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Abstract

This paper explores an empirical approach to
learn more discriminantive sentence represen-
tations in an unsupervised fashion. Leverag-
ing semantic graph smoothing, we enhance
sentence embeddings obtained from pretrained
models to improve results for the text clustering
and classification tasks. Our method, validated
on eight benchmarks, demonstrates consistent
improvements, showcasing the potential of se-
mantic graph smoothing in improving sentence
embeddings for the supervised and unsuper-
vised document categorization tasks.

1 Introduction

Text categorization, also known as document cate-
gorization, is a natural language processing (NLP)
task that involves arranging texts into coherent
groups based on their content. It has many applica-
tions such as spam detection (Jindal and Liu, 2007),
sentiment analysis (Melville et al., 2009), content
recommendation (Pazzani and Billsus, 2007), etc.
There are two main approaches to text categoriza-
tion: classification (supervised learning) and clus-
tering (unsupervised learning). In text classifica-
tion, the process involves training a model using a
labeled dataset, where each document is associated
with a specific category. The model learns patterns
and relationships between the text features and the
corresponding categories during the training phase.
Text clustering, however, aims to group similar doc-
uments together without prior knowledge of their
categories. Unlike text classification, clustering
does not require labeled data. Instead, it focuses on
finding inherent patterns and similarities in the text
data to create clusters.

In the field of NLP, pretrained models have at-
tained state-of-the-art performances in a variety of
tasks (Devlin et al., 2019; Liu et al., 2019; Reimers
and Gurevych, 2019), one of which is text clas-
sification. In spite of that, text clustering using
such models did not garner significant attention.

To this day most text clustering techniques use
the representations of texts generated by some pre-
trained model such as Sentence-BERT (Reimers
and Gurevych, 2019) and often use classical clus-
tering approaches such as k-means to obtain a par-
tition of the texts. This is done without any fine-
tuning due to the unsupervised nature of the clus-
tering problem.

Recently, graph filtering has appeared as an effi-
cient and effective technique for learning represen-
tations for attributed network nodes. The effective-
ness of this technique has made it a backbone for
popular deep learning architectures for graphs such
as the graph convolutional network (GCN) (Kipf
and Welling, 2016). Simplified versions of this
deep architecture have been proposed wherein the
learning of large sets of weights has been deemed
unnecessary. Their representation learning scheme
works similar to Laplacian smoothing and, by ex-
tension, graph filtering. We can give as examples
of these simplified techniques the simple graph con-
volution (SGC) (Wu et al., 2019), and the simple
spectral graph convolution (S²GC) (Zhu and Ko-
niusz, 2020). Some researchers used GCNs for the
task of text classification. Yao et al. (2019) pro-
posed TextGCN which is GCN with a custom adja-
cency matrix built from word PMI and the TF-IDF
of the documents with the attributes being word
count vectors. Lin et al. (2021) proposed BertGCN
which is similar to TextGCN with the difference
that they use BERT representation for the GCN
and combine their training losses. The issue is that
these approaches are not suitable for learning un-
supervised representations since labels are needed.
This is a significant limitation towards their use in
unsupervised tasks. Recently some graph-based
unsupervised approaches were proposed to deal
with text data represented using document-term
matrices (Fettal et al., 2022, 2023).

In this paper, we propose to use the concept
of graph smoothing/filtering, which is the main
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component accredited with the success of GCNs
(Defferrard et al., 2016; Kipf and Welling, 2016; Li
et al., 2018), to semantically "fine-tune" the repre-
sentations obtained via sentence embedding mod-
els to help traditional clustering and classification
algorithms better distinguish between semantically
different texts and group together texts which have
similar meanings, all in an unsupervised manner.
To do this, we build a graph with respect to the
text which describes the semantic similarity be-
tween the different documents based on the popu-
lar cosine similarity measure. Our approach yields
almost systematic improvement when using filter-
ing on the textual representations as opposed to
using them without filtering in both facets of docu-
ment categorization: classification and clustering.
Experiments on eight popular benchmark datasets
support these observations.

The code for the experiments is available at 1.

2 Background: Graph Filtering and
Smoothing

Graph Signal Processing (Shuman et al., 2013; Or-
tega et al., 2018) provides a framework to analyze
and process signals defined on graphs, by extend-
ing traditional signal processing concepts and tools
to the graph domain. This allows for the represen-
tation and manipulation of signals in a way that
is tailored to the specific structure of the graph.
In what follows we refer to matrices in boldface
uppercase and vectors in boldface lowercase.

Graph Signals Graph signals are mappings from
the set of vertices to the real numbers. A graph
signal for a given graph G can be represented
using vector f = [f(v1), . . . , f(vn)]

⊤ such that
f : V → R is a real-valued function on the vertex
set. The smoothness of a signal f over graph G
can be characterized using the Laplacian quadratic
form associated with Laplacian L:

f⊤Lf =
1

2

∑

i,j

aij(fi − fj)
2. (1)

These signals can be high dimensional and can
represent many kinds of data. In our case, signals
will represent text embeddings.

Graph Filters Smoother graph signals can be
obtained by minimizing the quantity described in

1https://github.com/chakib401/
smoothing_sentence_embeddings

Formula (1). That is the goal of graph filters and
the filtering is generally done from a spectral per-
spective. A specific class of filters that additionally
has an intuitive interpretation from a vertex per-
spective is that of the polynomial filters. When
the filter is a P -th order polynomial of the form
ĥ(L) =

∑p
m=0 θmLm, the filtered signal at ver-

tex i, is a linear combination of the components
of the input signal at vertices within a P -hop local
neighborhood of vertex i:

fout
i = αiif

in
i +

∑

j∈N(i,p)

αijf
in
j (2)

where N(i, p) is the P -th order neighborhood of
vertex i. It is possible to then make the correspon-
dence with a polynomial filter (from a spectral per-
spective) as follows:

αij =

p∑

m=dG(i,j)

θm(Lm)ij (3)

where dG is the shortest distance between node i
and j. Several polynomial filters have been pro-
posed in the literature such as the ones associated
with Simple Graph Convolution (SGC) (Wu et al.,
2019), simple spectral Graph Convolution (S²GC)
(Zhu and Koniusz, 2020), approximate personal-
ized propagation of neural predictions (APPNP)
(Gasteiger et al., 2018) and Decoupled Graph Con-
volution (DGC) (Wang et al., 2021).

3 Proposed Methodology: Smoothing
Sentence Embeddings

In this paper, we theorize that smoothing sentence
embeddings with a semantic similarity graph can
help supervised and unsupervised categorization
models better differentiate between the similar
and dissimilar documents, leading to performance
gains. A common choice for quantifying semantic
similarity of text is the cosine similarity; given two
sentence embedding vectors xi,xj ∈ Rd we have

cos(xi,xj) =
x⊤
i xj

∥xi∥∥xj∥
.

We build a k-nearest neighbors connectivity graph
which we denote G based on this similarity mea-
sure i.e. a graph for which each node has exactly
k neighbors and whose edge weights are all equal
to one. We characterize the graph G using its ad-
jacency matrix A, we denote its Laplacian as L.
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Given the adjacency matrix, a standard trick to ob-
tain better node representations consists in adding
a self-loop

Â = A+ λI (4)

where λ is a hyperparameter controlling the number
of self-loops. As such in what follows we consider
the symmetrically normalized version of Â, that is

S = D̂−1/2ÂD̂−1/2. (5)

Now given a node embedding matrix X and the
previous semantic similarity graph. We consider
four polynomial graph filters whose propagation
rules we describe in Table 1.

Table 1: The propagation rules associated with the differ-
ent polynomial filters. H(0) is the X. P is the propaga-
tion order. α and T are filter-specific hyperparameters.

Filter Propagation Rule

FSGC H(p+1) ← SH(p)

FS²GC H(p+1) ← H(p) + SH(p)

FAPPNP H(p+1) ← (1− α)SH(p) + αH(0)

FDGC H(p+1) ← (1− T
P )H

(p) + T
P SH

(p)

4 Experiments

In this section we evaluate our semantically
smoothed representations obtained through four
filters on two tasks, clustering and classification,
with respect to the original representations obtained
from SentenceBERT (Reimers and Gurevych,
2019) as well as two large language models base-
lines: BERT and RoBERTa.

4.1 Datasets and Metrics

We use eight benchmark datasets of varying sizes
and number of clusters, and we report their sum-
mary statistics in Table 2. For the metrics, in the
supervised context, we use the F1 score as the qual-
ity metric while in the unsupervised context we use
the adjusted rand index (ARI) (Hubert and Arabie,
1985) and the adjusted mutual information (AMI)
(Vinh et al., 2009).

4.2 Experimental Settings

For the classification task, we use a random strat-
ified 64%-16%-20% train-val-test split. We also
tune the hyperparameters k of the k-nn graph, or-
der of propagation P , the parameter λ and the filter
specfic parameters α and T . For the clustering task,

Table 2: Summary statistics of the datasets. Balance
refers to the ratio of the most frequent class over the least
frequent class. Length refers to the average sentence
length in the corpus.

Dataset Docs Classes Balance Length

20News 18,846 20 1.6 221
DBpedia 12,000 14 1.1 46
AGNews 8,000 4 1.1 31
BBCNews 2,225 5 1.3 384
Classic3 3,891 3 1.4 152
Classic4 7,095 4 3.9 107
R8 7,674 8 76.9 65
Ohsumed 7,400 23 61.8 135

we use k = 10 for the k-nn graph, set P = 2 as the
propagation order, λ = 1, α = 0.1 and T = 5. We
report the averages of the metrics as well as their
standard deviations over 10 runs (for the classifica-
tion task, we omit standard deviation due to them
being insignificant).

4.3 Experimental Results

Clustering Results We compare the results of
the k-means algorithm (kM) applied on Sentence-
BERT (we refer to it as SBERT or SB) embed-
dings with and without the different filtering opera-
tions. Note that instead of using kM we can use any
other clustering algorithms including variants of
kM such as k-means++ (Arthur and Vassilvitskii,
2007) and entropy kM (Chakraborty et al., 2020).
In addition to this, we add a baseline which uses an
ensemble technique (Ait-Saada et al., 2021) on the
layer outputs of the word embedding of BERT and
RoBERTa, this method improves over considering
a single layer or taking the mean. We report the
clustering results in Table 3. The filtering opera-
tion systematically leads to better results on the
benchmark with respect to the filterless clustering
scheme on all datasets we have used. These in-
creases are statistically significant in most cases. It
also significantly beats the ensemble approach on
most datasets.

Classification Results Similar to the clustering
setting, we compare results from a Logistic Re-
gression (LR) applied on the original sentence em-
beddings with and without the filtering operation
we introduced. We also use fine-tuned BERT and
RoBERTa (2 epochs) as baselines; we use the base
versions due to computational restrictions. We re-
port the results in Table 4. We see that this op-
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Table 3: Clustering results in terms of AMI and ARI on the eight datasets. The best results are highlighted in bold.
If our best performing variant outperforms the best comparative method in a statistically significant matter (t-test at
a confidence level of 95%), we highlight it in blue.

20News AGNews BBCNews Classic3

AMI ARI AMI ARI AMI ARI AMI ARI

ENSBERT-base 37.5 ±2.5 15.3 ±1.7 54.1 ±3.6 51.4 ±5.8 81.0 ±5.5 80.0 ±8.5 98.6 ±0.1 99.4 ±0.0

ENSBERT-large 46.1 ±0.7 21.4 ±0.6 58.5 ±2.8 58.2 ±5.9 86.0 ±3.5 86.5 ±6.3 98.4 ±0.2 99.3 ±0.1

ENSRoBERTa-base 37.5 ±1.4 15.9 ±1.8 55.9 ±4.1 52.1 ±4.1 80.0 ±5.3 77.2 ±9.4 98.4 ±0.1 99.3 ±0.1

ENSRoBERTa-large 48.0 ±0.8 23.2 ±1.2 56.7 ±4.6 52.8 ±5.1 85.8 ±3.8 85.1 ±7.2 98.7 ±0.1 99.4 ±0.1

SBERT+kM 62.9 ±0.3 47.4 ±1.0 57.9 ±0.1 60.5 ±0.1 90.8 ±0.2 93.0 ±0.1 96.0 ±0.1 97.6 ±0.1

SB+FSGC+kM 65.4 ±0.4 49.1 ±1.1 60.6 ±0.1 62.4 ±0.3 90.6 ±0.1 92.9 ±0.1 98.8 ±0.0 99.5 ±0.0

SB+FS²GC+kM 64.9 ±0.4 49.0 ±1.1 60.1 ±0.2 62.2 ±0.2 90.9 ±0.1 93.1 ±0.1 98.3 ±0.0 99.2 ±0.0

SB+FAPPNP+kM 65.4 ±0.4 49.8 ±1.2 60.6 ±0.0 62.5 ±0.0 90.6 ±0.1 92.9 ±0.1 98.5 ±0.0 99.3 ±0.0

SB+FDGC+kM 65.6 ±0.7 48.8 ±1.0 60.5 ±1.5 60.5 ±2.2 90.2 ±0.1 92.5 ±0.1 99.1 ±0.0 99.6 ±0.0

Classic4 DBpedia Ohsumed R8

AMI ARI AMI ARI AMI ARI AMI ARI

ENSBERT-base 71.4 ±3.5 49.0 ±4.0 73.4 ±2.5 51.0 ±4.0 15.2 ±1.0 9.1 ±1.2 35.3 ±2.0 22.7 ±2.4

ENSBERT-large 73.0 ±1.8 51.1 ±3.2 72.4 ±2.1 47.2 ±4.2 16.1 ±0.9 9.3 ±0.7 35.7 ±3.5 22.8 ±3.1

ENSRoBERTa-base 72.1 ±4.7 51.0 ±4.1 74.2 ±2.6 52.5 ±4.7 17.5 ±0.7 11.4 ±0.8 25.6 ±1.0 13.6 ±1.2

ENSRoBERTa-large 74.1 ±3.5 52.5 ±3.9 72.5 ±2.5 49.0 ±4.4 19.4 ±0.7 12.7 ±0.7 42.4 ±5.6 32.9 ±9.2

SBERT+kM 84.5 ±0.1 86.2 ±0.1 86.0 ±1.4 80.0 ±3.1 39.3 ±0.7 23.5 ±1.2 63.1 ±1.8 45.5 ±3.7

SB+FSGC+kM 85.8 ±2.8 85.6 ±7.4 85.6 ±1.0 78.5 ±2.7 41.8 ±0.5 25.2 ±1.0 65.6 ±0.5 49.0 ±0.6

SB+FS²GC+kM 86.0 ±0.0 86.9 ±0.0 86.6 ±1.2 80.4 ±2.8 41.0 ±0.8 24.5 ±1.5 64.8 ±1.1 47.8 ±0.7

SB+FAPPNP+kM 86.2 ±0.0 87.0 ±0.0 85.8 ±1.0 78.9 ±2.7 41.6 ±0.7 24.9 ±1.5 65.1 ±1.6 48.5 ±1.0

SB+FDGC+kM 86.9 ±0.0 87.7 ±0.0 85.4±1.0 78.4 ±2.2 41.8 ±0.7 24.8±1.7 65.6 ±0.5 49.3 ±0.4

Table 4: Classification results in terms of F1 score on the eight data sets.

20News R8 AGNews BBCNews Classic3 Classic4 DBpedia Ohsumed

BERTbase 80.7 89.94 89.78 95.51 100.0 98.58 97.84 56.48
RoBERTabase 85.48 89.42 88.06 96.73 99.16 96.47 98.22 58.11
SBERT+LR 83.35 90.22 86.25 98.62 99.61 98.19 97.33 62.87

SB+FAPPNP+LR 87.54 90.9 87.9 99.06 99.75 98.36 97.14 67.6
SB+FDGC+LR 87.11 90.08 87.59 98.19 99.61 98.52 97.38 67.09
SB+FS²GC+LR 87.36 91.19 88.33 98.62 99.75 98.19 97.26 67.42
SB+FSGC+LR 87.26 89.22 88.05 99.06 99.61 98.32 97.01 67.05

eration leads to better performances on the classi-
fication task on the majority of the datasets with
respect to the filterless Sentence-BERT but this per-
formance increase is not as pronounced as for the
clustering task. We also see that the representations
we learn lead to competitive results with respect to
BERT and RoBERTa despite Sentence-BERT not
being suited to classification.

Statistical Significance Testing Using the
Bonferroni-Dunn post-hoc mean rank test (Demšar,
2006), we analyze the average ranks of the clus-
tering and classification over the Sentence-BERT
representations with and without filtering in terms
of AMI and ARI, for the clustering task, as well
as the F1 score for the classification task on the
eight datasets. Figure 1 shows that the cluster-
ing and classification results when using the pro-
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Figure 1: Bonferroni-Dunn average rank test at a confi-
dence level of 95%.

posed semantically smoothed representations are
statistically similar and that they all outperform the
Sentence-BERT variant with no filtering in a statis-
tically significant manner at a confidence level of
95%.

5 Conclusion

We proposed a simple yet effective empirical ap-
proach that consists in using similarity graphs in
an unsupervised manner to smooth sentence em-
beddings obtained from pretrained models in a
semantically aware manner. The systematic im-
provements in performance on both clustering and
classification tasks on several benchmark datasets
of different scales and balance underscore the ef-
fectiveness of using semantic graph smoothing to
improve sentence representations.

6 Limitations

The main limitation of our approach is the addi-
tional computational complexity entailed by creat-
ing the k-nn graph from the data, performing the
smoothing. Add to that, the hyperparameter tuning
that is necessary for the classification task. While
this increase is in no way prohibitive even for large
datasets, a performance-speed compromise is to be
considered.
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