1672,
Online. Association for Computational Linguistics.

Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova,
Vladislav Mikhailov, Anastasia Kozlova, and Tatiana

Shavrina. 2022. mgpt: Few-shot learners go multilin-
gual.

Miloš Stanojević and Mark Steedman. 2019. CCG pars-
ing algorithm with incremental tree rotation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 228–239, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Miloš Stanojević and Mark Steedman. 2020. Max-
margin incremental CCG parsing. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4111–4122, On-
line. Association for Computational Linguistics.

Ivan Titov and James Henderson. 2007. Constituent
parsing with incremental sigmoid belief networks. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 632–639,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

David Vilares and Carlos Gómez-Rodríguez. 2020. Dis-
continuous constituent parsing as sequence labeling.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2771–2785, Online. Association for Computa-
tional Linguistics.

Kaiyu Yang and Jia Deng. 2020. Strongly incremen-
tal constituency parsing with graph neural networks.
Advances in Neural Information Processing Systems,
33:21687–21698.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

A Appendix

A.1 Treebank statistics
Table 3 shows the frequency and average length
(defined as the difference between initial and final
fencepost) of the constituents displayed in Figure
3.

A.2 Hyperparameters configuration
Tables 4 and 5 show the configuration of the mod-
els and the training hyperparameters for each en-
coder type. In pretrained models, each sentence
(w1, ..., wn) was passed through all encoder lay-
ers to compute the last hidden state (e1, ..., en) and

232

https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/https://doi.org/10.1016/j.bandl.2008.12.001
https://doi.org/https://doi.org/10.1016/j.bandl.2008.12.001
https://doi.org/https://doi.org/10.1016/j.bandl.2008.12.001
https://aclanthology.org/W13-4917
https://aclanthology.org/W13-4917
https://aclanthology.org/W13-4917
https://doi.org/10.18653/v1/2021.naacl-main.132
https://doi.org/10.18653/v1/2021.naacl-main.132
https://doi.org/10.18653/v1/2021.naacl-main.132
https://doi.org/10.48550/ARXIV.2204.07580
https://doi.org/10.48550/ARXIV.2204.07580
https://doi.org/10.18653/v1/N19-1020
https://doi.org/10.18653/v1/N19-1020
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/2020.acl-main.378
https://aclanthology.org/P07-1080
https://aclanthology.org/P07-1080
https://doi.org/10.18653/v1/2020.emnlp-main.221
https://doi.org/10.18653/v1/2020.emnlp-main.221

en NP VP PP S SBAR ADJP QP
λ 4.96 11.2 5.96 12.71 12.2 5.02 2.97
% 43.13 24.56 16.95 6.29 3.6 1.79 1.7

eu S GV SN GRUP SP COORD SADV
λ 8.86 2.31 3.66 2.26 3.38 2.04 2.61
% 34.07 18.47 15.46 12.38 11.2 2.8 2.08

de NP PP VN SENT COORD VPINF NC
λ 6.37 6.5 2.52 30.44 9.4 12.35 2.59
% 32.79 26.25 7.04 6.04 4.53 3.2 2.92

fr NP PP S VP AP PN CNP
λ 3.42 3.69 8.5 5.81 3.09 2.16 4.72
% 28.66 25.55 21.22 9.16 4.37 2.98 2.75

he NP PP S SBAR ADJP NNPP VP
λ 5.14 5.93 17.21 13.15 2.69 2.65 10.67
% 44.19 21.68 15.21 5.4 4.44 3.2 2.56

hu NP CP ADJP PP XP ADVP V
λ 3.58 14.97 3.79 4.09 7.36 2.88 2.0
% 57.11 29.3 7.54 3.97 1.26 0.66 0.16

ko VP NP ADJP AUXP S ADVP IP
λ 6.76 3.79 6.29 2.14 13.45 3.03 2.06
% 49.75 36.0 8.04 4.1 1.53 0.39 0.16

pl FNO ZDANIE FPM FWE FZD FPT FORMACZAS
λ 3.61 8.09 3.3 3.57 8.4 3.9 2.04
% 34.18 28.15 19.79 5.39 3.56 3.34 2.21

sv NP S PP VP XP AP AVP
λ 4.61 12.14 4.61 7.64 4.24 2.65 3.51
% 31.1 27.35 20.69 10.35 6.46 2.48 0.88

Table 3: Frequency (%) and average length (λ) of most
frequent constituents of each treebank. Root and unary
spans were removed.

then projected to a new reduced space of dimension
h with a feed-forward network. The final reduced
sequence H = (h1, ...,hn) is the one passed to
the delay module. In the case of non-pretrained
encoders, each word wi was represented as a con-
catenation of (i) a word embedding of dimension
hw, (ii) the PoS tag embedding of dimension hp
and (iii) the last hidden state of a Character-LSTM
(Dozat and Manning, 2017) of dimension hc, result-
ing into a final input embedding wi ∈ Rhw+hp+hc .
The input matrix W = (w1, ..,wn) is introduced
to the LSTM encoder (with randomly initialized
weights) and its last hidden states (h1, ...,hn) are
passed through the delay module and the decoder.
The decoder is a 3-layered Graph Convolutional
Layer for the Attach-Juxtapose parser or a feed-
forward network for the case of the sequence la-
beling decoder. The complete network was trained
with the CrossEntropy loss function and AdamW
as optimizer, adapting the batches to the model
size. Dropout was set in both encoder and decoder
and the best validation performance was finally
retrieved.

Finally, Table 6 displays various estimates of
inference speeds for different models.

Hyp. LLM Non-pretrained
XLM BLOOM mGPTc LSTM→ BiLSTM↔

word emb. (hw) - 300
PoS emb. (hp) - 100

char. emb. - 50
char. LSTM (hc) - 100

enc. layers 1 4
enc. emb. (h) 100 400

% enc. dropout 0.33 0.33sh.
GCN layers 3 3
FFN layers 1 1

% dec. dropout 0.33 0.33sh.

Table 4: Model configuration for pretrained and non-
pretrained models. The number of encoder layers for
LLMs refers to the number of last hidden states ob-
tained for each word. LSTM-based encoders use the
shared-dropout technique (Gal and Ghahramani, 2016)
as described in Dozat and Manning (2017).

Hyp. LLM Non-pretrained
XLM BLOOM mGPTc LSTM→ BiLSTM↔

optimizer AdamW AdamW
lr 5e-5 1e-3

lr decay linear (0.5) exponential (0.1)
epochs 30 200

batch size 500 500 100 5000

Table 5: Training hyperparameters for pretrained and
non-pretrained models. AdamW is set as optimizer with
β0 = 0.9, β1 = 0.9 and ε = 10−12, and batch sampling
is fixed to minimize sequence padding.

SL ()
LSTM→ BiLSTM↔ BLOOM mGPTc XLM

en 856.02 688.98 354.21 144.03 403.09
eu 2096.61 1265.82 424.77 168.95 523.03
fr 678.24 467.33 281.33 116.02 313.66
de 1348.32 969.85 306.75 155.42 417.9
he 497.8 673.3 192.07 122.14 323.24
hu 1258.99 809.41 233.1 124.26 390.06
ko 1838.16 1477.9 261.41 151.59 486.57
pl 2091.04 1725.57 439.35 242.28 631.53
sw 1465.52 1132.12 325.1 174.44 507.27
µ 1347.86 1023.36 313.12 155.46 444.04

TB (…)
LSTM→ BiLSTM↔ BLOOM mGPTc XLM

en 191.21 188.75 146.69 90.83 152.34
eu 569.21 524.83 295.27 135.45 341.40
fr 109.87 106.04 90.20 62.09 94.29
de 249.92 241.20 160.34 102.48 190.38
he 164.55 155.95 94.11 72.38 130.94
hu 235.16 224.06 138.12 90.26 181.44
ko 570.62 517.57 200.15 128.72 306.19
pl 717.30 586.34 297.53 196.40 400.62
sw 331.67 286.10 196.45 116.33 229.96
µ 348.83 314.54 179.87 110.55 225.28

Table 6: Inference speed (in sentences per second) of the
evaluated models across different languages. Symbols
come from Table 1.

233

