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Abstract

Despite the predominance of contextualized
embeddings in NLP, approaches to detect se-
mantic change relying on these embeddings
and clustering methods underperform simpler
counterparts based on static word embeddings.
This stems from the poor quality of the cluster-
ing methods to produce sense clusters—which
struggle to capture word senses, especially
those with low frequency. This issue hinders
the next step in examining how changes in word
senses in one language influence another. To
address this issue, we propose a graph-based
clustering approach to capture nuanced changes
in both high- and low-frequency word senses
across time and languages, including the acqui-
sition and loss of these senses over time. Our
experimental results show that our approach
substantially surpasses previous approaches
in the SemEval2020 binary classification task
across four languages. Moreover, we showcase
the ability of our approach as a versatile visual-
ization tool to detect semantic changes in both
intra-language and inter-language setups. We
make our code and data available!.

1 Introduction

Since the 19th century, language change has been
of ongoing scholarly interest in historical linguis-
tics, stemming from a curiosity to understand intri-
cate genealogy of languages through the compar-
ison of linguistic patterns across earlier and later
text corpora (Bopp, 1816; Rask, 1818; Whitney,
1892). Up to now, many more curiosities have
emerged, including the establishment of empiri-
cal principles of language change (Weinreich et al.,
1968; Labov, 1972, 1982, 1994, 2010), the justifica-
tion of hypothetical pathways of language change
(Roberts et al., 2012; Breitbarth, 2014; Lehmann,
2015; Breitbarth, 2019), the investigation of an-
cestral relationships among hundreds of languages

"https://gitlab.com/xiaohaima/
lexical-dynamic-graph/

(Boas, 1929; Jiger, 2013; Giildemann, 2018), the
discovery of linguistic and extralinguistic factors
driving language change (Blaxter, 2015), etc.
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Figure 1: Representation of the semantic changes for
‘mouse’ in our temporal dynamic graph. Blue nodes
indicate the acquisition of a new meaning over time,
while black nodes indicate unchanged word meanings.

A seminal work by Coseriu (1970) outlined the
characteristics of language change along five di-
mensions: time, geographical places, medium, reg-
isters and social contexts. This has inspired many
works to date that leverage these dimensions as a
lens to examine changes in grammatical meaning
(Traugott, 1985; Bybee and Pagliuca, 1985), syntax
(Hale, 1998; Breitbarth, 2022) and many more. In
computational linguistics, there has been a surge of
interest in leveraging machine learning methods, as
cost-efficient alternatives to labor-intensive human
inspection. A special focus has been given to detect
lexical meaning change, aiming to track changes
in word meanings through the analysis of word
usages across different time periods (Rohrdantz
etal.,2011; Eger and Mehler, 2016; Hamilton et al.,
2016a,b,b; Martinc et al., 2020; Gonen et al., 2020;
Kaiser et al., 2021; Montariol et al., 2021; Teodor-
escu et al., 2022; Zamora-Reina et al., 2022).

For instance, Prazak et al. (2020) and Kaiser
et al. (2021) leverage static word embeddings to
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represent target words across time periods, and then
identify the presence of semantic change in each
target word by assessing the similarity between
its word embeddings from different time periods.
Kanjirangat et al. (2020) and Cuba Gyllensten et al.
(2020) employ contextualized word embeddings
and a clustering method to detect changes in each
word sense over time. Although contextualized
embeddings excel in many NLP tasks, the perfor-
mance of these embeddings coupled with clustering
methods falls under static counterparts in detecting
semantic change (Schlechtweg et al., 2020).

In this work, we identify two major limitations
of previous works relying on contextualized em-
beddings and clustering methods, namely (a) they
struggle to capture word senses, especially those
with low frequency, leading to poor semantic rep-
resentation of word senses and (b) they produce
time-independent sense clusters and use them to
represent word senses varying over time—which
is particularly problematic in the presence of a big
time gap (e.g., 100 years) between earlier and later
time periods. Moreover, these works are limited
in scope to detect only intra-language semantic
changes. To address these issues, we introduce a
graph-based clustering approach that leverages con-
textualized embeddings to capture the evolution of
each word sense across both time and languages.
As a result, our approach allows for comparing
changes in each word sense across languages over
time. This allows for a detailed study of inter-
language semantic change, especially to determine
if the meanings of word translations across lan-
guages remain consistent or diverge over time.

We comparably evaluate our approach in the Se-
mEval2020 binary classification and ranking tasks
(Schlechtweg et al., 2020) for detecting semantic
change across English, German, Latin and Swedish,
and investigate the potential of our graph-based ap-
proach, as a visualization tool, to detect semantic
changes in both intra-language and inter-language
setups. Our findings are summarized below:

* Our approach substantially outperforms the
SemEval2020 shared task winner (Prazak
et al., 2020) in binary classification across
four languages. Our ablation results demon-
strate the effectiveness of three crucial compo-
nents in our approach: our clustering strategy
and method, and our distance metric. In the
ranking task, our approach performs best in
English but falls short in other languages com-

pared to static embedding counterparts.

* We showcase the ability of our approach,
as a versatile visualization tool, specifically
to (a) track nuanced intra-language semantic
changes over time, including both the acquisi-
tion and loss of each word sense and (b) track
the consistency and divergence of semantic
changes over time by comparing detected se-
mantic changes within each language. This
aids understanding of inter-language impacts
on semantic changes, e.g., new meanings bor-
rowed from other languages.

2 Related Work

Intra-Language Semantic Change Detection.
Recently, there has been a growing interest towards
detecting meaning changes of target words within
each language through a corpus-based study on
word usage across time periods (Kutuzov and Giu-
lianelli, 2020; Pomsl and Lyapin, 2020; Giulianelli
et al., 2020; Cuba Gyllensten et al., 2020; Karny-
sheva and Schwarz, 2020; Kaiser et al., 2021; Ku-
tuzov et al., 2022; Card, 2023). Many approaches
have been proposed in the SemEval2020 shared
tasks (Schlechtweg et al., 2020). Most approaches
fall under two categories, based on the choice of
word embeddings. For static embeddings, ap-
proaches, such as Prazik et al. (2020) and Kaiser
et al. (2021), begin by refining pre-trained static
word embeddings of target words on two corpora
from different time periods, resulting in a sepa-
rate embedding space for each time period. They
then employ alignment techniques (Brychcin et al.,
2019; Artetxe et al., 2018) to adjust these word
embeddings from different time periods. Lastly, a
distance measure is applied to these adjusted word
embeddings to detect semantic change. For con-
textualized word embeddings, approaches like
Kanjirangat et al. (2020) and Cuba Gyllensten
et al. (2020) employ the BERT and XLM-R en-
coders to produce contextualized word embeddings
of each target word. They then employ k-means
(Rousseeuw, 1987) to partition embeddings of the
target word from different time periods into mul-
tiple (time-independent) sense clusters. Lastly, a
frequency-based criterion is applied to these sense
clusters to detect semantic change. Laicher et al.
(2021) show that careful data preprocessing can fur-
ther improve the performance of semantic change
detection, and suggest encoding lemmatized tar-
get words instead of their original word forms.
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Kutuzov et al. (2022) propose to ensemble two
top-performing approaches for detecting semantic
changes. Kudisov and Arefyev (2022) and Card
(2023) propose to detect semantic change by com-
paring two frequency distributions of a target word
across time periods. Each distribution represents
the frequencies of vocabulary words predicted as
top substitutes for the target word using a masked
language model.

Our work differs from others in several aspects:

First, we leverage temporal and spatial dynamic
graphs, which are derived from BERT embeddings,
to represent changes in word meanings across time
and space (languages)>. This allows for detect-
ing nuanced changes in each word sense, including
both the acquisition and loss of meanings over time.
Second, we introduce our clustering method and
strategy, and our distance metric, designed to pro-
duce sense clusters that excel in capturing word
senses, especially for low-frequency senses. More-
over, we compute the similarity between sense clus-
ters over time to detect semantic change, while pre-
vious approaches do so by applying a frequency-
based criterion?.
Inter-Language Semantic Change Detection.
While words in different languages may share a
common ancestor and initial meaning, their mean-
ings can diverge over time due to linguistic and ex-
tralinguistic variations in these languages. This in-
triguing phenomenon has led to increased research
efforts towards studying semantic changes across
languages. To do this, most previous works rely
on semantic false friends, namely a pair of words
in different languages that share an etymological
origin but differ greatly in word meaning (Inkpen
et al., 2005; Nakov et al., 2009; Chen and Skiena,
2016; St Arnaud et al., 2017; Uban et al., 2019,
2021). For instance, Uban et al. (2019) employ
cross-lingual word embeddings to identify false
friends, specifically to determine whether the cur-
rent meanings of these word pairs have changed.
Uban et al. (2021) extended this idea by investigat-
ing cross-lingual semantic change laws, specifically
by examining the meaning divergence of cognate
words from their shared etymological origin.

2Unlike Schlechtweg et al. (2021), which proposed human-
annotated diachronic word usage graphs, our graphs are
machine-generated through BERT and additionally offer vi-
sual clues regarding meaning changes over time.

3Frequency-based criterion: Sense change is detected
when a time-independent sense cluster has fewer than 2 tokens
in the earlier corpus and more than 5 tokens in the later.

Furthermore, Montariol and Allauzen (2021) ex-
plored bilingual semantic divergence by comparing
the meaning changes of mutual word translations
of English and French using multilingual BERT.
In contrast to our work, they only consider high-
frequency word senses, and do not differentiate
between the acquisition and loss of meanings over
time. Moreover, they do not provide a visual tool
to detect semantic divergence across languages.

3 Our Approach

3.1 Semantic-Tree Representation

For each word w, let C,, = {c1,¢2,...,¢,} be a
word cloud consisting of a set of d-dimensional
contextualized word embeddings, where n repre-
sents the word occurrence in a corpus. We let
ew € R denote the centroid of C,, given by
ew = % Z? ¢;. For any two word clouds, the dis-
tance between their centroids e; and e; is denoted
by d(e1,e2) = 1 — sim(ey, e2), where sim(eq, e3)
is the cosine similarity between the centroids.
Each word w may exhibit polysemy, manifest-
ing different meanings depending on the context.
Therefore, we partition C,, into m sense clusters,
i.e., Cy = Uj<jcm Cuw(pi). Each cluster Cy(p;),
which is a subset of C,, centered at p;, represents
a distinct meaning of the polysemous word. For
each word, we let P,, = {p1,...,pm} denote a
set of centroids corresponding to m sense clusters.
These centroids are determined using our cluster-
ing method (see §3.4). As illustrated in Figure
2, we define a semantic-tree graph that captures
multiple recorded meanings of a polysemous word
w. We consider the root node ¢,,, the centroid of
Cw, as the representative embedding4 of the word
w reoccurring in a corpus. The root node is con-
nected to three nodes on the second layer, which
are three sense clusters’ centroids {p1, p2, p3}. We
refer to the nodes on the third layer as the repre-
sentative embeddings of three semantically nearest
neighboring words to each centroid p;.

3.2 Temporal Dynamics within Semantics

We add a temporal dimension to our semantic-tree
graph for capturing meaning changes over time. To
do this, we denote C; ! and C?, as two point clouds
of the word w at two consecutive time periods t — 1
and t. We then define a temporal dynamic graph

*We represent graph nodes as 2-dimensional embeddings,
resulting from the PCA projection of high-dimensional con-
textualized word embeddings.
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Figure 2: (Top) Representation of polysemous meanings
of a word w in a semantic-tree graph. (Bottom) Graph
representation of ‘mouse’ as the root node, generated by
applying our approach to the English Wikipedia corpus.

to capture meaning shifts of the word w over time,
as illustrated in Figure 3. Given such a graph, we
introduce our approach to detect changes in word
meaning over time from ¢ — 1 to ¢ through a two-
step process: (a) computing the similarity between
sense clusters via our neighbor-based distance met-
ric and (b) utilizing our detection criterion to detect
the presence of semantic change.

Bipartite Matching Between Sense Clusters.
Our goal is to measure the similarity between a
pair of sense clusters from different time periods,
i, Cl,7 (p!) and CL(ph). This is achieved by
measuring the similarity between the centroids of
these sense clusters, i.e., pﬁ_l and pﬁ., using a bi-
partite matching method and our neighbor-based
distance metric’.

To do this, we define Uy, = {e! ™!, ... el !} as
a set of the representative embeddings of k-nearest
neighboring words to pﬁ_l attime ¢t — 1. Each eﬁ_l
is the average of contextual word embeddings of
a neighboring word. Similarly, we define V,, =
{el,...,e,} as their counterparts to p! at time ¢.
Our bipartite matching problem is given by:

>This metric leverages the participation of neighbors to
determine the similarity between two words. By doing so, the
similarity between two words is less affected by their embed-
ding quality. See Figure 8 (appendix) for the idea illustration.

Figure 3: Representation of semantic changes over time
in a temporal dynamic graph.

min
nefo,13k?

Z M(et—17 et)d(et_l, et)

et=leUy, eteVy

s.t. Z pet=t ey =1, ve' ' e U,

eteVy,

t—1 t
> uleThe) =1,
et—=1lcU,

p(e' ™t e’ € {0,1},

where pi(e!~1, e') denotes a binary variable that

indicates whether a match exists between the input
arguments, and d(ef~!, ') represents the cosine
distance between them. Lastly, the similarity be-
tween pﬁfl and p§- is given by:

ve' €V,

Ve ™! € Uy, e’ € Vi

SO =1 e S Y e et e
U] et=1eU, eteVy,

where /i is the optimal solution for bipartite match-

ing, solved by using the Jonker-Volgenant algo-

rithm (Crouse, 2016).

Semantic Change Detection. Our goal is to iden-
tify meaning changes over time, especially to distin-
guish between the acquisition and loss of meanings.
We now introduce our detection criterion:

For each word w, we denote M, =
{pl,...,pL,} as a set of the centroids of m sense
clusters at time ¢, and N, = {p{™*,... ,pi 1} as
counterparts of n sense clusters at time £ — 1. We
then compute the pairwise similarities between the
two sets, yielding a semantic similarity matrix de-
noted below:

s(pi™t pha)

s(ph ', ph) s, Pim)

Based on this matrix, we introduce a threshold
tsc to differentiate between acquiring new mean-
ings and losing existing ones:
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e If the word at time ¢ loses an existing meaning
that it had at time ¢ — 1, namely p!~!, then
one cannot find any sense cluster centroids at
time ¢ that are similar to pﬁ_l. This means
that the similarity scores of s(p} ™", p}) for all
7 should fall below ¢, i.e., all the entries in
the i-th row of S are lower than ..

 If a word gains a new meaning at time ¢, i.e.,
P}, the s(pf‘l,pg-) scores for all 7 should fall
below tg, i.e., all the entries in the j-th col-

umn of S are lower than ..

In either way, be it acquisition or loss of meanings,
semantic change is detected.

3.3 Temporal and Spatial Dynamics

Here we extend our temporal dynamic graph to a
cross-lingual setup, allowing us to detect seman-
tic change across languages, especially to inves-
tigate whether the meanings of word translations
across languages change consistently or diverge
over time. To do this, we first introduce a spa-
tial dynamic graph, and then combine it with a
temporal dynamic graph for detecting/comparing
semantic changes over time across languages.

Spatial Dynamic Graph. We let v’ and w®
be a pair of mutual word translations in languages
f1 and ¢5. Denote ij} as a word cloud consisting
of a set of the contextualized word embeddings of
the word w, and efvl as the word cloud’s centroid,
Cl(p!') as each sense cluster centered at p!', and
Ul = {ef, .., ef;l} as a set of the representa-
tive embeddings of k-nearest semantic neighboring
words to pfl. Similarly, we denote C%2, e’2, p§2,
and V22 = {elf, ces 6?} as the counterparts in
language ¢5. Such a graph is depicted in Figure 4.
We extend the idea of our bipartite matching
method to a cross-lingual setup by leveraging k-
nearest semantic neighbors U% and V%2 to com-
pute the similarity between two sense clusters’ cen-
troids (pf1 and pﬁz) in different languages. Our
bipartite matching problem is adjusted to:

min Z Z (e, e)d(e" +b,e?)

ne{0,1}+° o Ul otr eyl

where b is a rectified vector that addresses the
misalignment between the embedding spaces of
languages ¢, and /5, assuming that one can trans-

0 2 i %) {1 41
61 62 83 64 85 6’6

N7 N7

7 1 N\ 7 1 N\

/ b by
€y €3 €y €5 €

Figure 4: Representation of polysemous meanings of a
mutual word translation pair in a spatial dynamic graph.

late one space to another by using this vector®. We
refer this vector to the difference between an av-
erage token embedding of all words in ¢; and its
counterpart in /o (Liu et al., 2020).

Once the optimal solution % is determined, the
similarity between pfl and pﬁz is given by:

s(pt,py?) =

=g XX A b

ef1 €Uy, ef2€Vy,

Combining Spatial and Temporal Dynamic
Graphs. By adding a temporal dimension to our
spatial dynamic graph, the resulting graph captures
semantic changes of a mutual word translation pair
e'l and €2 in languages £, and /5 over time from
t — 1 to t—see Figure 9 (appendix).

To detect and compare semantic changes in e’}
and e’2, we undertake a two-fold process: For each
language, we employ a similarity matrix across
sense clusters to detect the acquisition and loss of
meanings in e/} and e‘2 over time, and then com-
pare the detected changes along two dimensions:

01,t

* Consider that eﬁ} gains a new meaning p,

at time ¢, €2 another pﬁg’t

similarity, given by s(pfl’t, pﬁz’t

. If the semantic
), is greater
than a cross-lingual threshold £.5, then eﬁ} and
e’2 are said to gain a new and similar mean-
ing over time, thereby undergoing consistent
acquisition changes in languages ¢; and /5.
Otherwise, their meaning changes over time
diverge across languages.

®We note that alignments would not affect the results of
sense clusters in both source and target languages, as they
only shift the embedding space of one language using a trans-
lation vector—which does not change the internal structure
(topology) of the embedding space.
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» Consider that e} at time ¢ loses an exist-

ing meaning p{** ", ¢ another p/>* ", If
S(pfl,t—17p§27t—1) > .5, then e’} and e’2 lose

a similar meaning over time, thus undergo-
ing consistent loss changes. Otherwise, their
meaning changes differ across languages.

3.4 Our Clustering Method

For each word, our goal is to partition a set of its
contextualized word embeddings into multiple
sense clusters. To do this, we experimented with
the popular k-means method widely adopted
in previous works to produce sense clusters;
however, we found that this method often produces
poor sense clusters that fail to capture word
senses, particularly problematic when dealing with
low-frequency word senses (see Figure 6). To
address this, we present a clustering method that
initializes each embedding as a separate cluster.
We then iteratively merge two clusters whose
centroids are of a distance smaller than a threshold’
until no further pairs of such similar clusters
can be found. The distance between a pair of
cluster centroids p; and p; is given by d(p;, p;) =
m 2 eieCulp) 2ocseCulpy) Ui 1)
Our method allows for embeddings associated with
different word senses (incl. low-frequency senses)
to form their own sense clusters. To ensure quality,
we exclude clusters with sizes below a threshold,
which we consider as noisy clusters. Our method’s
procedure is provided in Algorithm 1.

In our setup, we iterate through this procedure
twice, applying different thresholds ts. and tj,,,
each time to achieve specific goals. In the first
iteration, we generate a relatively large number of
sense clusters for each word. This increases the
chance for embeddings with low-frequency word
senses to form their own clusters. We then detect
and exclude unreliable low-frequency word sense
clusters—which we consider as noisy clusters. In
the second iteration, we merge non-noisy clusters
into only a few to capture word senses of each
polysemous word.

4 Experiments

We evaluate our approach in SemEval2020 Task
1 (§4.1), and showcase its ability as a visualiza-
tion tool to detect semantic changes in both intra-

"This threshold is tuned on the development sets that we
created using ChatGPT. See §A.2 for more details.

Algorithm 1 Our Clustering Method

Require: C,, = {c;}i=; as a set of contextualized embed-
dings of each word w, ts. as the maximum distance be-
tween similar clusters, t;,., as the minimum cluster size
for a low-frequency sense cluster.

: Initial centroids of clusters: Py, = {pi|pi = ¢i}iey

: while ming, ep,, p;ePy,,izj d(pi;p;) < tsc do

Puw = Puw \ {pi,p;} U {MTPJ}
end while

for p; € P, do

if |Cw (p,)| < tiow then
pw = Pw \ {pz}
end if
end for
: return P,

SR IFINEW D

—_

language and inter-language setups (§4.2). We pro-
vide analyses regarding our clustering method and
embedding spaces—see §A.4 (appendix).

4.1 Intra-language Semantic Change

Setup. We comparably evaluate our approach in
SemEval2020 Task 1 for Unsupervised Lexical
Semantic Change Detection (Schlechtweg et al.,
2020). The task aims to detect intra-language se-
mantic change over time through analyses across
two corpora from the 19th and 20th centuries. The
task encompasses two subtasks: binary classifica-
tion and ranking across four languages, i.e., English
(EN), German (DE), Latin (LA) and Swedish (SV).
We provide data statistics, task descriptions, our
implementations details and selection of hyperpa-
rameters in §A.2 (appendix). We use the last layer
of m-BERT encoder (Devlin et al., 2019) to pro-
duce contextualized embeddings of target words
across languages on the lemmatized corpora.

Results. Table 1 compares our approach with
its counterparts that rely on static and contextu-
alized word embeddings in the SemEval2020 bi-
nary classification task (See §A.1 for the results
in the ranking task). We find that UWB and Life-
Language based on static word embeddings outper-
form NLP@IDSIA and Skurt relying on contextual-
ized embeddings. This unexpected result has been
observed previously in Schlechtweg et al. (2020),
where the work attributes the underperformance
of NLP@IDSIA and Skurt to the fact that they do
not sufficiently leverage the power of contextual-
ized embeddings. However, our approach based
on contextualized embeddings largely outperforms
all others, demonstrating its superiority in lever-
aging contextualized embeddings. The sources
of our improvement are manifold: First, our ap-
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Approaches

Avg EN DE LA SV

Static Word Embeddings

UWB (Prazik et al., 2020)
Life-Language (Asgari et al., 2020)

.687 .622 750 .700 .677
686 703 750 550 742

Contextualized Word Embeddings

NLP@IDSIA (Kanjirangat et al., 2020)

Skurt (Cuba Gyllensten et al., 2020)
Our Approach

.637 .622 625 625 .677
629 568 562 675 710
J76 784 813 .700 .806

Table 1: Accuracies from our approach and its counterparts in the SemEval2020 binary classification task.

proach includes a parameterized threshold that we
use to stop our clustering process. This threshold
is adjusted on the development sets that we created
using ChatGPT, while previous approaches lack
access to the development sets. Undoubtedly, our
approach gains advantages from that, but more im-
portantly, we argue that our improvement results
from the careful design of our components—which
we demonstrate through an ablation study.

Ablation Study. Table 2 reports the ablation
results on the three crucial components of our
approach®. First, we find that generating time-
dependent sense clusters yields much better results
than time-independent counterparts adopted in pre-
vious works (Kanjirangat et al., 2020; Cuba Gyl-
lensten et al., 2020). We believe the previous ap-
proaches are based on the assumption that if a
target word remains a consistent meaning over
time, its word embeddings from different time
periods should be grouped into a single time-
independent sense cluster. However, this is chal-
lenging due to big context variations between the
19th and 20th corpora, causing contextualized en-
coders like BERT to misinterpret the consistent
meaning as multiple dissimilar senses. As such,
time-independent clusters misinterpret these senses
over time as spurious meaning changes. To support
this hypothesis, we compare our clustering method
between the time-independent and time-dependent
setups. We see that Figure 5 (a)+(b), which produce
sense clusters at each time period, adeptly capture
the word senses of ‘bit’ at each time. However, in
Figure 5 (c) there are three distinct sense clusters,
and the one in green, which has the same meaning
of the orange one, is misinterpreted as a spurious
new meaning by contextualized encoders.
Second, we see that our clustering method con-
siderably outperforms the popular k-means. The

$We contrast the components of our approach with baseline
approaches in Table 10 (appendix).

Components Approaches EN
All-in-one Our Approach 784
Clustering Strategy © Time-dep. @ Time-indep. .649
Clustering Method & Our method & k-means .649

Distance Metric © Neighbor-based @ Euclidean .676

Table 2: Ablation test in the SemEval2020 binary clas-
sification task, where © X & Y means the replacement
of component X in our approach by component Y.

reasons for this are depicted in Figure 6: (a) with
k = 2 (too small), most embeddings represent-
ing the low-frequency word sense (marked with
‘+’) are wrongly subsumed into the high-frequency
sense cluster in blue, and moreover, the two sense
clusters in orange and blue share the same meaning
and should not be separated; (b) with £ = 8 (too
large): the high-frequency sense is wrongly divided
into multiple sense clusters, despite low-frequency
sense being correctly identified and mostly form-
ing a distinct cluster in gray; (c) our clustering
method produce two sense clusters that effectively
capture both high-frequency and low-frequency
senses. This is because our approach does not fix
the number of clusters but instead leverage the idea
of iteratively merging clusters until convergence,
subject to some conditions. This provides the flexi-
bility to find an adaptable number of clusters.

Lastly, we see that neighbor-based distance met-
ric greatly surpasses Euclidean distance. Unlike
Euclidean distance, which quantifies the similarity
between sense clusters by computing the similar-
ity between cluster centroids, our neighbor-based
metric does this by computing the similarity be-
tween the & semantically nearest neighbors to each
cluster centroid. We believe that our metric, which
leverages k neighbors rather than just the centroid,
allows us to better capture the semantics of sense
clusters, providing a more accurate reflection of the
similarity between sense clusters.
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4.2 Exploratory Study
Our setup is detailed in §A.3 (appendix).

Intra-Language Semantic Change. Consider
the polysemous English word ‘mouse’. It is well-
known that the word’s meaning has evolved from
a small rodent to a computer input device over
time. Figure 1 showcases the ability of our tem-
poral dynamic graph, which is derived from our
approach on both historical and present English
corpora, to capture the recorded semantic changes
of the word ‘mouse’ over time. We find that the
word initially has only one meaning represented by
its five-nearest neighbors such as ‘rat’ and ‘bat’ at
time t — 1. As time progresses, the word maintains
this original meaning while gaining a new meaning
about computer device at time t—characterized by
its corresponding neighbors in blue color. We find
many such examples across languages, and provide
a few in Figure 11 (appendix).

Inter-Language Semantic Changes. Figure 7
compares the detected semantic changes for the
word translations 'mouse’, ’Maus’, and 'mus’
across English, German and Swedish over time. We
observe that each of these word translations holds
just a single meaning at time ¢ — 1, within the 19-

century historical corpus. However, at time ¢ within
the current Wikipedia corpus, ‘mouse’ and ‘Maus’
gain new meanings, indicated in blue nodes, while
‘mus’ gains two new meanings, similarly indicated.
Furthermore, we note that the blue nodes with the
same meaning of “computer device” are labeled in
orange text across languages: Both ‘mouse’ and
‘Maus’ acquire the same new meaning, implying
that these two words undergo consistent acquisi-
tion changes over time. However, the meaning
changes of these two words diverge from that of
‘mus’: Although all three words acquire the same
meaning “computer device”, ‘mus‘ gains another
new meaning related to ‘svans‘ and ‘péls’ at time
t. This example showcases the potential of our ap-
proach as a visualization tool to detect semantic
divergence and consistency across languages over
time. We provide examples regarding meaning loss
in Figure 12 (appendix).

We validated these results on both Wiktionary
and the etymological dictionary®. While the over-
all results are accurate, the neighbors connected
to each root node do not necessarily represent syn-
onyms of that node. For instance, in Figure 7 (left),
both ‘cat’ and ‘dog’ are closer than ‘rat’ to ‘mouse’.

9https: //www.etymonline.com/
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Figure 7: Representation of the detected semantic changes for the word translations mouse’, "Maus’, and 'mus’ in
three temporal dynamic graphs. Blue nodes indicate the acquisition of new meanings, while orange text additionally
marks certain new meanings that are considered highly similar, i.e., undergoing consistent acquisition change.

This only means that the contexts in which ‘cat’
and ‘dog’ appear are more similar to the context of
‘mouse’.

5 Conclusions

We proposed a graph-based clustering approach
to capture changes within each word sense across
both time and languages. We addressed an intrigu-
ing concern that contextualized embeddings cou-
pled with clustering methods seem not suitable for
detecting semantic change, as they underperform
their static embedding counterparts. We identified
a crucial reason for this: Previous approaches rely
on low-quality clustering methods to handle con-
textualized embeddings. Our results demonstrated
that, when equipped with an appropriate clustering
method, strategy, and distance metric, contextual-
ized embeddings can produce high-quality sense
clusters that effectively capture word senses, even
low-frequency ones. These factors attribute to our
approach’s superiority over the shared task winner,
ULB, which relies on static embedding. Further,
the use of our approach as a visualization tool high-
lights its value in conducting exploratory studies on
both intra- and inter-language semantic changes.

6 Limitations

Our approach still lags behind static embedding
counterparts in the ranking task for languages other
than English (see §A.1). Further improvements
may result from improving the quality of embed-
dings for non-English languages.

Lack of a standard evaluation setup poses a
challenge in tracking recent progress in the intra-
language setup. For instance, Card (2023) reported
results in SemEval2020 and GEM ranking tasks;
Teodorescu et al. (2022) did in LSCDiscovery bi-
nary and ranking tasks; we did in SemEval2020
classification and ranking tasks.

Further, the absence of benchmark datasets for
detecting the divergence of semantic changes in the
inter-language setup poses another challenge in
evaluating our approach. Moreover, in the cross-
lingual setup, we addressed the misalignment be-
tween the embedding spaces of two languages;
however, our focus was on word-level rather than
meaning-level alignments. Thus, it remains unclear
how the embedding spaces (adjusted via word-level
alignments) handle words with polysemy profiles.
These present avenues for future work.

7 Ethical Considerations

Our work proposed an approach based on BERT to
detect semantic change and evaluated the approach
on the historical datasets from SemEval2020 Task
1. We acknowledge the potential biases arising
from both our approach and the datasets. In histor-
ical corpora, a bias towards male authors is often
observed. Regarding our approach, BERT is known
to encode social biases related to gender and race.
Up to now, it remains unclear how these biases may
affect the results of semantic change detection. We
leave this question to future work.
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A Appendix
A.1 Ranking Task.

Our approach. We describe our approach used
to perform the SemEval2020 ranking task. Follow-
ing many works (Schlechtweg et al., 2020; Kanji-
rangat et al., 2020; Kutuzov and Giulianelli, 2020),
we design a criterion to grade the degree of se-
mantic change by comparing the frequencies of
word meanings across time periods. Such a crite-
rion allows for capturing both past and prospective
changes in word meanings. For instance, when
comparing the frequencies of a word meaning over
time, a frequency decline from time £ — 1 to ¢ sug-
gests the potential loss of the meaning in the future.
Here, we aim to measure the degree of both mean-
ing acquisition and loss over time. Our criterion is
detailed below:

Once the sets of cluster centroids PY, 1 and P
at time t — 1 and ¢ are determined!®, we then di-
vide the combined set of these centroids into m
clusters. Each cluster H; represents a distinct
word sense over time, and comprises centroids
from different time periods that exhibit high sim-
ilarities exceeding a threshold ¢s.. This implies
that the associated meanings of these centroids re-
main unchanged over time. For each target word,
we let A' = (a},...,al)) denote the frequency

distribution of m word senses at time ¢, where
t Znginp;i} |Oqtu(p)|
LD D A
By comparing the two frequency distributions, we
illustrate three scenarios:

a

and similarity for A*~!,

. af_l = 0 and a! > 0: acquiring a new mean-

ing at time .

t 1

*a;, = 0and a';_
meaning at ¢ — 1.

> 0: losing an existing

e a! > 0and a§_1 > 0: indicating the degree
of meaning change over time.

Follow Schlechtweg et al. (2020), we grade
the degree of semantic change by computing the
Jensen-Shannon distance between two frequency
distributions, noted as JSD(A?, A=) in our setup.

Results. Table 3 compares the results of our ap-
proach and its counterparts in the SemEval2020
ranking task. We see that our approach performs

'%In contrast to the binary classification setup, our clustering
method does not exclude outliers in the ranking setup.

Figure 8: Illustration of bipartite matching for comput-
ing the similarity between sense clusters’ centroids p!
and p!~'. Here, {e!}3_, indicates the representative

embeddings of three semantically nearest neighboring

words to p}. The same applies to {e/™*}?_, and p{~".

best among the approaches relying on contextual-
ized word embeddings. Our approach substantially
outperforms the recent substitution-based approach
in 3 out of 4 languages, and surpasses static em-
bedding counterparts in English. However, our
approach still lags behind in other languages; inter-
estingly, it outperforms static embedding counter-
parts in all languages for binary classification. Our
analysis on this is the following:

First, the ranking task is inherently more chal-
lenging, as it requires to quantify the fine-grained
degree of semantic change. Second, m-BERT
is known to produce different embedding quality
across languages, with superior embedding quality
in English. In binary classification, where the task
is straightforward, embedding quality matters little.
However, for the challenging ranking task, lower-
quality embeddings can harm the results. We leave
the verification of this hypothesis to future work.

A.2 Experimental Setups for SemEval2020
Task 1

Datasets. Table 4 provides data statistics for the
SemEval2020 Task 1.

Task Descriptions. SemEval2020 Task 1 con-
sists of two subtasks, namely (a) binary classifica-
tion, where one decides whether the meaning of
each target word has changed over time by ana-
lyzing word usage across two text corpora from
different time periods and (b) ranking, where a list
of provided target words should be ranked based
on scores given by a criterion indicating the degree
to which each word undergoes semantic change.

Implementation Details. For each language, we
produce contextualized word embeddings of target
words from two time periods of text corpora, and
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Approaches Avg EN DE LA NY%
Static Word Embeddings

UG_Student_Intern (Pomsl and Lyapin, 2020) .527 422 725 412 .547
Jiaxin & Jinan (Zhou and Li, 2020) S18 0 .325 717 440 588
Contextualized Word Embeddings

Substitution (Card, 2023) 488 547 563 533 310
Skurt (Cuba Gyllensten et al., 2020) 374 209 656 399 234
Our Approach 506 569  .656 377 423

Table 3: Results from our approach and its counterparts in the SemEval2020 ranking task. Results are reported in

Spearman correlation.

Corpus #1 Corpus #2
Language period (¢t — 1) #tokens avg/t max/t min/t period (t) #tokens avg/t max/t min/t #targets
English 1810-1860 25,955 701 4211 86 1960-2010 30,060 812 4,062 106 37
German 1800-1900 71,556 1,490 28,756 35 1946-1990 42,260 880 8,539 103 48
Latin 200BC-1BC 27,548 688 3,498 26 100AD-present 129,568 3,239 10,362 245 40
Swedish 1790-1830 35,021 1,129 6,934 83 1895-1903 126,126 4,068 14,583 89 31

Table 4: Statistics of the SemEval2020 Task 1 Corpus. The last column ‘#targets’ denotes the number of target
words, while the column ‘#tokens’ denotes the total token count of target words. The column ‘avg/t’ indicates the
average token count of each target word, while the column ‘max/t’ indicates the maximum token count per target
word, and the column ‘min/t’ indicates the minimum token count per target word.

then employ our clustering method to partition em-
beddings of each target word into multiple sense
clusters in order to constitute a temporal dynamic
graph. As mentioned previously, we iterate through
our clustering procedure twice. This requires two
chosen hyperparameters in each iteration: (a) t),
and tllow, representing the minimum occurrence for
a low-frequency meaning, i.e., the minimum cluster
size and (b) t°, and ¢!, representing the maximum
distance between similar clusters. Furthermore,
we need to leverage bipartite matching based on
k-nearest semantic neighbors (with k as an extra
hyperparameter) to compute the similarity between
sense clusters. This step is crucial for detecting
nuanced meaning changes over time.

We use a grid search to tune the following
two hyperparameters on the development set we
constructed using ChatGPT in each language:
t9. € {t/0.10 < t < 0.35,100 - t € N;} and
tl. € {t[0.10 < t < 045,100 -t € Ny}. In
all setups, we set t?ow to 5 and consider clusters
with sizes below 5 as noisy clusters'!. We set t}.

""In the SemEval 2020 shared task, a new word sense is
acknowledged upon meeting two rules: (a) this sense asso-
ciates with fewer than 2 word tokens at time t-1 and (b) it
associates with more than 5 word tokens at time t. If a word
sense meets (a) but violates (b), for example, having less than
5 word tokens at time t, then this new sense is considered
unacceptable and categorized as a noisy sense. We follow this
idea and remove sense clusters with word tokens fewer than 5.

to 0, as noisy clusters should have been removed
when the first iteration ends. We set &k to 14—see
our clustering analysis in §A.4. Our configura-
tion of these hyperparameters across languages are
reported in Table 5 and 6 for classification and rank-
ing tasks. We note that the chosen ¢!, is applied
to our detection criterion for finding similar and
dissimilar sense clusters, i.e., to detect the presence
of semantic change in each word sense.

Languages th tic k t?ow tllow
English 0.34 040 14 5 0
German 022 038 14 5 0
Latin 0.16 0.16 14 5 0
Swedish 028 032 14 5 0

Table 5: Configuration of hyperparameters across lan-
guages in the SemEval2020 binary classification task.

Languages  t2, the k2. the
English 034 040 14 O 0
German 022 038 14 0 0
Latin 0.16 016 14 0 0
Swedish 028 032 14 0 0

Table 6: Configuration of hyperparameters across lan-
guages in the SemEval2020 ranking task.

Construction of Development Sets using Chat-
GPT. As SemEval2020 Task 1 operates in an
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Corpus #1

Corpus #2

Language period (¢t — 1) #tokens avg/t max/t min/t  period () #tokens avg/t max/t min/t #targets
English 1810-1860 3,294 329 947 23 Wiki (08.2023) 53,019 5,301 23,733 755 10
German 1800-1900 17,893 1,789 4,536 84 Wiki (08.2023) 43,963 4,396 22,809 240 10
Swedish 1790-1830 12,409 1,240 5,310 14 Wiki (08.2023) 47,629 4,762 35249 25 10

Table 7: Statistics of the corpus in the inter-language setup.

unsupervised setting, the task lacks development
sets, with the entire corpus treated as evaluation
sets. Here, we create a development set per lan-
guage on which we tune the hyperparameters of our
clustering approach for each language. Each devel-
opment set includes 8 target words that are unseen
in evaluation sets. Each target word associates with
two senses. We use ChatGPT-3.5 to produce 100
sentences that contextualize each sense. We now
describe our data construction approach in detail:

For each target word, we begin by instructing
ChatGPT to provide a list of possible word senses,
and then verify their accuracy using Wiktionary.
After that, we select two verified word senses from
the list and instruct ChatGPT to generate a corpus
of n sentence that evenly incorporate both word
senses of the target word. Then, we construct a
gold label vector, denoted as Yy, = [y1,-- -, Yn]
with y; € {0,1}, where y; specifies whether the
target word in the ¢-th sentence within the corpus
corresponds to the first or second word sense.

We observed that ChatGPT yields sentences of
satisfactory quality, which contains expected word
meanings of each target word and requires only
minor human corrections such as the need for extra
instructions to generate longer sentences. As an
example, Table 8 reports our instructions for the
word “ratio” with a specific sense in Latin.

Recall that our clustering approach involves two
hyperparameters ¢, and ., to determine whether
two clusters are similar enough to be merged. To
tune these hyperparameters on the development
sets we constructed, we first use our clustering
approach to produce a prediction of label vec-
tor, denoted as Yy, (t%, L) = [§1,...,9n] with
9; € {0, 1} for each configuration of hyperparam-
eters. Then, we use grid search to tune the hyper-
parameters based on the idea of Adjusted Mutual
Information (AMI) (Vinh et al., 2009), denoted as:

arg max Z AMI(Vuy, Vo (2, 2,))
tgce(ovl)vt};ce(ovl) ’U)EW[,

where W, denotes a set of target words for each
language ¢.

A.3 Experimental Setups for Exploratory
Study

Datasets. We choose a set of target word triplets
that are translations in English, German and
Swedish, such as { ‘mouse’, ‘Maus’, ‘mus’}. For
each of these languages, we consider the Se-
mEval2020 corpus specific to that language from
the earlier time period (the 19 century) as the histor-
ical corpus at time ¢t — 1. For the present corpus at
time ¢, we opt for a random selection of the most re-
cent Wikipedia dump, rather than the SemEval2020
corpus from the later time period. This is because
the later time periods in the three languages are sub-
stantially different, making it unreliable to compare
semantic changes across languages. We provide
data statistics in Table 7.

Implementation Details. Regarding the choice
of our hyperparameters, we apply the same cross-
lingual threshold ¢.s to all languages, and set the
threshold to the threshold ¢, used in the English
intra-language setup, denoted as t2!' = tEN. The
reason for this is the following: Since we re-align
the embedding spaces of target languages (German
and Swedish) to the source language English, we
apply the hyperparameters that were tuned on the
English development set to all languages in the
inter-language setup. We set k to 14 for k-nearest
neighboring words.

A4 Analyses

Comparing Clustering Approaches. We com-
parably evaluate two classes of clustering ap-
proaches: (a) explicit/predetermined choice of the
number clusters: K-means and Gaussian Mixture'?
and (b) implicit choice: Affinity Propagation (Frey
and Dueck, 2007) and our approach. To begin, we
select 8 target words in each language. Each word
has two word senses with uneven frequency dis-
tribution (100:20). We use the popular metric Pu-

Phttps://scikit-learn.org/stable/modules/
generated/sklearn.mixture.GaussianMixture.html
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Role Conversations

Human

Please create sentences for the Latin word ‘ratio’ that has the meaning of ‘reason or rationality, the

ability to think logically and make sound judgments’ in the format: a Latin sentence enclosed in double
quotation marks, followed by an English translation enclosed in parentheses.

ChatGPT

1. “Sua ratione et prudentia, ille vir difficiles decisiones sapienter adhibebat.”

(By his reason and prudence, that man wisely made difficult decisions.)

2. “Ratione uti poteris, neque impulsu emotionum agere debes.”

(You should use reason, not be driven by the impulse of emotions.)

Good. Please create a bit longer sentences.
ChatGPT

1. “Cum homines ratione utantur, societates humanae pacem et progressum promovere possunt.”

(When people use reason, human societies can promote peace and progress.)

2. “Ratione, quam discimus, in omni aspectu vitae uti debemus, ut optima decisiones capiamus.”

(We should use the reason we learn in every aspect of life to make the best decisions.)

ChatGPT ... ... (sentences examples)

Good. Please write more sentences in the same format.

Table 8: Our instructions for creating sentences that contain the Latin word ‘ratio’ with a specific word sense.

Ot—1 ft—1 0 t—1 O 4—1 0 t—1 f1t—1
61 62 83 64 85 66
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Figure 9: Representation of semantic changes of a mutual word translation pair over time in a temporal and spatial
dynamic graph that links two temporal dynamic graphs in different languages.

(51, 62) m(eélycﬁ}) m(eélyc'leuz) m(e‘elycﬁ? + b)

(EN,DE)  0.64 0.46 0.64
(EN,SV)  0.64 0.45 0.65

Table 9: Results of embedding space alignment.

rity Scoring!?) to evaluate clustering quality—the
higher purity score indicates better quality. In Table
11, we see that our approach is quite advantageous
in this setup, demonstrating its ability to capture
both high and low-frequency word senses. In En-
glish, we see the performance gain of our approach
is comparatively smaller. This might be because
m-BERT is known to produce higher-quality em-
beddings in English compared to other languages,

Bhttps://nlp.stanford.edu/IR-book/html/
htmledition/evaluation-of-clustering-1.html

making it less susceptible to the poor quality of
baseline clustering approaches.

Our Clustering Method. Figure 10 shows the
relationships between the choice of thresholds (¢2,
and t!.) and the corresponding detection accuracy.
We find that the high accuracy area colored in
bright yellow expands greatly as k increases, partic-
ularly for English and German. This means that the
more nearest semantic neighboring words are in-
volved, the higher detection accuracy our approach
achieves. Furthermore, we see that the brightest
areas across languages are shown in different loca-
tions, and these areas associate with very different
configurations of ¢, and .., even for typologically
similar language pairs such as English and German.
This is because the SemEval2020 corpora in En-
glish and German are collected from different time
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Contextualized Word Embeddings

Components

Previous Approaches

Our Approach

Clustering Method k-means

our clustering method

Clustering Strategy

time-independent sense clusters time-dependent sense clusters

Semantic Representation word embeddings

graph

Distance Metric

Euclidean distance

neighbor-based distance

Detection Criterion

frequency-based criterion

similarity between sense clusters

Table 10: Contrasting previous approaches (Kanjirangat et al., 2020; Cuba Gyllensten et al., 2020) and our approach
for detecting semantic change. All these approaches combine contextualized word embeddings with a clustering
method but differ in several aspects. Our neighbor-based metric is adopted in two components: our clustering

method and detection criterion.

Algorithms EN DE LA NY%

K-means 0975 0.778 0.664 0.775
Gaussian Mixture 0.939 0.775 0.670 0.754
Affinity Propagation 0.891 0.741 0.686 0.662
Our Clustering 0.994 0.879 0.877 0.909

Table 11: Purity scores across four approaches in the
100:20 frequency distribution setup.

periods (see Table 4), making these two languages
further apart from each other.

Bilingual Embedding Spaces. If two embed-
ding spaces of languages ¢; and /o align well,
they should share the same space centroid and
the same topological structure. We consider the
topological structure of the £; embedding space as

m(e,C) = |C%1‘ ZCiGCﬁ} s(e”, ), i.e, the av-

erage similarity between each point in Cful and the
C4s centroid e’t. Therefore, m(e‘t,C%) should
closely match m(eft,C%) in this case. However,
Table 9 shows that the score m(et,C2) is much
lower than m(ef,C%1), implying that the ¢; and
{5 embedding spaces exhibit quite different topo-
logical structures. This arises from the fact that
the two embedding spaces are initially misaligned.
After applying a rectified vector b, we see a close
match between m(et, Cot) and m(e®,C%2 +b) in
terms of topological structure, demonstrating the
effectiveness of the chosen rectification approach
(Liu et al., 2020) for addressing the misalignment
between embedding spaces of different languages.

A.5 Hardware Specifications and Execution
Times

All experiments were executed on a computer fea-
turing an AMD CPU with 8 cores, 32GB of RAM
and a single RTX3060 GPU with 12GB of memory.

For each target word, it takes about 60 seconds for
m-BERT to generate its contextualized word em-
beddings within 800 sentences on GPU; our clus-
tering method takes about 5 minutes to complete
on CPU with 8 multi-processing threads.
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Figure 10: Relationships between the threshold values and accuracies in the SemEval2020 binary classification task.
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Figure 11: Representation of the detected semantic changes for the English word ‘boot’, ‘cloud’, ‘data’, ‘feed’, ‘gay’,
‘gift’, ‘mail’, ‘memory’, and ‘web’ in our temporal dynamic graph. Blue nodes at time ¢ indicate the acquisition of
new meanings, while blue nodes at time ¢ — 1 indicate the loss of original meanings. Black nodes indicate word
meanings that remain unchanged over time.
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Figure 12: Representation of the detected semantic changes in word translations across English, German and
Swedish, shown in our inter-language temporal dynamic graphs. Blue nodes indicate the acquisition of a new
meaning at time ¢ (the loss of an existing one at ¢ — 1), while black nodes indicate meanings unchanged over
time. Orange text marks certain changed meanings that are considered highly similar across languages. Figure (a)
{memory, Erinnerung, minne}: ‘memory’ and ‘minne’ gain the same new meaning about computer storage unit
at time ¢ while the meaning of ‘Erinnerung’ remains unchanged. Figure (b) {gay, frohlich, gay}: ‘gay’ (English)
and ‘gay’ (Swedish) gain the same new meaning about homosexuality at time ¢, and both words lose their different
original meanings that they had at ¢ — 1. The meaning of ‘fréhlich’ remains unchanged. Figure (c) {gift, Gift, gift}:
their semantic changes diverge greatly over time. The meaning of ‘gift’ (English) changes from a notable act of
giving to something given voluntarily without payment. Gift (German) retains the meaning poison over time. ‘gift’
(Swedish) gains a new meaning poison perhaps borrowed from German. Figure (d) {cloud, Wolke, moln}: ‘cloud’
gains a new meaning while the meanings of “Wolke’ and ‘moln’ remain unchanged.
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