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Abstract

Hierarchical text classification (HTC) is a com-
plex subtask under multi-label text classifica-
tion, characterized by a hierarchical label taxon-
omy and data imbalance. The best-performing
models aim to learn a static representation by
combining document and hierarchical label in-
formation. However, the relevance of docu-
ment sections can vary based on the hierarchy
level, necessitating a dynamic document rep-
resentation. To address this, we propose Hi-
Gen, a text-generation-based framework utiliz-
ing language models to encode dynamic text
representations. We introduce a level-guided
loss function to capture the relationship be-
tween text and label name semantics. Our ap-
proach incorporates a task-specific pretraining
strategy, adapting the language model to in-
domain knowledge and significantly enhancing
performance for classes with limited examples.
Furthermore, we present a new and valuable
dataset called ENZYME, designed for HTC,
which comprises articles from PubMed with the
goal of predicting Enzyme Commission (EC)
numbers. Through extensive experiments on
the ENZYME dataset and the widely recog-
nized WOS and NYT datasets, our methodol-
ogy demonstrates superior performance, sur-
passing existing approaches while efficiently
handling data and mitigating class imbalance.
We release our code and dataset here: https:
//github.com/viditjain99/HiGen.

1 Introduction

Hierarchical text classification (HTC) is a task that
involves categorizing text data into predefined cate-
gories organized in a hierarchical structure (Baner-
jee et al., 2019; Wang et al., 2022a; Zhou et al.,
2020). It holds great importance in various text
mining applications, including scientific paper rec-
ommendation (Zhang et al., 2020; Xu et al., 2023),
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semantic indexing (Li et al., 2019), and online ad-
vertising (Agrawal et al., 2013). HTC poses unique
challenges when compared to traditional text clas-
sification, as it deals with imbalanced data distribu-
tions and complex dependencies between multiple
levels of categories within the hierarchy. The hierar-
chical structure is represented as a directed acyclic
graph (DAG), which must be encoded in the pre-
dictive model along with the text to generate the
final hierarchal label. However, the data imbalance
becomes more pronounced as we move down the
levels, presenting a significant challenge for HTC.

Existing methods for hierarchical text classifica-
tion (HTC) can be categorized into three groups:
global (Zhou et al., 2020; Chen et al., 2021), lo-
cal (Shimura et al., 2018; Banerjee et al., 2019;
Wehrmann et al., 2018) and generative (Risch et al.,
2020; Yu et al., 2022; Huang et al., 2022). Local
approaches predict each hierarchical level using in-
dependent classifiers. Global models, on the other
hand, use a single classifier and incorporate hierar-
chical information into the loss function. Finally,
generative approaches use text generation frame-
works to model the hierarchical structure. Some
prior works flatten the label structure, leading to an
exponential increase in the number of classes and
the loss of hierarchical dependency. Additionally,
some models fail to capture the correlation between
text and label name semantics. As a result, these
approaches struggle to perform well on long-tailed
classes with limited training data.

Harnessing the power of large pretrained lan-
guage models (PLMs) to capture text-label correla-
tion, we employ a transformer-based sequence-to-
sequence (seq2seq) framework (Lewis et al., 2020).
These models are pretrained on extensive text data,
enabling them to encode transferable linguistic fea-
tures across tasks (Liu et al., 2019). Our model
transforms HTC into a text generation problem,
generating labels conditioned on the input text and
previously generated labels while utilizing a hier-
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archical level-guided semantics framework. While
Chen et al. (2021) introduces a matching loss for
hierarchy-aware text-label relationships, it neglects
the level-dependency between the transformed text
and label representations. Our approach incorpo-
rates a margin loss, aligning text semantics with
positive labels at each taxonomic level while push-
ing negative semantics apart. Furthermore, we pro-
pose a token constraint loss during training to dis-
courage undesired token generation.

Inspired by the success of pretraining tasks (Gu-
rurangan et al., 2020), we propose a task-specific
pretraining strategy for our generative model. Our
approach presents a notably simplified design in
contrast to previous works which use complex en-
coder architectures or training paradigms (Zhou
et al., 2020; Deng et al., 2021; Jiang et al., 2022).
We propose a pretraining step that takes advantage
of weak supervision to jointly model text repre-
sentations and hierarchical label information. The
encoder encodes the input document and masked
hierarchical label, while the decoder regenerates
the original label. The pretraining step leverages
weakly labeled data from the same domain, gener-
ated using an LLM. This domain-specific knowl-
edge, discussed in Mueller et al. (2022); Gururan-
gan et al. (2020), proves advantageous for address-
ing the data imbalance challenge commonly en-
countered in HTC datasets.

The major contributions of this work are:

• We propose a generation-based HTC frame-
work that effectively captures document-label
dependencies across levels using a level-
guided semantic loss.

• We devise an efficient pretraining strategy that
leverages in-domain data to align the language
model with the target task and domain.

• Our approach demonstrates remarkable perfor-
mance on classes with limited examples, sur-
passing prior works even with minimal train-
ing instances.

• We present ENZYME, a dataset of 30,523
full-text PubMed articles with Enzyme Com-
mission (EC) numbers. It features a four-level
single-path hierarchy, making it larger than
any existing datasets for biomedical HTC.

2 Related Work

HTC is a multi-label classification problem where
the classification task is performed in a hierarchical

manner. Most prior work in HTC can be cate-
gorized into three broad categories: local, global,
and generative. In the local approach, each hier-
archical level has its own classifier tailored to the
unique classes at that level. Conversely, the global
approach employs a unified classifier that encom-
passes all classes across every hierarchy level. The
generative approach, a recent advancement in hier-
archical text classification, capitalizes on the gen-
erative capabilities of language models to predict
text labels. More details on each of the categories
are explained below.

Local HTC Local approaches in HTC use local
classifiers at each level or class (Banerjee et al.,
2019; Wehrmann et al., 2018; Shimura et al., 2018;
Peng et al., 2018). Banerjee et al. (2019) initialize
binary classifiers at lower levels with parameters
from the parent classifier. Wehrmann et al. (2018)
combine local and global losses to encode informa-
tion within and across hierarchical levels. Shimura
et al. (2018) address data imbalance with parameter
transfer techniques. Peng et al. (2018) employs a
Graph-CNN-based model with recursive regular-
ization for deep hierarchical representations.

Global HTC Global approaches to HTC uti-
lize a single classifier (Gopal and Yang, 2013; Wu
et al., 2019; Mao et al., 2019; Peng et al., 2021) to
predict labels at different hierarchy levels. Early
works consider parent-child dependencies (Gopal
and Yang, 2013; Wu et al., 2019; Mao et al., 2019;
Peng et al., 2021), while recent approaches focus
on global label structure (Wang et al., 2021), dis-
joint features (Zhang et al., 2022), label imbalance
(Deng et al., 2021), prior hierarchy knowledge
(Zhou et al., 2020), and semantic matching (Chen
et al., 2021). These works learn text and hierarchy
semantics separately, fusing them later. However,
(Wang et al., 2022a) proposes a global approach
using contrastive learning to learn a shared repre-
sentation. Similarly, (Jiang et al., 2022) also aims
for common representations but incorporates both
local and global hierarchies. Lastly, (Wang et al.,
2022b) uses prompt-tuning and multilabel MLM
to learn shared semantics.

Generative HTC Early works on text generation
for HTC (Yang et al., 2018; Risch et al., 2020) use
RNN and Transformer-based seq2seq models, with
dynamic document representations outperforming
static encoder methods. Recent approaches (Yu
et al., 2022; Huang et al., 2022) propose T5-based
models (Raffel et al., 2020). The former addresses
label inconsistency with DFS-based linearization
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and constrained decoding, while the latter captures
dependencies using BFS-based linearization and
hierarchical path-based attention. These methods
overlook the dependencies between the label name
from different levels and the document text. We
overcome this by capturing the document-label-
name dependency across different levels using the
proposed level-guided semantic loss.

In this work, we explore HTC under the um-
brella of a sequence generation framework using a
BART-based model (Lewis et al., 2020). We har-
ness the benefits of denoising autoencoder pretrain-
ing to imbue the model with a strong understand-
ing of the hierarchical structure. We also employ a
well-designed objective function during supervised
training for improved learning.

3 Problem Definition

Given an input text Xi = {x1, x2, ..., xn}, HTC
aims to classify the text into a subset Yi of label
set Y . The label set Y is arranged as a Directed
Acyclic Graph (DAG), denoted by H = (L,E).
L represents the set of nodes and E represents
the edges indicating the nodes’ parent-child rela-
tions. All the labels in Y constitute the nodes in
the above graph i.e. L. We use BFS (Bundy and
Wallen, 1984) to flatten the hierarchical labels into
a multi-level sequential string of label nodes. We
define a special set of symbols S = {/,<root>}
to demarcate special relations of the label hier-
archy in the flattened sequence. To classify Xi,
the proposed sequence generation model generates
Yi = {y1, y2, ...., yk}, where yj ∈ {Y + S}. BFS-
based linearization helps each Yi to correspond to
one or more paths in root to leaf paths in H .

4 Methodology

This section presents the proposed generative
framework based on the BART model for HTC.
We first describe the pretraining regime aimed at
learning robust joint text-label representations (Sec-
tion 4.1). Following this, supervised training is
performed to generate hierarchical label sequences
for input documents (Section 4.2). We also explain
the proposed objective function used (Section 4.3)
for this phase that aims to capture text and label
semantics jointly.

4.1 Pretraining Strategy

Pretraining a domain-specific language model
has shown significant performance improvement

<root>

y1

y2 y3

y4 y5 y6 y7

<mask>

Labels: {y1, y2, y3, y4, y5, y6, y7}

Flattened Label Sequence: <root>, /, y1, /, y2, y3, /, y4, y5, y6, y7

Masked Label Sequence: <root>, /, y1, <mask>, <mask>, <mask>, /, y4, <mask>, y6, <mask>

BFS Traversal

Figure 1: BFS-based label flattening and random token
& span masking employed during pretraining.

on downstream tasks (Gururangan et al., 2020;
Mueller et al., 2022). We utilize the BART model
which has achieved state-of-the-art results on text
generation tasks, as the backbone of our seq2seq
approach. Its autoregressive nature and availability
as a pre-trained model alleviate the reliance on ex-
tensive labeled data. The BART model comprises
a transformer-based encoder and an autoregressive
decoder.

To design our model, we adopt a BART-style de-
noising auto-encoder inspired by prior work (Agha-
janyan et al., 2021). First, we transform a label
set Yi into a multi-level sequential label Y seq

i us-
ing BFS, where <root> represents the root node
and / indicates the change of level. Our approach
involves randomly masking certain levels in the
hierarchical label and encoding them with the input
text. Figure 1 provides an illustration of the label
flattening and random masking techniques. The
model is then trained to reconstruct the original
hierarchical label. Formally, given a document Xi

and masked label Y masked_seq
i , we create an input

sequence as follows:

input = [Xi </s> Y masked_seq
i ] (1)

where </s> is a special token used as a separa-
tor and Y masked_seq

i is the masked label sequence
resulting from the masking process as illustrated in
Figure 1. We encode both the text and label using
the same encoder, allowing the model to learn a
joint embedding in the text-label space and capture
correlations between them. During training, the
model generates an output for the masked input
sequence, aiming to fill in the masked positions of
the label:

output = Ŷ seq
i (2)
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We use the cross-entropy loss, commonly used
in masked language modeling, to train the model:

loss = CE(Y seq
i , Ŷ seq

i ) = −
∑

i

Y seq
i log(Ŷ seq

i )

where CE represents the cross-entropy loss,
Ŷ seq
i represents the model’s output probability dis-

tribution over the vocabulary.
The pretraining step aims to learn a joint repre-

sentation for text and labels, capturing their inter-
dependencies. The model is exposed to document-
label pairs with partially masked hierarchical labels
to develop a robust understanding of the hierarchy
structure. Importantly, the model develops robust
representations for all levels of the hierarchy, re-
gardless of the number or levels of the masked
nodes, as the extent of the masked label nodes is
not known. The pretraining dataset is further de-
scribed in Section 5.1.1.

4.2 Sequence to Sequence Modeling
The pretraining enhances the model’s understand-
ing of the label hierarchy and domain-specific
knowledge. In the supervised training phase, we
utilize the seq2seq framework for HTC, as shown
in Figure 2. We use the BFS label linearization to
obtain multi-level label sequences. The input text
document Xi = {x1, x2, x3, · · · , xm} is encoded
to obtain the encoder output hidden representation
he.

he = Encoder(Xi) (3)

The hidden representations from the encoder are
used to initialize the decoder. The decoder then gen-
erates the hierarchical label Ŷi step-by-step autore-
gressively. The autoregressive process followed by
the decoder can be represented as:

p(Ŷi | Xi) =
n∏

k=1

p
(
Ŷ k
i | Xi, Ŷ

<k
i

)
(4)

where Ŷ k
i denotes the prediction from the de-

coder for level k of the hierarchy, and n represents
the depth of the hierarchy. At every time step k,
the output Ŷ k−1

i and the hidden state hdk−1 from
the previous time step k− 1 is given as input to the
decoder to generate the next hidden state hdk and a
prediction Ŷ k

i for the current time step.

hdk, Ŷ
k
i = Decoder(he, hdk−1, Ŷ

k−1
i ) (5)

The decoder leverages information from the en-
coded document and the label from the previous
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Input Text

Figure 2: The proposed model’s architecture consists
of an encoder that takes the document and its corre-
sponding label name as input. The decoder generates
a hierarchical label output with 2 levels. To calculate
the first three losses, the LM Head predicts a distribu-
tion over the vocabulary, and the hierarchy edges are
considered. For the semantic loss, the text and label
name representations from the encoder are projected
onto a shared embedding space. Positive document and
label semantics are pulled together, while negatives are
pushed apart. The margins α1 and α2 control the attrac-
tion between levels 1 and 2, with α1 > α2.

level to predict the current level in the hierarchy.
This allows our model to mimic the HTC process
and learn important aspects of the hierarchy struc-
ture, including label relations, valid root-to-leaf
node paths, and the overall label structure (Risch
et al., 2020).

4.3 Training Objective
This section presents the proposed objective func-
tion we use to train our generative framework for
the proposed HTC task. First, we provide a descrip-
tion of each loss function being employed and then
define the final training objective used to train our
model.

Language Modeling Loss. The predictions
from each time step of the decoder Ŷ k

i are con-
catenated together to form the final prediction of
the model Ŷi. The ground truth, Yi comprises the
original flattened label. The language modeling
loss for HiGen can be expressed as:

LLM = crossentropy(Yi, Ŷi) (6)

Output Space Loss. The label hierarchy is gen-
erally represented as a DAG, where each edge signi-
fies a parent-to-child relationship. In HTC, impos-
ing this unidirectionality during training helps the
model comprehend these hierarchical relations. To
this end, we use the formulation proposed by Zhang
et al. (2021) inspired by the distributional inclusion
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hypothesis (DIH) (Geffet and Dagan, 2005).

LO =
∑

N

∑

l

∑

n

max(0, πc − πp) (7)

where N is the batch size, l is the number of pre-
dicted node labels and n is the number of hierarchy
edges. πp and πc represent the predicted probabili-
ties for a parent label node p and its child label node
c in the output distribution over the vocabulary.

Under the DIH framework, the loss term can be
precisely articulated as follows: if a document d
belongs to a child class c with probability πc, then
it must belong to the parent class p with a probabil-
ity no less than πc. For instance, if a document has
a 75% chance of being labeled with "Football", the
likelihood of it being assigned to the parent cate-
gory "Sports" should be 75% or higher. Note that
the loss term exhibits asymmetry, being non-zero
when πc > πp but zero when πp > πc. Referring
to Figure 2, loss calculation involves aggregating
predicted probabilities for valid tokens (indicated
by red dotted lines) from the LM Head and estab-
lishing parent-child pairs using the hierarchy edges.
Through the imposition of a penalty when πc > πp,
the objective function guides the model to learn the
correct sequence of tokens, consequently learning
the unidirectionality and orientation of the hierar-
chy edges.

Token Constraint Loss. Using a model trained
for open-ended text generation in HTC can lead to
irrelevant node labels due to the generation of stray
tokens (non-existent in a given hierarchy). To ad-
dress this and avoid restricting BART’s generation
capabilities due to a fixed vocabulary, instead, we
introduce a loss function that penalizes predictions
outside of a designated vocabulary represented by
the red dotted lines in Figure 2. This vocabulary
is constructed using the label hierarchy, ensuring
alignment and enhancing overall results. Putting it
formally,

V H′
= {l ∈ V |l /∈ V H}

LT =
∑

l∈V H′
πi
l

(8)

where l is a token, πi represents a vector of pre-
dicted token probabilities for a training example
by the LM Head, V is the entire vocabulary, V H

is the desired vocabulary for H , and V H′
contains

the remaining tokens. The loss function guides the
model to learn the desired vocabulary’s contents,

discouraging the generation of irrelevant labels and
enhancing classification performance.

Level-guided Semantic Loss. Based on the
previous loss functions, the model learns correla-
tions between text semantics and the hierarchical
structure. Label names serve as descriptions en-
coding paths in the hierarchy, providing valuable
semantic information for HTC. For any classifica-
tion task, the text and label semantics for positive
pairs should be closer than unrelated pairs in an
embedding space. Our training objective imposes
this constraint, guided by label nodes at each hier-
archical level.

In a traditional classification setting, document
similarity can be determined by matching their la-
bels. However, in HTC, some documents might
be related to each other for some initial levels of
the hierarchy but then diverge as we move down
and vice versa. Capturing this nuance is crucial for
HTC and is the prime distinction from traditional
classification. We aim to encode this information
using our level-guided semantic loss function.

We utilize two independent fully connected net-
works and project the text and label semantics onto
a common embedding space.

Et = FCt(h
e
t )

El = FCl(h
e
l )

(9)

where FCt & FCl are two fully-connected net-
works, het & hel are the encoder hidden repre-
sentation for the document and label name. Et,
El ∈ RN×d represent the text and label name rep-
resentations in the joint space and N is the batch
size.

To combine the hierarchical information with
text and label semantics, we construct document-
label name pairs for every level of the hierarchy. So
for a batch of data and a particular level k from the
hierarchy, the pairing process involves associating
each document embedding with every label name
embedding in the batch. Pairs receive a positive
label (1) when the document and label name embed-
dings correspond to the same level label; otherwise,
a negative label (0) is assigned. Consequently, a
positive document-label name embedding pair is
denoted as {E+

ti
, E+

lj
}, while a negative pair is de-

noted as {E−
ti
, E−

lj
}. Intra-pair distances are calcu-

lated amongst the positive and negative document-
label pairs using L2-normalized Euclidean distance.
We use the mean of intra-document-label pair dis-
tances for both the positive and negative variants
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for further calculations. Mathematically,

γ+k =
1

N+

∑

i

∑

j

||E+
ti
− E+

lj
||

γ−k =
1

N−
∑

i

∑

j

||E−
ti
− E−

lj
||

(10)

To bring the positive document and label name
semantics closer, a margin loss is applied with a
level-specific margin parameter αk. So for the level
k, the loss is defined as,

Lk
S = max(0, γ+k − γ−k + αk) (11)

At every hierarchy level, we replicate the pair-
ing and loss calculation using the outlined strategy.
Notably, with level transitions, documents initially
labeled as negatives may now share labels and vice
versa, creating a fresh set of labeled pairs. The
level-specific margin αk progressively increases
as we descend the hierarchy, to incorporate the
increasing granularity of labels. This ensures the
model aligns text and label semantics effectively.
For a label hierarchy with m levels, the final loss
becomes,

LS =

m∑

k=1

Lk
S (12)

In Figure 2, the lower part illustrates an exam-
ple of a two-level hierarchy, with different colors
representing the hierarchy levels. For level 1, posi-
tive label semantics are attracted to document se-
mantics, while negative label semantics are pushed
apart by at least α1 (blue-dotted circle). The same
process is applied to the next level, with increased
separation α2 to accommodate the higher semantic
granularity (orange-dotted circle).

Based on the language modeling loss and the
three proposed loss functions, we use the following
objective function to learn the parameters of our
model:

min LHiGen = LLM + λ1LO + λ2LT + λ3LS

where, λ1, λ2 and λ3 are hyperparamters.

5 Experiments

5.1 Datasets
We introduce the ENZYME dataset, containing
biomedical scientific literature and corresponding
Enzyme Commission (EC) numbers. We provide
an overview of this dataset, including the training,

Dataset |L| Depth Avg(|Li|) Train Val Test
ENZYME 4566 4 4 17422 8741 4360
WOS 141 2 2 30070 7518 9397
NYT 166 8 7.6 23345 5834 7292

Table 1: Statistics of datasets used. |L|: total number of
target classes, Depth: levels of the hierarchy, Avg(|Li|):
Average number of classes per example.

validation, and test splits, in Section 5.1.2. We
also conduct experiments on benchmark datasets:
Web-of-Science (WOS) (Kowsari et al., 2017) and
NYT (Sandhaus, 2008), following the preprocess-
ing and data splits proposed by Zhou et al. (2020).
WOS and ENZYME focus on single-path HTC,
while NYT incorporates multi-path taxonomic la-
bels. Detailed statistical information can be found
in Table 1. Experimental results are evaluated us-
ing Macro-F1 and Micro-F1 metrics, commonly
used in prior literature.

5.1.1 Pretraining Datasets

For the ENZYME dataset, we use the articles
extracted from PubMed1. We randomly sample
200,000 articles along with their Enzyme Com-
mission (EC) numbers that follow a hierarchical
structure. These articles are loosely labeled as they
do not reflect human-annotated EC numbers. WOS
hosts a comprehensive collection of scientific ar-
ticles spanning various domains of science. To
produce meaningful and diverse abstracts, we em-
ploy the powerful ChatGPT model and generate
∼3000 abstracts for pretraining. More details are
mentioned in Appendix E. As for NYT, we have
access to a vast repository of articles that were not
assigned to specific training, testing, or validation
sets by Zhou et al. (2020). This invaluable resource
enables us to utilize these uncategorized articles for
our proposed pretraining task. During the process
of consolidating the pretraining dataset, we made
sure to prevent any overlap of the pretraining data
with the training, validation and testing sets.

5.1.2 ENZYME Dataset

We introduce a new dataset called ENZYME,
which contains curated full-text biomedical arti-
cles from PubMed along with Enzyme Commis-
sion (EC) numbers (see Section A.1) and enzyme
names. It consists of 30,523 articles in both PDF
and parsed formats, making it unique in providing
full-text biomedical documents with corresponding
enzyme identification numbers. The EC numbers

1https://pubmed.ncbi.nlm.nih.gov/advanced/
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Models
ENZYME WOS NYT

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
BERT 82.16 16.29 85.63∗ 79.07∗ 78.24∗ 65.62∗

HiAGM (Zhou et al., 2020) 80.52 49.21 85.82 80.28 74.97 60.83
HiMatch (Chen et al., 2021) 72.37 38.19 86.20 80.53 74.62 59.28

HiMatch + BERT 75.24 40.67 86.70∗ 81.06∗ 76.79∗ 63.89∗

HTCInfoMax (Deng et al., 2021) 70.56 37.24 85.58 80.05 - -
HTCInfoMax + BERT 73.45 39.83 86.30∗ 79.97∗ 78.75∗ 67.31∗

HGCLR (Wang et al., 2022a) 90.81 71.03 87.11 81.20 78.86 67.96
HPT (Wang et al., 2022b) 91.04 78.27 87.16 81.93 80.42 70.42
HBGL (Jiang et al., 2022) 91.10 83.05 87.36 82.00 80.47 70.19

Vanilla BART 88.11 67.76 86.26 79.34 80.08 69.3
SGM-T5† (from Yu et al., 2022) - - 85.83 80.79 - -
Seq2Tree-T5† (Yu et al., 2022) - - 87.20 82.50 - -

PAAM-HiA-T5† (Huang et al., 2022) - - 90.36 81.64 77.52 65.97
HiGen (ours) 92.61 84.15 87.39 81.45 80.89 72.41

Table 2: Experimental results of our proposed approach on all datasets. †: Implementation not available, ∗: results
from Wang et al. (2022a).

follow a hierarchical structure2, with detailed statis-
tics per level shown in Table 4. The dataset has
a hierarchical taxonomy depth of 4, resulting in
a complex structure with a large number of fine-
grained classes, making this an unique and chal-
lenging dataset. This dataset is highly imbalanced
with ∼50% of the 4,566 classes having less than
2 examples (Figure 5). For our experiments, we
focus on classes with 5 or more examples. Further
details on the enzyme classification system and
dataset construction are available in Appendix A.

5.1.3 Baselines
To compare the proposed method, we select a few
recent baselines. HBGL (Jiang et al., 2022), SGM-
T5 (Yang et al., 2018), PAAM-HiA-T5 (Huang
et al., 2022), Seq2Tree-T5 (Yu et al., 2022), HG-
CLR (Wang et al., 2022a), HPT (Wang et al.,
2022b), HiMatch (Chen et al., 2021) and HiAGM
(Zhou et al., 2020), and HTCInfoMax (Deng et al.,
2021). SGM-T5, PAAM-HiA-T5 and Seq2Tree-
T5 have used a similar sequence generation ap-
proach for HTC. SGM uses a T5 encoder-decoder
framework, while Seq2Tree-T5 proposes a tree-like
framework with label linearization. HBGL lever-
ages BERT’s large-scale parameters and language
knowledge to model global and local hierarchies.
HiAGM, HTCInfoMax and HiMatch incorporate
fusion strategies to integrate text and hierarchy rep-
resentations. HiAGM introduces hierarchy-aware
multi-label attention, HTCInfoMax employs infor-
mation maximization for modeling text-hierarchy
interaction, and HiMatch matches text and label
representations in a joint embedding space for clas-

2https://www.enzyme-database.org/contents.php

sification. We also compare our approach with
Vanilla-BART and a BERT-based HTC model.

5.1.4 Implementation Details

For HiGen, we use HuggingFace checkpoints to
warm start the BART model, selecting between a
PubMed-finetuned BART model (mse30/bart-base-
finetuned-pubmed) for ENZYME and the base-
BART model (facebook/bart-base) for WOS and
NYT datasets. After an initial pretraining phase
using the data in Section 5.1.1, we save the check-
points and subsequently fine-tune them for all
datasets. For WOS, we set semantic margins αk

to [0.05, 0.1], while for ENZYME, they are [0.02,
0.1, 0.15, 0.3]. Due to label sequence complexity,
semantic loss is not applied to NYT at present. We
use loss balancing factors λ1 and λ2 of [1e-3, 1e-6]
for ENZYME, and [1e-3, 1e-5] for WOS and NYT,
with λ3 set to 1 for ENZYME and WOS. These
values result from extensive hyperparameter tuning.
Both pretraining and fine-tuning use a batch size of
12, the Adam optimizer, and a learning rate of 5e-5
with a linear schedule.

We employ consistent evaluation across all
datasets by using the baseline implementations
provided by their respective authors. For
BERT, we train a multilabel classification
model using the representation of the spe-
cial [CLS] token. Like HiGen, BERT is
warm started with a PubMed-finetuned check-
point (microsoft/BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext) for ENZYME, and base-
BERT (bert-base-uncased) for WOS and NYT. All
models are implemented in PyTorch.
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Figure 3: Performance on ENZYME dataset for the
long-tailed classes

5.2 Experimental Results

Table 2 presents the Micro and Macro F1 scores
for the baselines and HiGen on the three datasets.
The baselines are grouped into two categories:
classification-based and generation-based. HiGen,
our generation-based approach, achieves superior
performance over both categories. Among the
classification-based methods, HBGL stands out as
the state-of-the-art approach, leveraging global and
local hierarchies for text and label representation.
To ensure a fair comparison on ENZYME, we ini-
tialize HiMatch + BERT, HGCLR, and HBGL with
the PubMed BERT checkpoint. HiGen, utilizing
dynamic text and label semantics, improves the
Micro-F1 score by 1.51%, 0.03%, and 0.42% for
ENZYME, WOS, and NYT respectively. Notably,
HiGen exhibits exceptional performance on the EN-
ZYME dataset for both Micro and Macro-F1 scores.
A significant improvement over the Vanilla-BART
establishes the power of proposed pertaining and
loss functions. Larger improvement can be seen for
dataset involving deeper hierarchy (ENZYME and
NYT) compared to shallower hierarchy (WOS).

HiGen uses the BART model (140 million pa-
rameters) instead of the T5 model (220 million pa-
rameters), making it 37% more parameter-efficient.
HiGen outperforms Seq2Tree-T5 for WOS. For
NYT, HiGen surpasses PAAM-HiA-T5 by 3.47%
and 6.44% on Micro and Macro-F1 scores, respec-
tively. Performance figures on ENZYME are not
available due to code unavailability.

In Appendix C.3, we juxtapose the training du-
rations of HiGen and HBGL, revealing a 10-fold
reduction in training time for HiGen, attributable
to its simpler architecture, as evidenced in Table 8.

5.3 Performance on Long-Tailed Distribution

In our experiments, data imbalance is evident, with
long-tailed classes having limited training and test-
ing examples. These classes are crucial for evalu-
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Figure 4: Performance on ENZYME dataset on varying
the training data proportion

ating the model’s performance, testing its ability
to learn from sparse data, and assessing generaliza-
tion capabilities. We select classes based on testing
data frequency, grouping them into bins from 1 to
5.

Figure 3 presents results for the ENZYME
dataset, displaying Micro-F1 (Figure 3a) and
Macro-F1 (Figure 3b) scores against class fre-
quency. We compare HiGen to baseline models
BERT, HBGL, and Vanilla BART, with a focus on
HBGL as the best-performing baseline. HiGen out-
performs BERT and Vanilla BART significantly in
both Micro and Macro-F1. While its Micro-F1 is
similar to HBGL, HiGen excels in Macro-F1, par-
ticularly for "long-tailed classes" on the ENZYME
dataset.

5.4 Data Efficiency
We assessed model robustness by training on dif-
ferent data proportions and evaluating on the orig-
inal test set. We included baseline models like
BERT, Vanilla BART, and HBGL for fair compar-
isons. Figure 4 displays results for the ENZYME
dataset, known for its complex hierarchy and lim-
ited training examples. The curves represent model
performance as training data increases.

Our model outperformed all baseline models
with just 10% of the data, surpassing the second-
best model, HBGL, thanks to pretraining knowl-
edge. This synergy of pretraining and fine-tuning
improved label hierarchy knowledge, enhancing
performance. For more details, see Section 5.5.

5.5 Ablation Study
In this analysis, we evaluate the impact of indi-
vidual components in our approach on the WOS
dataset (Table 3). The importance of the pretrain-
ing stage is evident, with its removal leading to a
significant drop in performance across both met-
rics. Even with just 3000 abstracts generated using
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Model Micro-F1 Macro-F1
Vanilla BART 86.26 79.34
HiGen 87.39 81.45

w/o pretraining 86.69 80.54
w/o LO 87.35 81.11
w/o LT 87.19 80.83
w/o LS 87.33 80.91

Table 3: Ablation study on HiGen for the WOS dataset.

LLMs like ChatGPT, our pretraining approach is
highly effective, emphasizing their value for data-
limited datasets. By refining prompts and adding
more pretraining data, we expect further perfor-
mance improvements. Both the semantic loss (LS)
and token constraint loss (LT ) significantly im-
prove the Macro-F1 score by enhancing representa-
tion learning for minority classes. While the output
space loss (LO) also contributes to Macro-F1 im-
provement, it has a comparatively smaller impact.
In summary, all proposed components are crucial;
removing any of them leads to a notable drop in
performance, as evident when comparing HiGen
to a Vanilla BART model. For further results and
analyses, please refer to Appendix C.

6 Conclusion

In this paper, we propose a sequence generation
framework for HTC that captures the hierarchi-
cal nature of labels. The pretraining strategy en-
hances the model’s performance by adapting it to
the specific domain and task. Moreover, we demon-
strate the effectiveness of utilizing synthetic data
generated through powerful language models like
ChatGPT. The objective function during supervised
training provides the model with additional con-
textual information about the hierarchical struc-
ture. Our proposed approach outperforms baseline
models on three datasets, as measured by standard
evaluation metrics. Leveraging the knowledge em-
bedded in pretrained language models, our model
performs exceptionally well on classes with limited
examples and is data-efficient as well.

Limitations

While HiGen demonstrates performance improve-
ment across three datasets, it is crucial to acknowl-
edge certain limitations and identify potential areas
for future improvement.

Firstly, ensuring the appropriate nature of the
pretraining data is paramount. It is essential that
the data aligns with the same domain as the origi-
nal dataset, and more importantly, that the labels

in the pretraining data adhere to the same hierar-
chical structure as the original data. If such data is
not readily available, alternative sources like large
language models for obtaining weakly supervised
pretraining data may need to be utilized.

Secondly, in the level-guided semantic loss, the
current approach employs in-batch sampling. How-
ever, the selection of the positive and negative sam-
ples in a batch might not be optimal. Future works
can explore enhancements by incorporating harder
negative samples, which could potentially improve
the model’s ability to learn more discriminative
representations.

Lastly, the present approach involves several hy-
perparameters which can introduce additional com-
plexity and computational overhead during the fine-
tuning process. Future research efforts could focus
on streamlining and simplifying these aspects to
ensure a more efficient and user-friendly implemen-
tation.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Wei Huang, Chen Liu, Bo Xiao, Yihua Zhao, Zhaoming
Pan, Zhimin Zhang, Xinyun Yang, and Guiquan Liu.
2022. Exploring label hierarchy in a generative way
for hierarchical text classification. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 1116–1127.

Ting Jiang, Deqing Wang, Leilei Sun, Zhongzhi Chen,
Fuzhen Zhuang, and Qinghong Yang. 2022. Exploit-
ing global and local hierarchies for hierarchical text
classification. arXiv preprint arXiv:2205.02613.

Kamran Kowsari, Donald E. Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S. Gerber,
and Laura E. Barnes. 2017. Hdltex: Hierarchical
deep learning for text classification. In 2017 16th
IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pages 364–371.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Keqian Li, Shiyang Li, Semih Yavuz, Hanwen Zha,
Yu Su, and Xifeng Yan. 2019. Hiercon: Hierarchical
organization of technical documents based on con-
cepts. In 2019 IEEE International Conference on
Data Mining (ICDM), pages 379–388. IEEE.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019. Linguis-
tic knowledge and transferability of contextual repre-
sentations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1073–1094.

Yuning Mao, Jingjing Tian, Jiawei Han, and Xiang Ren.
2019. Hierarchical text classification with reinforced
label assignment. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 445–455, Hong Kong, China. Association for
Computational Linguistics.

Aaron Mueller, Jason Krone, Salvatore Romeo, Saab
Mansour, Elman Mansimov, Yi Zhang, and Dan Roth.
2022. Label semantic aware pre-training for few-shot
text classification. arXiv preprint arXiv:2204.07128.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 world wide web conference,
pages 1063–1072.

Hao Peng, Jianxin Li, Senzhang Wang, Lihong Wang,
Qiran Gong, Renyu Yang, Bo Li, Philip S. Yu, and
Lifang He. 2021. Hierarchical taxonomy-aware
and attentional graph capsule rcnns for large-scale
multi-label text classification. IEEE Transactions on
Knowledge and Data Engineering, 33(6):2505–2519.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Julian Risch, Samuele Garda, and Ralf Krestel. 2020.
Hierarchical document classification as a sequence
generation task. In Proceedings of the ACM/IEEE
Joint Conference on Digital Libraries in 2020, pages
147–155.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Kazuya Shimura, Jiyi Li, and Fumiyo Fukumoto. 2018.
HFT-CNN: Learning hierarchical category structure

1363

https://doi.org/10.18653/v1/2021.acl-long.337
https://doi.org/10.18653/v1/2021.acl-long.337
https://doi.org/10.18653/v1/2021.naacl-main.260
https://doi.org/10.18653/v1/2021.naacl-main.260
https://doi.org/10.18653/v1/2021.naacl-main.260
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1042
https://doi.org/10.18653/v1/D19-1042
https://doi.org/10.1109/TKDE.2019.2959991
https://doi.org/10.1109/TKDE.2019.2959991
https://doi.org/10.1109/TKDE.2019.2959991
https://doi.org/10.18653/v1/D18-1093


for multi-label short text categorization. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 811–816,
Brussels, Belgium. Association for Computational
Linguistics.

Boyan Wang, Xuegang Hu, Peipei Li, and S Yu Philip.
2021. Cognitive structure learning model for hier-
archical multi-label text classification. Knowledge-
Based Systems, 218:106876.

Zihan Wang, Peiyi Wang, Lianzhe Huang, Xin Sun,
and Houfeng Wang. 2022a. Incorporating hierarchy
into text encoder: a contrastive learning approach
for hierarchical text classification. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7109–7119, Dublin, Ireland. Association for
Computational Linguistics.

Zihan Wang, Peiyi Wang, Tianyu Liu, Binghuai Lin,
Yunbo Cao, Zhifang Sui, and Houfeng Wang. 2022b.
HPT: Hierarchy-aware prompt tuning for hierarchical
text classification. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3740–3751, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Bar-
ros. 2018. Hierarchical multi-label classification net-
works. In International conference on machine learn-
ing, pages 5075–5084. PMLR.

Jiawei Wu, Wenhan Xiong, and William Yang Wang.
2019. Learning to learn and predict: A meta-learning
approach for multi-label classification. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4354–4364, Hong
Kong, China. Association for Computational Linguis-
tics.

Ran Xu, Yue Yu, Joyce Ho, and Carl Yang. 2023.
Weakly-supervised scientific document classification
via retrieval-augmented multi-stage training. In Pro-
ceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 2501–2505.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. Sgm: sequence gen-
eration model for multi-label classification. arXiv
preprint arXiv:1806.04822.

Chao Yu, Yi Shen, and Yue Mao. 2022. Constrained
sequence-to-tree generation for hierarchical text clas-
sification. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1865–1869.

Dong Zhang, Shu Zhao, Zhen Duan, Jie Chen, Yanping
Zhang, and Jie Tang. 2020. A multi-label classifi-
cation method using a hierarchical and transparent
representation for paper-reviewer recommendation.

ACM Transactions on Information Systems (TOIS),
38(1):1–20.

Xinyi Zhang, Jiahao Xu, Charlie Soh, and Lihui Chen.
2022. La-hcn: label-based attention for hierarchical
multi-label text classification neural network. Expert
Systems with Applications, 187:115922.

Yu Zhang, Zhihong Shen, Yuxiao Dong, Kuansan Wang,
and Jiawei Han. 2021. Match: Metadata-aware text
classification in a large hierarchy. In Proceedings of
the Web Conference 2021, pages 3246–3257.

Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu,
Ning Ding, Haoyu Zhang, Pengjun Xie, and Gong-
shen Liu. 2020. Hierarchy-aware global model for
hierarchical text classification. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1106–1117, Online. Asso-
ciation for Computational Linguistics.

A ENZYME Dataset
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Figure 5: ENZYME dataset statistics

A.1 Enzyme Classification (EC) System

The Enzyme Commission (EC) number is a sys-
tem for classifying enzymes, based on the chemical
reactions they catalyze. The number is made up
of four digits separated by periods and shows the
enzyme’s class, subclass, sub-subclass, and serial
number respectively. This number is used to iden-
tify enzymes uniquely in the Enzyme Nomencla-
ture database managed by the International Union
of Biochemistry and Molecular Biology (IUBMB).
The first digit (the "class" level) defines one of
seven major enzymatic reaction types, e.g., hydro-
lases that use water to break a chemical bond. The
second (the "subclass" level) and third digits (the
"sub-subclass" level) represent more specific re-
action types within their parent (sub-)class. The
fourth digit (the "serial number" level) is a unique
identifier assigned to a specific enzyme, usually de-
termined by a specific substrate. For example, the
enzyme number EC 1.3.8.2 represents an enzyme
in class 1 (Oxidoreductases), subclass 3 (Acting
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on CH-CH group of donors), sub-subclass 8 (With
a flavin as acceptor) with a unique number 2 (to
identify a specific substrate 4,4’-diapophytoene).

Level # classes
1 7
2 24
3 31
4 462

# classes in the dataset: 4566

Table 4: Number of classes per level in the ENZYME
dataset

A.2 Construction
The BRENDA database (Chang et al., 2021) was
parsed to collect enzymes with both EC number
definitions and PubMed references. Following an
inspection of retrieved entries, we downloaded the
freely available PDFs for each of the articles from
PubMed3. To extract well-formatted text from
these files, we used an open-source tool called
SciPDFParser4. For this work, we use the title,
abstract and introduction sections from each paper.

B Data Efficiency

In Section 5.4, we initially examined the perfor-
mance of a restricted training set on the ENZYME
dataset. In this subsequent section, we broaden
our scope to encompass two additional datasets,
namely WOS and NYT. Table 5 shows the compar-
ison between HBGL and HiGen for WOS and NYT
for different proportions of training data. Within
this experimental framework, our primary objective
is to assess the performance of HiGen in compari-
son to the best-performing baseline model, HBGL.
Our results show a noteworthy trend as the propor-
tion of training data increases: there is a consistent
and incremental improvement in performance for
both HBGL and HiGen. However, what distin-
guishes our findings is the remarkable consistency
with which HiGen outperforms HBGL across all
fractions of training data, as reflected by superior
Micro and Macro F1 scores.

C Performance Analysis

C.1 Ablation Study Results
The performance figures for the ENZYME and
NYT datasets shown in Tables 6 & 7 respectively,

3These journal articles and preprints are accessible via
Open Access that allows reuse.

4https://github.com/titipata/scipdf_parser

confirm the analysis presented in the previous sec-
tion for the WOS dataset. The pretraining step
is absolutely crucial as it gives the largest perfor-
mance boost. Both the semantic (LS) and token
(LT ) losses significantly contribute to improving
the model’s Macro-F1 score while the contribution
of the output space loss (LO) is significant but to
a lesser extent. Across all scenarios, the removal
of pretraining has the most profound impact, while
omitting the proposed loss functions significantly
influences performance, although with a less pro-
nounced effect as compared to pretraining (Tables
3, 6 & 7).

Considering the improvement in HiGen over
the Vanilla BART model, for the WOS dataset,
the Mirco-F1 score improves by 1.13 points and
the Macro-F1 score goes up by 2.11 points. For
datasets with progressively larger hierarchies, NYT
and ENZYME, we observe more pronounced im-
provements. In the case of NYT, which features
a larger hierarchy than WOS with 166 unique la-
bels and 8 levels, the Micro-F1 score improves by
0.81 points, and the Macro-F1 score shows a 3.11
point enhancement. The ENZYME dataset fea-
tures a four-level deep hierarchy but with a notably
higher count of unique labels (4566), surpassing
both WOS and NYT. Here, the Micro-F1 score
sees a substantial 4.5 points increase, while the
Macro-F1 score remarkably jumps by 16.39 points.

Across all three datasets, a notable disparity is
evident wherein Vanilla-BART exhibits subpar per-
formance in comparison to the proposed HiGen
model. This highlights the pivotal contribution
of the proposed loss functions and the pretraining
strategy in boosting the generative model’s perfor-
mance. Specifically, in the Data Efficiency and
Ablation Study analyses, we showcase the poor
performance of Vanilla BART in contrast to Hi-
Gen.

C.2 Comparison with Baselines
For all cases, the addition of the proposed frame-
work over Vanilla BART yields substantial perfor-
mance improvements. While the generative back-
bone contributes to performance enhancement to a
certain degree when compared to baselines, a com-
prehensive evaluation against more recent baselines
(HBGL, HGCLR, and T5-based baselines; refer to
Table 2) reveals that Vanilla BART alone falls short
of surpassing them. Hence, the additional modifi-
cations proposed under HiGen are absolutely es-
sential.
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Data Proportion
WOS NYT

HBGL HiGen HBGL HiGen
Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

0.1 82.35 75.01 82.92 73.83 74.90 57.96 74.95 54.96
0.3 85.35 79.06 85.65 79.19 77.84 64.88 77.67 65.24
0.5 86.11 80.30 86.63 79.96 78.75 66.75 79.57 69.36
0.7 86.46 80.85 86.48 80.86 79.72 68.36 79.89 69.34

Table 5: Performance on WOS and NYT datasets on varying the training data proportion for HBGL (left) and HiGen
(right). We used HBGL because it is the best-performing model to compare against.

Model Micro-F1 Macro-F1
Vanilla BART 88.11 67.76
HiGen 92.61 84.15

w/o pretraining 88.16 69.05
w/o LO 92.33 83.00
w/o LT 92.44 82.38
w/o LS 92.36 82.43

Table 6: Ablation study on HiGen for the ENZYME
dataset.

Model Micro-F1 Macro-F1
Vanilla BART 80.08 69.30
HiGen 80.89 72.41

w/o pretraining 77.89 69.65
w/o LO 79.10 71.95
w/o LT 79.31 71.85
w/o LS - -

Table 7: Ablation study on HiGen for the NYT dataset.

HiGen outshines baselines by large margins
when the hierarchy size and data imbalance in-
creases. This is evident for the NYT and ENZYME
datasets. HiMatch (Chen et al., 2021) suffers a no-
table performance degradation, particularly in the
Macro-F1 scores, where HiGen w/o pretraining out-
performs it (Table 2 and Tables 6 & 7 for HiMatch
and HiGen respectively). Note that these models
employ complex architectures to encode the hier-
archical structure whereas HiGen w/o pretraining
uses an encoder-decoder framework without any
context of the hierarchical structure. To compete
with the more recent baselines, HGCLR (Wang
et al., 2022a) and HBGL (Jiang et al., 2022), we
utilize pretraining to allow our model to grasp the
hierarchical structure. Importantly, the pretrain-
ing approach we introduce is straightforward to
implement and well-established. Simultaneously,
it allows us to maintain a streamlined model ar-
chitecture while achieving substantial performance
gains.

C.3 Computational Cost
To emphasize the simplicity and efficacy of our
proposed architecture, we conduct a comparison
between HiGen and the best-performing baseline,
HBGL, in terms of the training times and com-
putational resource utilization. Table 8 provides
an overview of the training times for both models
across all datasets. Both models were trained on a
single NVIDIA RTX A5000 (24G) GPU.

The reported times reveal a stark efficiency in our
proposed approach, where HiGen is approximately
10 times faster than HBGL, notwithstanding the no-
tably simpler architecture employed. Most impor-
tantly, despite the simpler design and reduced train-
ing times, HiGen achieves superior performance as
compared to the aforementioned baseline.

Dataset HiGen (hrs) HBGL (hrs)
ENZYME 1.5 11.6

WOS 1.6 15.2
NYT 1.2 13.2

Table 8: Comparison of training times for HiGen and
HBGL on all datasets.

D Hyperparameter Study

To study the influence of the loss-balancing factors
λ1, λ2 & λ3, we conduct a hyperparameter study
for the WOS and ENZYME datasets. The results
are reported in Tables 9 & 10. Our training and
hyperparameter strategy was two-phased. Initially,
we set the loss balancing factor for LS to 1 based
on preliminary experiments. Subsequently, an ex-
tensive search was conducted for λ1 and λ2, with
values ranging from 1 to 1e-8 with a step factor
of 0.1. From the results (Table 9), we observed
that our model was quite robust to changes in mid-
dle ranges. Notably, a distinct performance peak
emerged at λ1 = 1e− 3 and λ2 = 1e− 5.

To verify the generalizability of these findings,
we performed a similar analysis for the ENZYME
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λ1 λ2 λ3 Micro-F1 Macro-F1
1e - 2 1e - 2 1 86.63 79.18
1e - 3 1e - 3 1 87.13 81.03
1e - 3 1e - 5 1 87.39 81.45
1e - 4 1e - 4 1 86.91 80.67
1e - 5 1e - 5 1 86.71 80.27

Table 9: Hyperparameter study on the WOS dataset.

λ1 λ2 λ3 Micro-F1 Macro-F1
1e - 2 1e - 2 1 92.31 80.06
1e - 3 1e - 3 1 92.39 82.81
1e - 3 1e - 5 1 92.38 83.81
1e - 3 1e - 6 1 92.61 84.15
1e - 4 1e - 6 1 92.58 83.87
1e - 6 1e - 6 1 92.34 82.58

Table 10: Hyperparameter study on the ENZYME
dataset.

dataset. The performance figures have been re-
ported in Table 10. The performance peaks around
the same hyperparameter settings as observed for
the WOS dataset. This pattern similarly holds
true for the NYT dataset, where the optimal hy-
perparameter settings align with those of WOS.
This coherence in hyperparameter settings greatly
simplified the process of tuning multiple parame-
ters. Since almost the same settings work across all
datasets, we argue that our model is quite robust to
these values and future works could use this setting
as a good starting point on other datasets as well.

E Generating Pretraining Data

Given the unavailability of similar datasets follow-
ing the same label hierarchy for the WOS dataset,
we employ the powerful ChatGPT API to gener-
ate the pretraining data. To capture the domain
of science and the corresponding sub-category, we
carefully designed the prompts. For instance, when
focusing on the domain of "Mechanical engineer-
ing" and sub-category "computer-aided design",
our curated prompt is as follows:

Write 20 different abstracts for scientific
articles in the Mechanical Engineering
domain and computer-aided design.

We modify the prompt accordingly for different
domains and sub-categories. To ensure diversity
and non-redundancy, we execute the API multiple
times for each domain and sub-category combina-
tion, resulting in a well-balanced corpus of nearly
3000 abstracts. Refer to Table 11 for some exam-
ples of abstracts generated by ChatGPT.

To give an idea about the dissimilarity between
the original test set in the WOS dataset and the
generated pretraining data, we find the overlap be-
tween them. In order to do so, we preprocess the
abstracts from both data sources by removing the
stop words. Then, we compare the Jaccard Simi-
larity between the two sets of data. Averaging the
Jaccard Similarity across all categories we get the
value to be 4.12%. This indicates that there is a
minuscule overlap between the words (none of the
overlaps exceeds 6%) from the test set of WOS and
the pretraining data obtained from ChatGPT. This
indicates that there is no data leakage during the
pretraining step.
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Category Sub-domain Text
Computer Science Data Structures In this study, we propose a new data

structure called the Bloom filter tree.
The Bloom filter tree combines the
space efficiency of Bloom filters with
the fast search capabilities of trees. We
show that the Bloom filter tree outper-
forms other data structures in terms of
space usage and query time.

Civil Engineering Stealth Technology This article presents an experimental
study on the effect of moisture on
the mechanical properties of asphalt
concrete. The study was conducted
through laboratory tests on asphalt con-
crete samples with varying moisture
content. The results show that mois-
ture has a significant impact on the
stiffness and strength of the asphalt
concrete.

Biochemistry Genetics This article discusses the emerging
field of microRNA research and its im-
plications for gene regulation and dis-
ease pathogenesis. The research team
investigates the role of microRNAs in
various biological processes, including
development, cell differentiation, and
immune response. The findings high-
light the potential of microRNAs as
therapeutic targets for various diseases.

Table 11: Examples of abstracts generated by ChatGPT.
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