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Abstract

Pretrained Language Models (PLMs) learn rich
cross-lingual knowledge and perform well on
diverse tasks such as translation and multilin-
gual word sense disambiguation (WSD) when
finetuned. However, they often struggle at dis-
ambiguating word sense in a zero-shot setting.
To better understand this contrast, we present
a new study investigating how well PLMs cap-
ture cross-lingual word sense with Contextual
Word-Level Translation (C-WLT), an exten-
sion of word-level translation that prompts the
model to translate a given word in context. We
find that as the model size increases, PLMs
encode more cross-lingual word sense knowl-
edge and better use context to improve WLT
performance. Building on C-WLT, we intro-
duce a zero-shot prompting approach for WSD,
tested on 18 languages from the XL-WSD
dataset. Our method outperforms fully super-
vised baselines on recall for many evaluation
languages without additional training or fine-
tuning. This study presents a first step towards
understanding how to best leverage the cross-
lingual knowledge inside PLMs for robust zero-
shot reasoning in any language.

1 Introduction

Pretrained Language Models (PLMs) perform
many cross-lingual tasks without explicit cross-
lingual training signal, including word-level trans-
lation (WLT) across languages (Gonen et al.,
2020). These models also demonstrate cross-
lingual knowledge when finetuned for the word
sense disambiguation (WSD) (Raganato et al.,
2020; Pasini et al., 2021). However, the extent
to which word sense knowledge comes from pre-
training rather than finetuning is unclear: many
PLMs struggle to disambiguate word sense when
formulated as a binary classification task, the most
common word sense setup for prompting language
models (Shi et al., 2022; Scao et al., 2022).

∗These authors contributed equally to this work.

To investigate this, we measure the ability of mul-
tilingual autoregressive language models to under-
stand the cross-lingual meaning of words in a given
context. Specifically, we extend the WLT task
setup to include a specific context in the prompt,
which we call Contextual Word-Level Translation
(C-WLT). We empirically show that pretrained lan-
guage models leverage contextual information in
the prompt to improve WLT performance. In addi-
tion, both English and multilingual PLMs perform
better on the contextual WLT tasks as model size
increases, demonstrating improved cross-lingual
knowledge at scale.

Translations of a word that change based on con-
text are frequently due to differing word senses not
shared by an analogous word in the target language
(Resnik and Yarowsky, 1999). Inspired by this, we
apply C-WLT to the task of WSD by translating
the ambiguous word w in context with WLT and
then assigning w with the senses in the overlap
of the translated word’s sense set with w’s senses
(Figure 4, left). We test this zero-shot approach for
WSD on 18 languages from the XL-WSD dataset
(Pasini et al., 2021). In our best setting, zero-shot
WSD via C-WLT prompting outperforms prior su-
pervised works on recall for many evaluation lan-
guages, even though our method requires no ad-
ditional training on labeled WSD data. We also
observe that ensembling diverse target languages
with this method narrows down the predicted set
of senses, as demonstrated by the improvements in
Jaccard similarity with the reference set. Finally,
we analyze our design choices and the types of er-
rors made by this approach to better understand the
behavior of WSD via C-WLT and how it relates to
supervised WSD classification.

The overall findings of this work are as follows:

• PLMs leverage contextual information to en-
code cross-lingual knowledge and better cap-
ture lexical information, such as word transla-
tions and meanings.
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• We can leverage this contextual knowledge of
lexical translation to effectively perform zero-
shot WSD for many languages, including low-
resource ones and languages the PLM was not
explicitly pretrained on.

• The efficacy of WSD via C-WLT depends
on different factors such as pretraining lan-
guages, model size, and target language
choice: smaller multilingual PLMs perform
well on seen languages, but they are more sen-
sitive to design choices and do not generalize
as well as larger English PLMs.

In sum, we evaluate the lexical translation skills
of PLMs in context, and we present a first step to-
wards applying that skill to the downstream task of
WSD. Given that most WSD training data outside
of English are automatically created (e.g., Scarlini
et al., 2019; Barba et al., 2021), and that annotat-
ing gold data incurs significant costs for each new
language, zero-shot approaches such as our pro-
posed WSD via C-WLT approach are crucial for
improving WSD in low-resource languages.

2 Contextual Word-Level Translation

A standard method of evaluating the cross-lingual
capabilities of PLMs is the task of a word-level
translation (WLT), where the model is prompted to
translate a word ws from a source language Ls into
another target language Lt (Gonen et al., 2020).
However, this setup does not consider variations in
the translation of ws into Lt that occur when the
surface form of ws represents multiple meanings
(i.e., senses) in different contexts.

We propose an extension of the word-level trans-
lation task, Contextual Word-Level Translation (C-
WLT), which requires translating words correctly
based on how they are used in a given context (Fig-
ure 4, right panel). Specifically, we prompt the
PLM to translate ws from Ls into Lt when con-
ditioned on a specific context cs where ws ∈ cs;
we then measure whether it produced the correct
translation(s) wt in context of ws.

For example, if we want to translate “plant” into
Chinese based on the context sentence “The plant
sprouted a new leaf”, we prompt the PLM with In
the sentence “The plant sprouted a new leaf”, the
word “plant” is translated into Chinese as __. This
evaluation allows us to quantify a PLM’s ability
to align meaning across languages in a context-
specific manner.

2.1 Experimental Setup

Prompts and Languages After a preliminary
analysis of potential prompt formats, our exper-
iments use the following prompts:

• Without Context: The word “ws” is trans-
lated into Lt as __

• With Context: In the sentence “cs”, the word
“ws” is translated into Lt as __

We perform experiments with English as the source
language and translate into Chinese, French, and
Spanish as the target languages.

Models We use the GPT-Neo models (Gao et al.,
2020) with sizes between 125 million to 20 bil-
lion parameters (including the GPT-J model that
contains 6B parameters; Wang and Komatsuzaki,
2021) and the BLOOM series with different model
sizes from 560 million to 7.1 billion (Scao et al.,
2022). We note that BLOOM is explicitly pre-
trained on all three of our target languages, whereas
GPT-NeoX (Black et al., 2022) is trained as an En-
glish LM; however, GPT-NeoX’s pretraining cor-
pus contains an estimated ∼ 2.6% of non-English
text (Gao et al., 2020), and prior work has found
even small percentages of non-English text can
facilitate cross-lingual transfer in English PLMs
(Blevins and Zettlemoyer, 2022).

Dataset We first select candidate source words
from the English inventory in the XL-WSD dataset
(Pasini et al., 2021). We then create language pair
datasets with <source word, source example con-
text, translations in context> tuples, where the
sense-specific translations and example contexts
are obtained from WordNet (Miller, 1995). We
filter these datasets to include examples where two
senses (the most common sense and at least one
other sense) meet the following criteria: (a) both
senses have non-overlapping sets of translations in
the target language, and (b) both senses are anno-
tated with example contexts in the source language.

For each example, we use the target language
translations of the paired, incorrect sense in that
setting and 50 randomly selected words in the tar-
get language as incorrect translations as negative
samples. Due to limited cross-lingual coverage
with WordNet, the EN-FR, EN-ES, and EN-ZH ex-
periments include 2448, 2470, and 2084 evaluation
examples, respectively.
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(a) (b)

Figure 1: Results of the zero-shot contextual WLT accuracies on GPT and BLOOM family models of different sizes
(a) The results of top-1 accuracies across models. (b) The results of all translations accuracies across models. N:
GPT-Neo, B: BLOOM, J: GPT-J

Metrics We present three different metrics to
evaluate models’ performance on the WLT task,
with and without context.

• Accuracy: We use two metrics to measure
the models’ accuracy. (1) top-1 accuracy mea-
sures the percentage of test instances in which
the translation with the highest log-likelihood
is one of the correct translations for a given
sense. (2) All translations accuracy measures
the percentage of test instances where all k
correct translations for that sense are assigned
the k highest likelihoods by the model.

• Negative Log-Likelihoods (NLL): We com-
pare the average negative log-likelihood (NLL)
of all (1) correct and (2) incorrect translations
for each sense, as well as (3) the ratio of the
average NLL of the top-1 correct translations
to the average NLL of all incorrect transla-
tions for each sense.

• Error Reduction: We evaluate the impact
of adding context sentences on resolving two
types of errors. The first is disambiguation er-
rors, where the model produces a valid trans-
lation without context that would be incor-
rect in the additional context; the second is
translation errors, where the model correctly
translates the word in question (based on the
context sentence) but produces a mistransla-
tion without context.

2.2 Results
Adding Context Improves Word-Level Transla-
tion Accuracy Figure 1 presents the overall WLT

results with and without context, averaged across
the three target languages; word-level translation
performance improves across all settings with the
addition of context.1 We also observe that the per-
formance of both uncontextualized and contextual-
ized word-level translation improves as the model
size increases, which corroborates prior findings
that larger models better capture cross-lingual in-
formation from pretraining (e.g. Lin et al., 2022).

Our experiments also show that, on average, the
multilingual models outperform comparably sized
English models in both WLT settings: the mul-
tilingual models achieve an average top-1 accu-
racy of 47.94% in the uncontextualized task and
57.51% in the contextual task, whereas the English
models obtain 30.20% and 53.2% in these settings,
respectively. However, the performance gap be-
tween English and multilingual models narrows
when we add sentences that use the word in con-
text. Specifically, the experiments show that the
largest English model, GPT-NeoX, performs simi-
larly to the (smaller) multilingual BLOOM models;
this suggests that English language models become
more effective in leveraging limited cross-lingual
knowledge at larger scales.

While these trends are generally consistent
across languages, we observe some variation (Ap-
pendix D). For instance, smaller English models
perform notably worse on EN-ZH than when trans-
lating into FR and ES, likely because it is more diffi-
cult to generalize to languages written in a different

1The results for individual target languages can be found
in the appendix. (Figure 7 for Chinese; Figure 8 for French;
Figure 9 for Spanish)
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Figure 2: The average NLL of all correct and incorrect
words across models in the contextual WLT analysis
(less negative is better). Numbers represent the NLL
ratio of incorrect to correct translations.

script (Blevins and Zettlemoyer, 2022). Further-
more, English models generally perform similarly
to multilingual models on EN-ES translation.

Finally, in the setting of all translations, we ob-
serve that performance improvements with the addi-
tion of context are more significant for multilingual
models than for English ones, leading to larger per-
formance gaps between these types of models in
the C-WLT setting.

Negative Log-Likelihoods We also consider the
negative log-likelihoods of each model for the top
correct translation compared to incorrect transla-
tions (Figure 2). These results show that the cor-
rect translations’ negative log-likelihood (NLL) im-
proves as the model size increases, suggesting that
the models become more confident in their predic-
tions in absolute terms. Furthermore, we find that
the NLL ratio between correct and incorrect transla-
tion words generally increases as the model size im-
proves; the multilingual models also demonstrate
better differentiation ability between correct and
incorrect translations than English models. Specifi-
cally, we observe an average ratio of 1.53 between
incorrect and correct translations for multilingual
models, compared to 1.28 for English models.

Translation Error Reduction with Context Fi-
nally, we analyze the extent to which adding con-
text sentences resolves errors made by the PLMs
in the standard WLT setting (Figure 3). Our re-
sults show that larger models benefit more than
smaller ones from using contextual information to
correct translation errors, with a greater percentage
of prior errors resolved with the addition of con-
text; this further highlights their ability to leverage

Figure 3: The impact of adding context to WLT on
translation (trans.) and disambiguation (disam.) errors.

the additional context better. In addition, multilin-
gual models fix errors at a higher rate than English
models when given context.

Surprisingly, we also observe that context helps
correct complete translation errors at higher rates
than it does to disambiguate the appropriate trans-
lation given a context sentence. This behavior gen-
erally holds for both the English and multilingual
models and across all model scales. The smallest
English models are an exception where very few er-
rors of either type are resolved by context, despite
their overall performance significantly improving
in the C-WLT setting.

3 Zero-shot Word Sense Disambiguation
via C-WLT

Building on the intuition from the previous section
that contextual word-level translation can differ-
entiate between different meanings of a word in
the source language, we apply C-WLT to the task
of multilingual word sense disambiguation (Figure
4). Specifically, we propose a two-step process
wherein we (1) prompt the PLM for C-WLT to
translate the ambiguous target word, w, in the rele-
vant context and (2) disambiguate w based on the
senses of its translation.

For instance, to disambiguate the word “plant” as
it is used in the context “The plant sprouted a new
leaf”, we first prompt the PLM to translate “plant”
into the chosen target language (e.g., Chinese) with
the C-WLT setup from the previous section. We
then take the PLM’s top translation (in this case,
“植物”) and obtain its senses from a multilingual
word sense ontology. We then label the example
with the senses shared by “plant” and “植物”.
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C-WLT

wtop1

In the sentence “c”, the 
word “ws” is translated 

into Lt as

LLMws Multilingual Sense 
Inventory

wt

wtop1

wt…

Zero-shot WSD via C-WLT C-WLT

S(wtop1) S(ws) ∩

Figure 4: Overview of the proposed method for multilingual WSD via C-WLT (left) and the prompting setup for
C-WLT (right). We translate each ambiguous word ws in context into a target language t with a PLM and label it
with the intersection of its labels and the labels of the translation wtop1.

3.1 Method

The goal of word sense disambiguation (WSD)
is to determine the meaning of the word w in a
specific context c and label it with the sense label
(or labels) that represents this meaning out of the
candidate set of senses associated with that word,
S. In our proposed approach, WSD via C-WLT,
w and c are in a language Ls, and word senses are
from a multilingual ontology (BabelNet, Navigli
and Ponzetto, 2010) and shared across languages.

First, we prompt a PLM with the C-WLT setting
to translate ws based on cs into the target language
Lt. We then obtain the inventory of all possible
translations of ws into Lt from the multilingual
word sense ontology and rank them with the PLM
conditioned on the C-WLT prompt. We then label
ws with the set of senses in the intersection of
its candidate senses, S(ws), and those of the top-
scoring translation under the PLM, S(wtop1). This
means the WSD via C-WLT method assigns a set of
labels to w rather than a single sense label, unlike
most supervised WSD classifiers.

Ensembling Target Languages The described
method for WSD via C-WLT obtains potential
senses from translating into a single target language.
We extend the method to ensemble the senses from
a set of target languages T , as we hypothesize that
senses shared by translations of ws in multiple ty-
pologically diverse languages are more likely to
be relevant to the specific context at hand. This is
supported by Bao et al. (2021), which argues that
every sense can be disambiguated with translation
if all possible languages are considered.

Specifically, we consider the multiset of senses
for the top translation in every target language:
S(T ) = {S(wt

top1) : t ∈ T}. Our target set S(T )′

is the subset of S(T ) that contains all senses with
the highest multiplicity (i.e., occur most frequently)
in S(T ). This means that senses shared by transla-
tions of ws in multiple languages are more likely
to be included in S(T )′. Similar to the single tar-
get language setting, we obtain the final predicted
sense set from the intersection of S(T )′ and S(ws).

3.2 Experimental Setup

Datasets We evaluate performance with the XL-
WSD dataset (Pasini et al., 2021), which cov-
ers 18 languages: Basque, Bulgarian, Catalan,
Chinese, Croatian, Danish, Dutch, English, Esto-
nian, French, Galician, German, Hungarian, Italian,
Japanese, Korean, Slovenian, and Spanish. We use
the BabelNet (Navigli and Ponzetto, 2010) multi-
lingual word sense ontology to obtain translations
and sense inventories of the data.

We consider five target languages for our exper-
iments: English, Chinese, Russian, Spanish, and
Finnish. Our choice of target languages aims to
cover semantically diverse target languages (to in-
crease variety in the translation to sense mappings)
while maintaining high coverage within the mul-
tilingual ontology.2 When a (non-English) eval-
uation example does not have at least one corre-
sponding translation in the target language, we back
off to the English translation setting as it provides

2English covers 100.0% of the evaluation examples (ex-
cluding EN-coarse), while Chinese, Spanish, Finnish, and
Russian cover 79.0%, 95.3%, 99.6%, and 60.0%, respectively.
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Language MCS Prior Work∗ Recall Jaccard Index
NeoX B-3B B-7.1B NeoX B-3B B-7.1B

Basque 32.72 51.71 (b) 47.85 52.53 54.31 37.20 41.04 42.95
Bulgarian 58.16 73.60 (c) 75.51 71.56 72.05 66.28 63.32 63.78
Catalan 27.17 57.47 (b) 55.73 55.83 56.40 39.44 40.41 40.85
Chinese 29.62 57.05 (b) 61.03 60.64 58.87 46.86 46.78 46.26
Croatian 62.88 74.40 (b) 77.01 74.85 74.82 70.00 68.53 68.46
Danish 64.33 81.80 (c) 81.86 76.76 77.38 73.50 69.69 70.32
Dutch 44.61 61.95 (b) 66.25 61.89 63.46 55.72 52.07 53.33

English† 63.37 80.40 (c) 72.61 72.15 73.20 60.56 60.13 61.39
Estonian 46.87 68.88 (b) 70.24 65.58 65.88 61.72 58.94 58.80
French 59.31 83.88 (a) 76.04 76.47 78.02 64.67 65.62 68.00

Galician 60.85 67.30 (c) 74.15 74.63 74.82 60.47 61.06 60.84
German 75.99 84.69 (b) 81.45 78.31 81.57 74.40 71.60 74.02

Hungarian 47.29 76.40 (c) 75.52 71.56 72.04 66.28 63.32 63.77
Italian 52.77 77.80 (c) 76.63 74.50 74.58 57.91 57.62 57.63

Japanese 48.71 67.47 (b) 71.63 70.78 71.38 57.56 57.38 55.72
Korean 52.48 68.20 (c) 66.39 67.52 67.73 60.95 61.01 61.46

Slovenian 36.71 68.36 (a) 53.12 46.21 47.93 40.32 33.36 37.05
Spanish 55.65 76.93 (b) 75.42 75.53 77.66 55.58 56.50 58.36

Avg. 49.31 – 70.35 68.62 69.45 58.59 57.42 58.24

Table 1: Zero-shot Recall and Jaccard Index for multilingual WSD on the XL-WSD dataset in the best-ensembled
setting. Results for languages on which Bloom was pre-trained are underlined. ∗Prior work numbers are drawn
from the best (fully-supervised) results reported in (a) Pasini et al. (2021), (b) Berend (2022), and (c) Zhang et al.
(2022). †For the 1512 (out of 8062) English examples with coverage issues, we used MCS as predictions.

full coverage over all non-English evaluation sets.
When evaluating English, we instead back off to
the most common sense (MCS) of the word when
the target language(s) does not cover an example
in each evaluation setting.

Models Picking the three most powerful PLMs
from the previous section, we use the BLOOM
models with 3 billion parameters and 7.1 billion pa-
rameters and the GPT-NeoX model with 20 billion
parameters. While GPT-NeoX is primarily trained
on English, the Bloom models are specifically pre-
trained on 6 out of the 18 evaluation languages of
the XL-WSD dataset (Basque, Catalan, Chinese,
English, French, and Spanish).

Baselines We compare our approach with the
Most Common Sense (MCS) baseline, which pre-
dicts each word’s most common sense according to
BabelNet (Pasini et al., 2021). We also report the
best results from the models benchmarking XL-
WSDin Pasini et al. (2021) as well as those in
Zhang et al. (2022) and Berend (2022). We present
prior results as a point of reference; however, these
previous models for the XL-WSD dataset require
supervised training with annotated WSD data, un-
like our zero-shot approach, which assumes no
additional data or finetuning of the PLM.

Evaluation Metrics for WSD via C-WLT We
consider two automatic metrics for evaluating the

performance of the WSD via C-WLT approach.
The first is recall, or how often the predicted label
set contains at least one of the gold annotations for
a given example. This metric is obtained from the
XL-WSD evaluation script and is the standard eval-
uation for this benchmark; it is often reported as
(and is equivalent to) F1 or accuracy in cases where
the WSD model produces a single prediction.

However, recall overestimates performance in
cases where a WSD approach predicts many un-
related sense labels in addition to a correct one.
Therefore, we also calculate the Jaccard index be-
tween the predicted set and the reference set of
sense labels for each example: |Ltrue∩Lpred|

|Ltrue∪Lpred| . While
the Jaccard index is a better automatic measure of
similarity for sets than recall, the metric can under-
estimate performance in cases where other, closely
related senses are appropriate in the given context
yet not included in the reference sense set.3

We note that the Jaccard index is closely tied to
F1 score: the two metrics are monotonically related
and will give the same relative performance across
methods. In terms of (true and false) positives and
negatives, Jaccard Index is TP

TP+FP+FN , whereas F1
score is TP

TP+ 1
2
(FP+FN)

. We report Jaccard index as

it is an established metric for set similarity.

3This type of annotation error is the most common found
in an audit of English WSD corpora (Maru et al., 2022).
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Target Lang. Recall Jaccard Delta∗

Spanish 74.23 52.94 20.0
English 67.16 53.37 11.7
Finnish 66.35 54.28 12.9
Russian 67.42 55.08 10.2
Chinese 70.84 57.77 9.6

Best Setting 70.35 58.59 8.7
All 5 Joint† 66.60 57.50 6.7

Table 2: Average Recall and Jaccard Index for target
language settings on the GPT-NeoX model, as well as
the delta(*) increase in sense prediction rates. †“All 5
joint” uses all of the above target languages, whereas
“best setting” ensembles English, Chinese, and Russian.

4 Multilingual WSD Results and Analysis

We first present the performance of our method for
multilingual WSD on the two automatic metrics, re-
call and Jaccard index, and compare this approach
to prior work on this task (Section 4.1). We then
consider the effect of ablating different modeling
choices on our method (such as the choice of target
language for C-WLT and prompt language; Sec-
tion 4.2), and we analyze the types of errors the
approach produces more closely (Section 4.3).

4.1 Results

The multilingual WSD results are summarized in
Table 1. In our experiments, we found that the
best setting for achieving a balance between re-
call and Jaccard Index was to ensemble English,
Chinese, and Russian as the target languages with
English prompts (Table 2). The results show that
our approach achieves higher recall than the prior
works in 11 out of the 18 source languages, despite
our method being performed zero-shot from a pre-
trained language model. Considering recall as an
upper-bound measure of performance, this result
shows that translation-based approaches for WSD
identify correct sense label(s) as well as or better
than supervised methods.

We also find that despite being primarily pre-
trained on English, GPT-NeoX (20B) achieves
higher recall and Jaccard index scores than Bloom-
7.1 on ten source languages; most settings where
the multilingual model performs better are on its
pretraining languages, with little generalization to
other languages. Finally, despite the Jaccard index
scoring lower (by definition) than recall, we see
similar performance trends across languages and
models between recall and the Jaccard index in this
ensemble setting.

4.2 Modeling Ablations

Different Target Languages To investigate the
effect of the target language(s) on contextual word-
level translation in the WSD task, we consider
five target languages: English, Chinese, Russian,
Finnish, and Spanish. We also experiment with all
combinations of these languages for the joint target
language settings (Table 2).4 We also calculate the
delta increase in the sense prediction rates, normal-
ized by the number of senses for each example, as
a measure of how many more senses our method
predicts over the supervised baselines. To obtain
this delta, we compare the standard classification
setting of predicting a single label per WSD ex-
ample and the number of labels predicted by each
target language setting: 1

n

∑n
i=0

|Ŝi|
|Si| −

1
n

∑n
i=0

1
|Si|

where Si is the candidate sense set for the ith evalu-
ation example and Ŝi is the set of senses predicted
by our approach.

Our ablations indicate a tradeoff between the Jac-
card index and recall. For example, our approach
achieves the highest recall performance using Span-
ish as the sole target language, but the resulting
Jaccard index is worse than any other target setting
we test. This behavior is likely because target lan-
guages more similar to the source (such as Spanish,
which is closely related to many of the Western Eu-
ropean source languages in the XL-WSD dataset)
return a larger set of predicted senses, which in turn
improves recall but at the expense of set similarity
with the gold labels. This hypothesis is corrob-
orated by the high delta increase of 20% in the
predicted set size of the Spanish setting over the
standard single-label predicted setting.

However, this undesirable behavior is mitigated
when using dissimilar target languages to the
source and ensembling diverse languages. In our
best setting of ensembling English, Chinese, and
Russian, we find that the delta increase in the pre-
dicted set size is only 6.7%, while the Jaccard index
increases by ∼6 points over Spanish. Furthermore,
this ensembled setting still often outperforms prior
approaches on recall.

Prompts in Different Languages We then con-
sider the effect of prompt language on the WSD
via C-WLT method by ablating prompts in English,
the evaluation source language, and the target lan-
guage. The English, Chinese, French, and Span-

4We report the Bloom results in Table 6 in the appendix;
we observe similar tradeoffs when using those models.
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Figure 5: Effect of prompt language on performance.

Label Set Recall Jaccard
NeoX B-7.1B NeoX B-7.1B

Orig. 63.78 57.74 52.01 50.98
Annot. 74.01 74.54 54.29 52.73

Table 3: Re-annotated and original label results on the
re-annotated subset of the Chinese evaluation set.

ish prompts were obtained from or verified by na-
tive speakers; prompts in other languages are from
Google Translate. We test two languages, Spanish
and Chinese, as targets and evaluate (a) the overall
performance of the method by the prompt language
(Figure 5) and (b) the top-scoring prediction’s lan-
guage for each prompt setting, out of the union of
the candidate word sets from the prompt, source,
and target languages (Appendix Figure 6).

We observe that prompts in English and tar-
get languages outperform the source languages,
with English prompts generally performing the best
(though the target language prompts are compara-
ble to English in Bloom). We also find that the
non-English prompts are more likely to produce a
top-1 prediction in the wrong (not target) language.
This is particularly true in the case of source lan-
guage prompts; the observed performance decrease
suggests that prompting the model to generate a
label in a different language than the prompt itself
is difficult – unless the prompt language is English.
Moreover, our results show that the multilingual
LM (BLOOM-7.1b) is more prone to predicting
words in the wrong languages than the English LM
(GPT-NeoX).

4.3 Manual Precision Analysis

We observe that the gold annotations in the XL-
WSD test sets mostly consist of one label. However,
fine-grained word sense meanings are often similar
or even overlapping, with fine-grained annotator
agreement as low as 67% in some cases (Navigli,

2009). We hypothesize that other related senses
may be suitable in many evaluation contexts but
not included in the reference set.

To investigate this further, we ask three native
language speakers to reannotate 392 examples of
Chinese test data manually. This analysis finds that
172 examples (or 44%) have additional closely re-
lated senses not included in the original annotations.
For example, consider the sentence: “广播还没说
完，各班的同学早已纷纷冲出教室。”5 In the
XL-WSD dataset, the word “广播” is labeled with
the definition, "Be broadcast". However, our anno-
tation adds a sense with the definition, "Broadcast
over the airwaves, as in radio or television" into
the reference set.

The results on the subset of the evaluation set
show that, unsurprisingly, both models’ recall and
Jaccard index improve on the reannotated data (Ta-
ble 3). We conclude that missing fine-grained
annotations are one factor impacting our results.
The many examples found during the analysis with
other relevant senses indicate that the reference sets
likely do not contain full coverage. This suggests
that future research on multilingual WSD should
consider the choice of reference sets to ensure that
they reflect all relevant senses, as prior work has
for English (Maru et al., 2022).

5 Discussion and Related Work

We first analyze the performance of PLMs in the
new contextual word-level translation (C-WLT) set-
ting to evaluate how well these models produce
context-sensitive lexical translations. Other related
work has instead tested the efficacy of prompting
multilingual PLMs for sentence-level translation,
such as Lin et al. (2022) and Vilar et al. (2022).
Notably, Bawden and Yvon (2023) observe incor-
rect language prediction with multilingual PLMs,
similar to our findings in Section 4.2.

We then apply the C-WLT setup to zero-shot
multilingual WSD. This approach builds on Pasini
et al. (2021), which highlights the role of multi-
lingual language models in addressing the knowl-
edge acquisition bottleneck problem in WSD.
Other works have proposed different finetuning im-
provements to perform WSD better cross-lingually
(Zhang et al., 2022; Berend, 2022). Unlike these
approaches, our method does not require annotated
training data, allowing it to generalize easily. Our

5In English, “Before the broadcast was finished, students
from all classes had already rushed out of the classroom one.”

1569



proposed method is, to be best of our knowledge,
the first attempt to apply large-scale autoregressive
PLMs to word sense classification via in-context
learning. Prior work on word sense prompting
frames WSD as a binary classification task compar-
ing a word’s meaning in two contexts (Pilehvar and
Camacho-Collados, 2019; Raganato et al., 2020).

More generally, WSD is closely related to and
motivated by machine translation; Hauer and Kon-
drak (2023) outlines the relationship between lex-
ical translation and WSD. A commonly proposed
use case of WSD systems is to improve the trans-
lation of ambiguous words in MT; as such, mul-
tiple methods to incorporate word sense informa-
tion (such as sense embeddings) into NMT systems
have been proposed (e.g., Liu et al., 2018; Cam-
polungo et al., 2022b). Furthermore, word sense
knowledge has been used to evaluate NMT sys-
tems (Campolungo et al., 2022a). Prior work has
also leveraged MT systems and data to improve
an underlying WSD classifier (Luan et al., 2020)
and automatically annotate WSD data (Diab and
Resnik, 2002; Apidianaki and Gong, 2015; Hauer
et al., 2021; Barba et al., 2021; Su et al., 2022).
We build on this latter line of work’s intuition to
extrapolate word senses from the translations of
ambiguous words in context.

6 Conclusion

In this work, we examine the ability of pretrained
language models to utilize contextual information
in cross-lingual settings. Specifically, we propose
contextual word-level translation (C-WLT) and test
different PLMs’ ability to improve lexical trans-
lations in context. We then propose a zero-shot
prompting technique for multilingual WSD, using
C-WLT as a component. Our experiments show the
method’s effectiveness on 18 languages, including
those not included in the PLM’s pretraining.

The performance of WSD via C-WLT relies
on the relationship between pretraining languages,
model size, and the choice of the target language:
smaller multilingual PLMs are more effective for
languages on which they have been pretrained but
are more sensitive to design choices, lacking the
broad applicability of their larger English counter-
parts. Future research examining these interactions
and their tradeoffs more closely is vital for improv-
ing zero-shot WSD approaches and building better
cross-lingual applications of PLMs in general.

Limitations

We recognize several limitations that influence C-
WLT and our proposed approach for WSD. First,
the WSD via C-WLT method depends on the com-
position of the multilingual word sense ontology
we use to obtain cross-lingual word senses and
translations. Lower coverage in the chosen target
language will hinder the method’s performance:
we see this empirically in the case of English as an
evaluation language, as no target language setting
(including ensembling) fully covers English, which
requires us to back off the MCS of each word.

Similarly, the translation capability of PLMs,
particularly for low-resource languages, may limit
the effectiveness of both C-WLT and our WSD
approach that relies on it. While we first present
a study of the efficacy of C-WLT before incorpo-
rating it into our WSD method, due to data limi-
tations (i.e., constructing a C-WLT data for each
language pair that contains examples covering mul-
tiple senses of many different target words), we
examine three high-resource language pairs. How-
ever, better cross-lingual PLMs can be directly in-
tegrated into our proposed approach as they are
developed to improve multilingual WSD.

Finally, our approach is not well-suited for dis-
tinguishing between very fine-grained word senses.
While our small-scale manual precision analysis
(Section 4.3) suggests that at least some WSD eval-
uation sets are not annotated with complete cover-
age of all relevant senses – leading to an underesti-
mate of our approach’s performance – the ability
to differentiate between closely related senses pre-
cisely remains a hurdle for the WSD via C-WLT
method, and addressing this issue in the future will
further improve its applicability.
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A Additional Experimental Details

We present the full set of C-WLT prompts for all
18 evaluation languages from Section 4 in Table
5. We note that for the templates with a [target
word], the context prior to [target word] is fed into
the PLM as the prompt, and candidates in a target
language are concatenated with the part after [target
word] to calculate the final score of each potential
translation.

Figure 6: Proportion of top-1 predictions in different
languages by prompt language. Trg. language predic-
tions are the desired language choice, while Src. is
predictions in the prompt language.

B Additional Analysis of WSD via
C-WLT

Figure 6 presents the top-1 predicted languages
analysis from Section 4.2.

B.1 Effect of Sense Frequency on
Performance

Supervised WSD classifiers often learn to predict
more commonly seen senses in the training data,
which leads to stronger performance on examples
of the most common sense (MCS) of words than
the less common senses (LCS) (Maru et al., 2022).
We test whether this behavior holds with the unsu-
pervised WSD via C-WLT approach by evaluating
performance on examples where the gold sense is
the MCS of the word and those annotated with an
LCS separately (Table 4).
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Language
Recall Jaccard Index

Bloom-7.1B GPT-NeoX Bloom-7.1B GPT-NeoX
MCS LCS MCS LCS MCS LCS MCS LCS

Basque 79.22 42.25 71.84 36.24 72.84 28.48 65.70 23.41
Bulgarian 83.54 56.38 86.79 60.13 79.04 42.98 81.18 45.96
Catalan 71.89 50.11 73.13 48.66 60.37 32.93 60.45 30.91
Chinese 75.82 49.74 76.81 52.41 66.56 35.34 66.45 36.32
Croatian 87.63 50.62 89.01 54.35 84.32 38.50 85.26 41.19
Danish 87.89 58.23 90.01 66.53 83.93 45.48 85.39 51.80
English 91.20 61.52 90.51 61.01 84.63 46.32 83.90 45.43
Estonian 79.33 44.10 82.53 51.03 75.03 33.42 77.73 36.70
French 93.07 59.81 88.35 61.14 86.25 45.92 81.84 43.90

Galician 85.83 66.13 86.54 64.39 78.37 47.00 78.56 46.21
German 89.08 60.87 87.97 63.48 84.92 43.71 84.36 47.04

Hungarian 81.31 42.24 84.73 49.50 77.06 31.30 79.72 36.84
Italian 86.62 65.78 85.68 66.54 73.84 45.81 73.85 46.28

Japanese 82.83 54.94 84.53 58.42 76.21 38.10 77.29 39.48
Korean 81.98 42.93 81.47 41.96 79.31 32.55 78.71 32.16

Slovenian 69.02 40.07 77.90 43.85 59.50 28.68 68.69 29.73
Spanish 87.81 71.12 87.12 67.94 71.83 49.75 71.72 45.25

Avg. 83.16 53.93 83.82 55.74 75.11 39.19 76.52 39.92

Table 4: Recall and Jaccard index performance of the best-ensembled WSD via C-WLT setting for the most common
senses (MCS) and less common senses (LCS) of words in each evaluation language.

The results show that the gap between MCS and
LCS performance is relatively large for both met-
rics: we observe an average difference of 28.7 and
36.3 between MCS and LCS examples for recall
and Jaccard index, respectively. We also find that
the size of this performance gap is consistent be-
tween the GPT-NeoX and Bloom-7.1B models. We
hypothesize that this performance gap stems from
unbalanced latent sense supervision in the pretrain-
ing data that is due to the natural Zipfian distribu-
tion of senses in language (Kilgarriff, 2004). This
finding then highlights that even zero-shot methods
extrapolating from the pretraining signals are still
vulnerable to unbalanced data.

C Responsible NLP Miscellanea

This section details information from the Respon-
sible NLP Checklist not covered elsewhere in the
paper.

Intended Usage of Artifacts To the best of our
knowledge, our experiments all fall within the in-
tended use cases of the GPT-Neo and BLOOM
models. We also use all data resources – the XL-
WSD dataset, BabelNet, and WordNet – as origi-
nally intended (i.e., for WSD modeling and evalua-
tion).

D Full Experimental Results

We provide the per-langauge results for the EN-ZH
(Figure 7), EN-FR (Figure 8), and EN-ES (Figure
9) contextual WLT experiments. In these figures,

the top row relays results of the zero-shot contex-
tual WLT accuracies on GPT and BLOOM family
models of different sizes. The bottom left figure
indicates the average NLL of all correct and incor-
rect words across models in the contextual WLT
analysis, with labels of the NLL ratio of incorrect
to correct translations; the bottom right plots the
impact of adding context to WLT on translation
(trans.) and disambiguation (disam.) errors.

Additionally, Table 6 reports the Bloom-3B and
Bloom-7.1B results for the target language ablation
and ensembling experiments from Section 4.2.
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Lang. Prompt Template
English In the sentence “<sentence>”, the word “<source word>” is translated into <target langage> as
Spanish En la oración “<sentence>”, la palabra “<source word>” se traduce al <target lang> como
Chinese 在“<sentence>”这句话中, “<source word>”这个词翻译成<target language>为
Catalan A la frase “<sentence>”, la paraula “<source word>” es tradueix <target lang> com a
Basque “<sentence>” esaldian, “<source word>” <target lang> [target word] gisa itzultzen da
German In dem Satz „<sentence>“ bedeutet das Wort „<source word>“ ins <target lang> als
Estonian Lauses “<sentence>” tõlgitakse sõna “<source word>” <target lang> keelde kui
French Dans la phrase “<sentence>”, le mot “<source word>” se traduit en <target lang> par

Bulgarian В изречението „<sentence>“ думата „<source word>“ се превежда на <target lang> като
Croatian U rečenici “<sentence>”, riječ “<source word>” prevedena je na <target lang> kao
Danish I sætningen “<sentence>” oversættes ordet “<source word>” til <target lang> som “
Dutch In de zin “<sentence>” vertaalt het woord “<source word>” zich in het <target lang> als “

Galician Na frase “<sentence>”, a palabra “<source word>” tradúcese ao <target lang> como
Hungarian A “<sentence>” mondatban fordítsa le a “<source word>” szót <target lang>

Italian Nella frase “<sentence>”, la parola “<source word>” si traduce in <target lang> come
Japanese 「<sentence>」という文で、「<source word>」という単語は<target lang>に訳すと [target word]となります
Slovenian V stavku “<sentence>” se beseda “<source word>” v <target lang> prevede kot

Korean “<sentence>”이라는문장에서 “<source word>”이라는단어는 <target lang> [target word]로번역됩니다

Table 5: C-WLT templates we used in the experiment for different prompt languages.

Figure 7: C-WLT results for Chinese. N: GPT-Neo, B: BLOOM, J: GPT-J

Target Lang. Recall Jaccard Index Delta
B-3B B-7.1B B-3B B-7.1B B-3B B-7.1B

English 63.60 63.62 51.83 52.32 10.1 9.7
Spanish 69.58 69.86 52.28 52.31 15.7 15.6
Chinese 68.77 69.96 57.43 58.27 4.1 4.1
Russian 65.06 65.68 53.75 54.39 9.4 9.4
Finnish 55.01 56.52 47.73 48.73 6.9 6.5

Best Setting∗ 68.62 69.45 57.42 58.24 8.7 8.2
All 5 Joint 63.95 65.03 55.42 56.35 6.5 6.4

Table 6: The average zero-shot recalls and Jaccard Index (%) of all 18 source languages in the XL-WSD dataset for
the different target language settings for the BLOOM family PLMs. ∗The best setting is the joint English, Chinese,
and Russian.
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Figure 8: C-WLT results for French. N: GPT-Neo, B: BLOOM, J: GPT-J

Figure 9: C-WLT results for Spanish. N: GPT-Neo, B: BLOOM, J: GPT-J
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