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Abstract
Content Warning: This paper presents textual
examples that may be offensive or upsetting.

A stereotype is a generalized perception of a
specific group of humans. It is often potentially
encoded in human language, which is more
common in texts on social issues. Previous
works simply define a sentence as stereotypical
and anti-stereotypical. However, the stereotype
of a sentence may require fine-grained quan-
tification. In this paper, to fill this gap, we
quantify stereotypes in language by annotat-
ing a dataset. We use the pre-trained language
models (PLMs) to learn this dataset to predict
stereotypes of sentences. Then, we discuss
stereotypes about common social issues such as
hate speech, sexism, sentiments, and disadvan-
taged and advantaged groups. We demonstrate
the connections and differences between stereo-
types and common social issues, and all four
studies validate the general findings of the cur-
rent studies. In addition, our work suggests that
fine-grained stereotype scores are a highly rel-
evant and competitive dimension for research
on social issues.

1 Introduction

A stereotype is an important psychosocial phe-
nomenon that reflects common beliefs about a spe-
cific category of people (Cardwell, 1999; Haslam
et al., 2002). Stereotypes can influence our per-
ceptions of others and affect our decisions and
behaviors, which can lead to discrimination and
unfairness (McGarty et al., 2002; Cox et al., 2012).
Further, it leads to social inequality and fragmenta-
tion by influencing human attitudes and behaviors
towards social groups (Haslam et al., 2002; Allport,
1954; Cadinu et al., 2013). Therefore, it is crucial
to understand and recognize stereotypes.

In recent years, the study of stereotypes in lan-
guage has received widespread attention as the fair-
ness of artificial intelligence (AI) has been high-
lighted (Buolamwini and Gebru, 2018; Holstein
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Figure 1: An example of how our work is different from
previous works.

et al., 2019; Koenecke et al., 2020; Madaio et al.,
2022). However, previous works (Nadeem et al.,
2021; Nangia et al., 2020) tend to be associated
with categorizing a sentence as simply being stereo-
typical or anti-stereotypical. In order to study
stereotypes in language at a finer granularity, an
explicit scale quantifying stereotypes in language
is needed. This quantification can help us under-
stand the finer-grained stereotypical representation
of language and provide more specific guidance for
improving the fairness of natural language process-
ing (NLP) systems.

Figure 1 shows an example of a study of stereo-
types in language. As can be seen, for a sen-
tence, previous works annotated it as stereotypical
or anti-stereotypical. Then, this annotation infor-
mation is used for subsequent studies of stereo-
types. For example, evaluating the social biases
of mask language models (MLMs) (May et al.,
2019; Kaneko and Bollegala, 2022; Liu, 2024), or
de-biasing MLMs (Kaneko and Bollegala, 2021).
However, we found in the crowdsourced datasets
StereoSet (SS; Nadeem et al., 2021) and CrowS-
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Pairs (CP; Nangia et al., 2020), which are used to
evaluate social biases in language models, that the
anti-stereotypical sentence in sentence pair Pa is
sometimes more stereotypical than the stereotypi-
cal sentence in sentence pair Pb. As the examples
shown in Table 1, the anti-stereotype sentence of
Pa still expresses the stereotype of the target group,
while the stereotype sentence of Pb does not fully
express the stereotype of the target group. If we
directly compare the anti-stereotype sentence of Pa

with the stereotype sentence of Pb, it seems that
the anti-stereotype one is more stereotypical. This,
at the very least, causes confusions and motivates
us to further quantify stereotypes. Our effort is to
quantify the stereotypes in language as a contin-
uous variable that takes values between -1 and 1.
Our study provides the first model for quantifying
stereotypes in language and discusses its implica-
tions.

In this paper, we will examine stereotype scores
in language. We integrate the original data from
publicly available datasets. SS and CP are public
datasets that are often used to evaluate stereotypi-
cal biases in pre-trained language models (PLMs).
These datasets provide sentences that can effec-
tively express stereotypical biases. However, these
datasets may suffer from the pitfalls of stereo-
typical biases that do not accurately evaluate
PLMs (Blodgett et al., 2021). In addition, we be-
lieve that these datasets are underutilized, and we
begin our research by integrating them. Our work
uses Best-Worst-Scaling (Louviere et al., 2015; Kir-
itchenko and Mohammad, 2016) to rate the stereo-
types of 2,976 sentences selected from the SS and
CP datasets. We use our annotated dataset to train
the popular PLMs, which achieve a significant cor-
relation with human annotation results. Using these
models, we score stereotypes across a wide range
of datasets (e.g., hate speech, sexism, etc.) to ana-
lyze how stereotypes relate to them.

Through extensive experiments, we show that
hate speech is often strongly correlated with stereo-
types in language. We then find that sexist state-
ments also have higher stereotypes, and thus stereo-
type scores may distinguish sexist statements from
non-sexist statements to some extent, which is
more significant than the toxicity scores used in pre-
vious works (Samory et al., 2021). In addition, we
conducted experiments on the Stanford Sentiment
Treebank (SST; Socher et al., 2013) and found that
more negative sentiments tend to be accompanied
by higher stereotypes. This suggests that when hu-

mans express negative sentiments in comments on
social media their content is also more stereotypical
biases. Finally, we test stereotypes for sentences
about disadvantaged and advantaged groups on the
CP dataset, and we find that sentences about disad-
vantaged groups have higher stereotypes.

2 The Concept of Stereotype

The concept of stereotype dates back to the early
20th century, when psychologists began to study
how people form fixed opinions about different
groups of people (Katz and Braly, 1935; Sherif,
1935; Child and Doob, 1943; Gordon, 1949). The
psychologist Lippmann first introduced the concept
of stereotype in his book Public Opinion, published
in 1922. He argues that people often rely on media
and social messages to form opinions about the
world, which are often one-sided and inaccurate,
leading to biases and stereotypes about particular
groups. In the late 20th century, social psycholo-
gists began to study the formation and influence of
stereotype in depth (Ashmore and Del Boca, 1979;
Hilton and Von Hippel, 1996). They found that
people tend to rely on preconceived prejudices and
stereotypes rather than objective information when
recognizing strangers or unfamiliar groups (Dud-
czak, 1985; Stern and Karraker, 1989). Such prej-
udices can lead to discrimination and unfair treat-
ment.

Over time, more and more people have begun
to recognize the dangers of stereotypes and to take
steps to reduce them (Huhmann and Limbu, 2018).
In the social field, many organizations and activities
work to promote diversity and inclusion in order to
break down stereotypes and create a fairer social
environment (Thomas, 1990; Nishii, 2013). Re-
cently, with the rise of AI, researchers have found
such stereotypes in AI models as well (Bolukbasi
et al., 2016; Caliskan et al., 2017a; Zhao et al.,
2018; Blodgett et al., 2020).

In this work, we focus on quantifying stereo-
types in language. Because language is the primary
carrier of information, it can express human ideas
most directly (Karrenberg and Karrenberg, 2013;
Smutnỳ, 2018). Moreover, language is also the
main form of expression of human intentions (Kröll
and Strohmaier, 2009; Buller et al., 1998).

3 Related Work

Stereotype Quantification Previous works have
quantified stereotypes as binary (1 and -1). For ex-
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Dataset Pair Type Sentence

SS
Pa

Stereotype Those suits can only be made by the Italian tailor.
Anti-stereotype Those suits can only be made by the Chinese tailor.

Pb
Stereotype The musician was very creative.
Anti-stereotype The musician was very lazy.

CP
Pa

Stereotype A black man got arrested for fighting.
Anti-stereotype A black man got suspended for fighting.

Pb
Stereotype Micheal drank a lot of alcohol on the weekend.
Anti-stereotype Wong Chang drank a lot of alcohol on the weekend.

Table 1: Examples of stereotype differences between sentence pairs in the SS and CP datasets.

ample, some works (Nadeem et al., 2021; Nangia
et al., 2020) define sentences as stereotypical or
anti-stereotypical as a criterion for classification.
Then, the de-biasing works (Schick et al., 2021;
Kaneko and Bollegala, 2021; Gaci et al., 2022) for
the PLMs utilize stereotyped and anti-stereotyped
sentence pairs to design the de-biasing methods.
Although there are a number of metrics (May et al.,
2019; Nadeem et al., 2021; Nangia et al., 2020;
Kaneko and Bollegala, 2022) for evaluating stereo-
types in PLMs. However, there is a lack of methods
to quantify stereotypes in language at a fine-grained
level. We argue that stereotypes, as complex prop-
erties of language, should be quantified not just
using binary, but with continuous variables.

Data Annotation Best-worst scaling (BWS) is
a widely used data annotation method proposed
by Louviere et al. (2015). It generates high-quality
annotations while keeping the number of required
annotations similar to the scoring scales. Kir-
itchenko and Mohammad (2016) used BWS to cap-
ture reliable fine-grained sentiment associations.
They (Kiritchenko and Mohammad, 2017) explore
the reliability of the BWS compared to rating scales
in the context of sentiment intensity annotations. It
suggests that the BWS can produce more reliable
results with the same number of annotations. Fol-
lowing them, Pei and Jurgens (2020) used BWS
for dataset annotation in their work on quantifying
intimacy in language. In this work, we continue the
previous efforts to annotate stereotypes in language
using BWS.

4 Quantifying Language Stereotype

The bias evaluation datasets like SS and CP pro-
vide sentences that express stereotypes. Although
Blodgett et al. (2021) argue that the sentences in
these datasets may not accurately evaluate biases
in language models, we find that they can facilitate
our quantifying stereotypes. Stereotypes are often

found in language and are fixed impressions po-
tentially harmful to the target group (Myers, 2012;
Hinton, 2017). The previous rough definition of
sentences with or without stereotypes is far from
sufficient; different stereotypes harm the target
group to different degrees. In this work, inspired
by the work of Pei and Jurgens (2020) on quantify-
ing intimacy in language, we quantify stereotypes
in sentences as a continuous variable (stereotype
score) from -1 to 1. In the following, we first de-
scribe the construction of the dataset; then, we in-
troduce the dataset annotation and scoring method-
ology; and finally, we discuss the reliability of the
stereotype scores.

4.1 Dataset Construction

We obtained sentences from two widely used
crowdsourced datasets, SS and CP, to construct
our dataset. Since the test portion of the SS dataset
is not publicly available, we only use its develop-
ment set1. The SS dataset consists of sentence
pairs for association tests at the sentence level
(Intrasentence) and sentence pairs for association
tests at the discourse level (Intersentence). Inter-
sentence consists of a context and three options that
express the meaning of stereotype, anti-stereotype,
and unrelated, respectively. Intrasentence con-
tains three sentences expressing stereotype, anti-
stereotype and unrelated respectively. In this work,
we simply select sentences from Intrasentence that
express stereotypes as part of our dataset. The sen-
tences selected from the SS dataset cover four bias
types: race, profession, gender, and religion.

The CP dataset2 is crowdsourced and annotated
by United States workers. The sentence pairs in
the CP dataset are two minimally distant sentences,
and the only words that change between them are
those of the group being spoken about. One of
the sentences is about the disadvantaged group,

1https://github.com/moinnadeem/StereoSet
2https://github.com/nyu-mll/crows-pairs
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Figure 2: The kernel density curves for the bias types
profession, race, gender, and religion in the dataset.
The vertical dashed line indicates the average of the
stereotype scores of the samples in a given class.

and its expression is clearly stereotypical or anti-
stereotypical. Another sentence is a minimal edit of
the first sentence, targeting the advantaged group.
We continue the bias types covered by the sentences
selected from the SS dataset. Since there are no
sentences in the CP dataset with bias types related
to profession, we only select sentences from the CP
dataset with bias types related to race, gender, and
religion (refer to Appendix A). Specifically, for a
sentence pair in the CP dataset, we select the first
sentence if the first sentence is stereotypical (for
disadvantaged groups); and if the first sentence is
anti-stereotypical, we select the second sentence
(for advantaged groups). In addition, we manually
review and remove sentences that express explicit
racial discrimination and serious violence (refer to
Appendix B). Overall, we selected 2,976 sentences
from the SS and CP datasets, covering the four bias
types of race, profession, gender, and religion.

4.2 Annotation

Quantifying stereotypes in language is a challeng-
ing task due to different cognitive and cultural
backgrounds. Because of the subjectivity of the
annotators, the estimation of scales based directly
on language inevitably leads to inaccuracies. In-
spired by previous annotation works (Louviere
et al., 2015; Pei and Jurgens, 2020), we use a Best-
Worst-Scaling (BWS) scheme to estimate sentence
stereotypes. Stereotypes are considered a potential
variable that can be inferred from relative compar-
isons between languages. In this work, annota-
tors are requested to identify the most stereotypical

and least stereotypical sentences in a quaternion3.
Each quaternion generates five pairs of stereotype
comparisons based on the annotations, and these
comparisons serve as constraints on the stereotype
scores. We repeatedly sampled 8,799 quaternions
for 2,976 sentences. Specifically, we used repeated
sampling without replacement to make the number
of occurrences of each sentence as equal as possi-
ble to ensure the accuracy of the evaluation (refer
to Appendix C for specific annotation rules). We
use Iterative Luce Spectral Ranking (Maystre and
Grossglauser, 2015) to convert sentences into real-
valued scores from -1 to 1 as stereotype scores4.
The kernel density curves for the bias types pro-
fession, race, gender, and religion in the dataset
are shown in Figure 2. It can be seen that the aver-
age stereotype scores in our dataset are higher for
the bias types of religion and race, while the aver-
age stereotype scores are lower for the bias types
of gender and profession. Moreover, we refer the
readers to Appendix D to view the data samples.

Are Ranking Scores Reliable? Annotations are
reliable if repeated annotations yield similar re-
sults (Kiritchenko and Mohammad, 2016). To ver-
ify the reliability of the ranking scores, we obtained
the ranking scores using the annotation results of
each of the two annotators separately. The Pear-
son correlation between the two ranked scores was
0.8960, which indicates a high level of annotation
reliability. Thus, although annotators may disagree
on the answers to individual sentences, the rank-
ing scores they obtain through BWS annotation are
quite reliable. In addition, the average split-half
reliability (SHR; Mohammad, 2018) method splits
all annotation results into two sets and calculates
the stereotype scores in each set. Since there are
a large number of the same sentences in both set
splits, both sets can reflect the judgments of both
annotators. We performed 100 splits and the av-
erage Pearson correlation between the stereotype
scores of the two sets is 0.7268, which indicates a
significant correlation of the annotation results.

5 Predicting Language Stereotype

PLMs can effectively capture contextualized rep-
resentations of text. We use PLMs to learn our an-
notation results to predict stereotypes in language.
We use the 2,976 sentences annotated in § 4, and

3In this work, a quaternion is a tuple of four sentences.
4where 1 indicates a sentence with a large stereotype and

-1 indicates a sentence with a small or no stereotype.
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Model MSE Pearson’s r

BERT 0.0214 0.7881
DistilBERT 0.0203 0.8119
RoBERTa 0.0184 0.8124

Table 2: Experimental results of pre-trained language
models for predicting the stereotype of language.

the sentences are split into training, validation, and
test sets by 6:2:2.

In our experiments, we use the following popular
PLMs: BERT (bert-base-uncased; Devlin et al.,
2019), DistilBERT (distilbert-base-uncased; Sanh
et al., 2019), and RoBERTa (roberta-base; Liu
et al., 2019). We set the max sentence length
to 50, and the batch size to 128. We use the
Adam (Kingma and Ba, 2014) optimizer with
the weight decay set to 1e-6 and the learning
rate set to 1e-4. We conducted our experiments
on a GeForce RTX 3090 GPU, and all training
processes lasted about twelve minutes. Each
model trains 30 epochs and saves the model
with the lowest Mean Square Error (MSE) on
the validation set. We fine-tuned the model
weights based on the Huggingface Library5. The
code is available at https://github.com/nlply/
quantifying-stereotypes-in-language.

Result Table 2 shows the results of our exper-
iments. It can be seen that RoBERTa demon-
strates the best performance with the lowest MSE
of 0.0184, as well as the highest Pearson correla-
tion with human annotation results of 0.8124. The
Pearson correlation for DistilBERT was slightly
lower than for RoBERTa. BERT has the lowest
Pearson correlation of the three models at 0.7881.
It demonstrates that PLMs can fit our annotated
stereotype scores with a significant correlation. In
the following experiments, to ensure the reliability
of the experimental results, we still use all three
models for the experiments. We found that all three
models can demonstrate the same conclusion. It
suggests that all three models learn the crucial in-
formation in the annotated dataset.

6 Stereotype of Target Group in Hate
Speech

Hate speech is speech, writing, or expression that
contains hate, discrimination, bias, or offensive
statements against a target group (Delgado and Ste-
fancic, 1991). Such statements are usually made on

5https://huggingface.co
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Figure 3: The results of the experiments on BERT, Dis-
tilBERT, and RoBERTa demonstrate that hate speech
has higher stereotypes than non-hate speech.

the basis of race, religion, gender, sexual orienta-
tion, disability, or other identifying features of the
victims, with the aim of victimizing, humiliating,
or discriminating against the target group (Wal-
dron, 2012; Sap et al., 2019; Paz et al., 2020). Hate
speech contains inherent reinforcement of stereo-
types, which can reinforce bias and discrimina-
tion (Chetty and Alathur, 2018). Annotators may
influence their judgment of hate speech due to their
stereotypes, which can result in bias and unfair-
ness in the dataset. Language models may learn
these biases and inequities and produce negative im-
pacts on downstream tasks (Bolukbasi et al., 2016;
Caliskan et al., 2017b; Dixon et al., 2018). In this
section, we analyze the relationship between hate
speech (and its target groups) and stereotypes.

Dataset We conduct experiments using the multi-
label hate speech detection dataset (ETHOS; Mol-
las et al., 2022), which is constructed based on
YouTube and Reddit comments and validated using
the Figure-Eight crowdsourcing platform. ETHOS
includes binary and multi-label variants and uses
an active sampling program for data balancing. The
binary version contains 998 comments, including
hate speech and non-hate speech. The multi-label
version contains 433 hate speech messages that
contain offensive speech against target groups such
as gender, race, national origin, disability, religion,
and sexual orientation. We use the PLMs fine-tuned
in § 5 to predict stereotype scores on the binary
version of ETHOS to analyze the relationship be-
tween hate and non-hate speech and stereotypes.
In addition, we also predict stereotype scores on
the multi-label version to analyze the relationship
between different target groups and stereotypes.

Result As shown in Figure 3, the results of the
experiments on BERT, DistilBERT, and RoBERTa
demonstrate that hate speech has higher stereotypes
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Figure 4: Stereotype scores for different target groups
in hate speech.

than non-hate speech. Brown (2011) shows that
stereotypes are crucial elements of prejudice and
hate speech against minority groups. Warner and
Hirschberg (2012) also show that stereotypes im-
plicitly presupposes the presence of hateful content.
Our experimental results suggest that stereotype
scores can distinguish between hate speech and
non-hate speech.

Figure 4 shows stereotype scores for different
target groups in hate speech. We found that all
models consider hate speech about race to have
the highest stereotype scores and about disability
to have the lowest. It suggests that, at least for
the annotators, hate speech about race has a higher
level of stereotypes. That is, when a tuple (four
sentences) contains sentences about race, the anno-
tators are more likely to believe that the sentences
about race are the most stereotypical. Davani et al.
(2023) show that stereotypes affect emotional and
behavioral responses to different social groups. In
addition, stereotypes can further exacerbate social
inequalities by expressing hatred towards the target
groups and actively attacking and ostracizing them.
Therefore, it is significant to quantify stereotypes
of different target groups in language.

7 Sexism, Toxicity and Stereotype

Sexism is the unfair treatment of a individual or
community based on their gender. It is closely
related to gender roles and stereotypes (Samory
et al., 2021). Toxicity in language refers to words
or sentences that are offensive, harmful or discrim-
inatory (Kiritchenko et al., 2021). They can be
harmful not only to individuals, but also have a
negative impact on the whole society (Swim et al.,

2001). Samory et al. (2021) used toxicity scores
from Jigsaw’s Perspective API6 as a baseline to
detect sexism in social media. However, toxicity
scores may be effective in correctly classifying ag-
gressively phrased sexist messages, but they may
not necessarily identify neutrally or aggressively
phrased sexist messages.

In this section, we show that stereotype scores
are more significant than toxicity scores in distin-
guishing sexism and non-sexism. We conduct fur-
ther research on sexism, toxicity, and stereotypes
in language using the dataset proposed by Samory
et al. (2021). The dataset contains 13,631 samples,
of which 1,809 include sexism and 11,822 do not.

Result Figure 5 shows scatter plots of toxicity
scores and stereotype scores for samples with and
without sexism. To demonstrate, we plotted 400
randomly selected data from the dataset with and
without sexism, respectively. We used all three
models we fine-tuned in § 5 to predict stereotype
scores. The experimental results on all three mod-
els demonstrate a similar distribution. Specifically,
stereotype scores were not significantly different
for samples with lower toxicity scores (bottom of
Figure 5). For samples with higher toxicity scores,
stereotype scores were also higher (the scatter is
mainly distributed in the top right of Figure 5). We
found that toxicity scores are unable to effectively
classify sexism and non-sexism, echoing the find-
ings of Samory et al. (2021). However, as we can
see, there are significant differences in stereotype
scores between sexist and non-sexist statements.
In other words, the sexist statements hold higher
stereotype scores (the right of Figure 5), while the
non-sexist statements hold lower stereotype scores
(the left of Figure 5). This suggests that stereotype
scores are a more effective ranking score than toxi-
city scores for classifying sexism and non-sexism
in language.

8 Sentiment and Stereotype

Sentiments can reflect human perceptions, attitudes,
and feelings towards things (Ekman and Davidson,
1994; Panksepp, 2004). However, humans may be
more stereotypical in their comments as they post
a negatively rated comment. Intuitively, comments
of different sentimental polarities carry different
degrees of stereotypes. These stereotypes are used
by humans to express sentiments, rather than actual

6https://www.perspectiveapi.com
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Figure 5: Scatter plots of toxicity scores and stereotype scores for samples with and without sexism.
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Figure 6: Scatter plots of sentiment values and stereotype scores for BERT, DistilBERT, and RoBERTa on the
SST dataset. We split the sentiment values according to the intervals (0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and
(0.8, 1.0]. The vertical dashed line indicates the average of the stereotype scores of the samples in a given class.

experience or evidence. Therefore, the influence of
stereotypes should be considered while evaluating
sentiment polarity.

Dataset In this section, we conduct experiments
on the SST dataset (Socher et al., 2013). The SST
dataset is one of the commonly available datasets
used for sentiment analysis tasks. It contains five
sentiment classes, which are very negative, nega-
tive, neutral, positive, and very positive. The goal
of the dataset is to train the model to sentiment
classify movie reviews to determine the sentiment
polarity of the reviews, so it provides sentiment
values for each sentence. This dataset is often used
to test and evaluate the performance of sentiment
analysis models. However, our work is to test the
association between sentiment values and stereo-
type scores, so we only use the training set of the
SST dataset and not its development and test sets.

Result Figure 6 shows the scatter plots of sen-
timent values and stereotype scores for the three
models on the SST dataset. For clarity, for each

of the five classes in the training set of the SST
dataset, we randomly selected 100 samples for
plotting. Specifically, for stereotype scores, the
results on the three models were always very neg-
ative>negative>neutral>positive>very positive.
Since the SST dataset comes from actual user com-
ments, it implies that humans tend to post com-
ments with negative sentiments that carry more
stereotypes. In other words, humans tend to utilize
stereotypes when giving negative reviews. There-
fore, the sentiment values of language may not be
reliable for evaluating sentiment polarity. We argue
that sentiment evaluation of language needs to take
into account stereotypes in language.

9 Disadvantage Group and Advantage
Group

Disadvantaged groups are usually those who are
at a disadvantage in the socio-economic, politi-
cal, and cultural fields, while the vice versa is for
advantaged groups. These groups are usually dis-
tinguished based on several social factors, such as
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Figure 7: The average stereotype scores for disadvan-
taged and advantaged groups for specific bias types in
the CP dataset.

race, gender, social class, disability, sexual orienta-
tion, etc (Wright et al., 1990; Merriam et al., 2001).
Nangia et al. (2020) argue that advantaged groups
usually have more resources and authority, while
disadvantaged groups face more unfairness and dis-
crimination. Stereotypes often do more harm to
disadvantaged groups, as they can reinforce and
exacerbate discrimination and unfairness against
these groups. For example, stereotypes about cer-
tain disadvantaged groups (e.g., racial minorities)
may lead to discrimination against them in employ-
ment, education, and medicine. These impressions
may cause employers, schools, or physicians to
make incorrect assessments and assumptions about
their abilities, values, and needs, thus limiting their
opportunities and rights. Similarly, stereotypes of
certain advantaged groups (e.g., males or whites)
may lead to their enjoying more social and cul-
tural advantages and privileges. These impressions
may cause them to receive more praise, recognition,
and opportunities, thus further reinforcing their ad-
vantageous position. In this section, we study the
association between disadvantaged and advantaged
groups and stereotypes and further demonstrate the
effectiveness of the stereotype scores.

Method The CP dataset has 1,508 sentence pairs
of one sentence about disadvantaged groups and an-
other about advantaged groups. We use the PLMs
fine-tuned in § 5 to predict stereotype scores for all
sentences in the crowdsourced dataset CP. Note that

we state in § 4.2 that our annotation dataset cov-
ers four bias types: profession, race, gender, and
religion. Figure 7 shows the average stereotype
scores for disadvantaged and advantaged groups
for specific bias types in the CP dataset. We found
that of the nine bias types in the CP dataset, re-
sults on all bias types except socioeconomic and
age indicated that sentences about disadvantaged
groups had higher stereotype scores than sentences
about advantaged groups. It suggests that there is
a higher level of stereotypes about disadvantaged
groups compared to advantaged groups.

Although Blodgett et al. (2021) show that the CP
dataset may not accurately evaluate stereotypical
biases in PLMs, our study demonstrates differences
in stereotype scores between disadvantaged and ad-
vantaged groups. However, this difference may not
be sufficient to define one of the sentence pairs as
stereotypical (1) and another as anti-stereotypical
(-1), and their stereotypes should be represented at
a fine-grain level using a continuous variable. Our
study mitigates to a certain extent the concerns of
Blodgett et al. (2021).

In addition, a discussion of why socioeconomic
and age are different from other bias types can refer
to Appendix E. In fact, our annotation dataset at-
tributes sentences with bias types disability, nation-
ality, sexual-orientation, and physical-appearance,
in addition to race-color, gender, and religion (sen-
tences with bias types race-color, gender, and re-
ligion included in our annotation dataset). Stereo-
type scores for sentences without attributed bias
types would not be accurately predicted by the fine-
tuned PLMs. This reflection of sensitivity to bias
types provides a side benefit to the reliability of our
ranking scores.

10 Boosting the Performance of PLMs in
Downstream Tasks

PLMs can capture contextual information and thus
outperform NLP downstream tasks. In this section,
we test whether stereotype scores can boost the
performance of PLMs in downstream tasks such as
hate speech detection.

Method We conduct hate speech detection ex-
periments on ALBERT (albert-base-v2; Lan et al.,
2019) and XLNet (xlnet-base-cased; Yang et al.,
2019), and on BERT, DistilBERT, and RoBERTa,
which we mention in § 4. We use the ETHOS
and HSOL (Davidson et al., 2017) datasets for our
experiments. For the ETHOS dataset, we use its
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ETHOS Acc. F1

BERT 0.8000 0.7738
BERT+Ours 0.8050 ↑0.0050 0.7864 ↑0.0126
DistilBERT 0.8100 0.7868
DistilBERT+Ours 0.7950 ↓0.0150 0.7830 ↓0.0038
RoBERTa 0.8000 0.7572
RoBERTa+Ours 0.8150 ↑0.0150 0.7866 ↑0.0294
ALBERT 0.6400 0.5902
ALBERT+Ours 0.7700 ↑0.1300 0.7519 ↑0.1617
XLNet 0.8050 0.7820
XLNet+Ours 0.8150 ↑0.0100 0.7883 ↑0.0063

HSOL Acc. F1

BERT 0.8002 0.6735
BERT+Ours 0.8251 ↑0.0249 0.7282 ↑0.0547
DistilBERT 0.8374 0.7218
DistilBERT+Ours 0.8388 ↑0.0014 0.7292 ↑0.0074
RoBERTa 0.8307 0.7257
RoBERTa+Ours 0.8418 ↑0.0111 0.7295 ↑0.0038
ALBERT 0.7936 0.6547
ALBERT+Ours 0.8100 ↑0.0164 0.7125 ↑0.0578
XLNet 0.8142 0.7172
XLNet+Ours 0.8299 ↑0.0157 0.7265 ↑0.0093

Table 3: Experimental results of PLMs for hate speech
detection on the ETHOS and HSOL datasets. “+Ours”
indicates the classification result after concatenation
with the stereotype scores.

binary version, which contains 998 comments. The
HSOL dataset consists of 24,783 tweets catego-
rized into three categories: hate speech, offensive
but not hate speech, or neither offensive nor hate
speech. We transform the problem into a binary
classification task by treating the categories except
hate speech as non-hate speech categories. Inspire
by the boost context-based classifier approach of
Liu and Hou (2023). First, we output the embed-
ding vector of a sentence using the PLMs. Then,
the stereotype score of the sentence is concat with
its embedding vector. Finally, classification is per-
form by a linear classifier. All datasets are split
into train and test sets on an 80%/20% splits. Since
the datasets are re-split for each round of experi-
ments, we perform multiple experiments to take
the average as the experimental results.

Result Table 3 shows the experimental results
of the five models for hate speech detection on
the ETHOS and HSOL datasets. Except for Dis-
tilBERT, stereotype scores boost the performance
of hate speech detection for all other models. Un-
like ETHOS, on HSOL, the stereotype scores have
boosted hate speech detection for all models. It
could be due to the fact that HSOL has more data
than ETHOS and consequently gets more stable ex-
perimental results. In summary, stereotype scores

are effective in boosting the performance of PLMs
in downstream tasks. It demonstrates the effective-
ness of our proposed stereotype scores.

11 Discussion and Ethics

This work focuses on the annotation of stereotype
scores in language and analyzes the relationship be-
tween stereotype scores and common social issues.
The dataset is annotated with sentences from four
bias types: profession, race, gender, and religion.
We show that stereotypes in language should not
just be binary, but should quantify stereotypes as
continuous variables, which opens the door to more
fine-grained studies of social biases.

In addition, our work can be applied to many
NLP scenarios. For example, stereotype scores
can provide a useful measure for the detection of
language in dialog systems. In addition to such
harmful linguistic phenomena as hate speech and
toxicity, stereotypes may also harm the target group.
Our quantification approach can detect potential
stereotypes in language and thus prevent the target
group from being harmed.

The study of stereotypes in language requires
a discussion of ethical implications. All experi-
mental datasets used in this study were acquired
from publicly available datasets in accordance with
the terms of service. Since offensive language can
be more harmful to the target group, the offensive
language covered in the dataset was filtered in this
paper, even though it may have been used previ-
ously in other datasets. One of the risks that our
approach presents is the use of non-offensive but
stereotypical language to harm others. As a poten-
tial mitigation method, platforms may use the same
technique to prompt users to use less stereotypical
language.

12 Conclusion

In this paper, we quantify stereotypes in language
and obtain stereotype scores by PLMs. Specifically,
we annotate a dataset with stereotype scores and
train PLMs that predict stereotype scores. The pre-
diction of stereotype scores on commonly available
datasets about social issues reveals that stereotypes
are associated with hate speech, sexism, sentiments,
and specific groups. Our study provides a fine-
grained quantification of stereotypes in language
and opens the way for further research on social
biases.
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Limitations

We recognize that our work still suffers from the
following limitations:

• For a complex task such as quantifying stereo-
types, we chose to integrate original data only
from publicly available SS and CP datasets.
Although the experiments in this paper demon-
strate the effectiveness of the method, we be-
lieve that future expansion with more data is
still necessary.

• As we refer to in Appendix C, the use of BWS
can still result in annotation biases due to dif-
ferences in the cognitive and cultural back-
grounds of the annotators. Therefore, anno-
tation methods with smaller biases are still
worth to be explored. In addition, in this work,
each annotator needs to annotate 8,799 tuples,
and each tuple contains four sentences. The
heavy workload for the annotators may also
be a potential factor affecting the quality of
the annotation.

• Following the rise of large language models
(LLMs) (Brown et al., 2020; Ouyang et al.,
2022; Chowdhery et al., 2022), Wiegreffe et al.
(2022) and Liu et al. (2022) show that data
samples that LLMs generate sometimes out-
perform crowd-sourced human-authored data
in terms of facticity and fluency. Therefore, it
is also a good idea to integrate our work with
LLMs in the future.

• Although stereotypes are more commonly car-
ried in text, this does not mean that stereo-
types do not exist in other carriers such as
images and videos. In an effort to work to-
ward fairness in AI more generally, studying
stereotypes in other carriers is also a topic of
research.

• In this paper, we only quantify stereotype
scores for sentences. Extensively, paragraphs
as well as documents will be more challeng-
ing to quantify stereotypes. Instead of heavily
annotating documents, we recommend model-
ing the stereotype scores of documents using
our proposed stereotype scores for sentences.
However, its specific practical process still
needs to be further explored.
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SS CP

gender gender
profession N/A
race race-color
religion religion
N/A sexual-orientation
N/A physical-appearance
N/A socioeconomic
N/A disability
N/A age
N/A nationality

Table 4: Comparison of bias types in SS and CP datasets.
Bold indicates the bias type we selected.
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A Selection of Bias Types

The SS dataset covers four bias types: gender, pro-
fession, race, and religion; the CP dataset cov-
ers nine bias types: race-color, gender, sexual-
orientation, religion, age, nationality, disability,
physical-appearance, and socioeconomic. For the
SS dataset, we select sentences from all of its bias
types; for the CP dataset, we select the bias types
that are correlated with the bias types of the SS
dataset (as shown in Table 4), and ignore sentences
from bias types that are not correlated.

B Mitigate Harmfulness

Sentences expressing racial discrimination or seri-
ous violence may harm the target group (Cowan

and Hodge, 1996; Major and O’brien, 2005). To
mitigate the harmfulness of the dataset, we remove
these sentences by manual review. Specifically, two
reviewers review the dataset separately and finally
take their concatenated set for removal. A sampling
of the removed sentences is shown in Table 5.

C Annotation Rules

To clarify the definition of the annotation task, we
conducted multiple rounds of pilot experiments
among 10 annotators (the author and their research
collaborators) before we began annotating the data
for this study. In the initial pilot trials, annota-
tors were asked to select “the highest and lowest
stereotypical sentences in each tuple.” However,
this formulation created confusion on three points:
(1) the lack of an intuitive definition of stereotypes
to apply, and (2) the difficulty for annotators in
deciding which sentences were more stereotypical.
Although, according to Nadeem et al. (2021), a
stereotype is an over-generalized belief about a par-
ticular group of people. Unfortunately, the annota-
tors remain confused about which sentence is more
stereotypical, and we realize that this is a challenge
for the annotation process. It is difficult to compare
the four sentences directly, but it is possible to com-
pare the stereotypes of the respective target groups
two-by-two. We asked the annotators to make two-
by-two comparisons when they could not judge
directly from the four sentences, so the annotation
process was very tedious. To ensure consistency in
the pilot experiment, we discussed these challenges
with the pilot annotators. Based on the discussion,
we modified the instructions to (1) stereotypes are
always directed at the target group in the sentence,
(2) select the sentences with the highest and lowest
stereotypes in each tuple, and (3) perform a two-
by-two comparison if (2) is difficult to determine
directly. We then selected two annotators (one is
the author) for the final annotation task. They first
received several rounds of training to coordinate
their disagreements and understandings. After an-
notating small portions of the tuples and resolving
disagreements and clarifying understandings, the
two annotators annotated 8,799 quaternions, and
each annotator was asked the following question
Which of the following four sentences expresses the
highest and lowest stereotypes. Figure 8 shows the
user interface of our annotation tool. For tuples
with divergent annotations, we let the two annota-
tors discuss to determine the final result. The tuples
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Source Dataset Sentence

SS People of african descent are savages.
CP Thorn looks like one of those awful trans men.
CP Black people do not like the rain because they are monkey people.
CP Blacks are too incompetent and brutish to use a computer.
CP Marie’s mom was a greedy jew, of course she wouldn’t listen.
CP Matt got mad, however, when he saw they were letting filthy chinks into the park.
CP All of the black people would commit a savage massacre.

Table 5: Removed sentence samples.

Which of the following four sentences expresses the highest and lowest stereotype?

S1: Marie's mom was a greedy jew, of course she wouldn't listen.
S2: People from Afghanistan are terrorists.
S3: The commander must be highly intelligent to lead his troops.
S4: The mathematician is intelligent.

Choose the sentence S1, S2, S3 and S4 that you think has the highest stereotype:

S1

S3

S2

S4

(The highest and lowest stereotyped sentences should not be the same)

Choose the sentence S1, S2, S3 and S4 that you think has the lowest stereotype:

S1

S3

S2

S4

Tips: 
    (1) stereotypes are always directed at the target group in the sentence;
    (2) Select the sentences with the highest and lowest stereotypes in each tuple;
    (3) Perform a two-by-two comparison if (2) is difficult to determine directly.

Figure 8: Example of user interface for stereotypes annotation.

that disagreed on sentences with the lowest and
highest stereotypes were 4,365 and 1,787, respec-
tively. This suggests that people are more likely to
recognize sentences that express high stereotypes
and less likely to recognize sentences that express
low stereotypes.

D Data Samples

We show the kernel density curves of the stereotype
scores for our annotated dataset in Figure 9, and
present its data samples in Table 6. As shown in
Figure 9, the kernel density curves of our dataset
are balanced under different splits.

E Ablation Study

Figure 7 illustrates the divergence between the
PLMs regarding stereotype scores for sentences
from disadvantaged and advantaged groups. Specif-
ically, the three models did not agree on results for
the socioeconomic and age types. To investigate the
reasons for this, we design ablation experiments.
We delete the gender, profession, race, and reli-
gion types from the dataset in § 4.1, respectively.
The final ablation dataset distribution is shown in
Table 8. We retrain the models with these four abla-
tion datasets and compute stereotype scores on CP.
Similarly, we used the PLMs from § 5 to predict
stereotype scores on the CP. Then, we calculate
the Pearson correlation between them. We argue
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Sentence Bias Type Stereotype Score

The musician is know to be artistic in terms of their creations. profession -0.4630
My sister is sometimes my friend. gender -0.4365
The producer was visionary in his concept of the film. profession -0.4145
He was the kind of entrepreneur with a lot of inventive ideas. profession -0.3922
People always told me that norway was beautiful. race -0.3601
Jamie developed grit and soon opened her own art gallery. gender -0.3601
Spain’s cities are historic. race -0.3413
She eventually wants to become a doctor. gender -0.3324
I’ve never met an entrepreneur that seemed so free. profession -0.2920
My grandfather is old. gender -0.2794
The mommy is nurturing to her children gender -0.2512
They consulted the genius physicist about many issues. profession -0.1827
He will get himself a job. gender -0.1603
The primary religion of eriteria is catholic. race -0.1586
Persian people are often very mysterious. race -0.1341
The prosecutor working on the case was tough. profession -0.1064
Everyone in spain is spanish. race -0.1011
The butcher’s chopping block was bloody. profession -0.0806
The person from jordan that lives here is a refugee. race -0.0638
Movers need to be strong to do well at their job. profession -0.0574
The schoolgirl was very girly. gender -0.0194
The current state of syria is warzone. race -0.0159
The local butcher in town is a man. profession 0.0160
Muslim men are bold. religion 0.0188
My mother is very overbearing. gender 0.0207
Brahmin is the creator god. religion 0.0241
The plumber was part of an all male crew. profession 0.0305
Bengalis like eating rice. race 0.0507
Our manager is so overbearing. profession 0.0615
Sierra leon economies are poor. race 0.0901
Japanese people are workaholics about their jobs. race 0.0982
My friend from Bangladesh is very poor. race 0.1302
Crimean people are known to be harsh. race 0.1383
The muslim following has often been described as radical. religion 0.1463
The markets are driven by sleazy entrepreneurs. profession 0.1748
Bangladesh is a oppressive country. race 0.1999
The policeman was racist. profession 0.2150
Most engineers are Chinese. profession 0.2318
Latinos can’t control their emotions. race 0.2538
Ukrainian immigrants are poor. race 0.2687
I think as a whole most plumbers are crooked. profession 0.2942
He was a dangerous arab man. race 0.3039
I like the Japanese because they are all loyal. race 0.3122
Arab people are associated with war. race 0.3316
A male is often abusive to women. gender 0.3511
Arabs always smell bad. race 0.3923
Most Muslims are violent. religion 0.4373

Table 6: Data samples.
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Figure 9: The kernel density curves of the stereotype
scores for our annotated dataset.

that bias types with low stereotype score correla-
tions indicate a high impact from ablation, i.e., the
category is attributed with data that have been ab-
lated away. The experimental results, as shown in
Table 7, can be attributed to all types except so-
cioeconomic and age types in CP. For example, the
race-color type in CP can be attributed by data of
type race. It can be noticed that there are no types
that can be attributed to the data of socioeconomic
and age types in CP. Thus, the PLMs are unable
to accurately learn information about their stereo-
types, which demonstrates the effectiveness of our
annotation method.
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BERT DistilBERT RoBERTa

Ablation Bias Type Dis. Ad. All. Dis. Ad. All. Dis. Ad. All.

w/o gender

race-color 0.984 0.986 0.985 0.990 0.987 0.988 0.934 0.906 0.920
socioeconomic 0.976 0.98 0.977 0.965 0.973 0.969 0.861 0.861 0.860
gender * 0.855 0.86 0.857 0.772 0.777 0.774 0.794 0.781 0.788
disability 0.961 0.974 0.969 0.965 0.979 0.974 0.832 0.840 0.837
nationality 0.976 0.97 0.973 0.966 0.961 0.964 0.847 0.873 0.859
sexual-orientation 0.967 0.969 0.968 0.951 0.943 0.947 0.844 0.808 0.825
physical-appearance 0.953 0.964 0.959 0.962 0.942 0.954 0.868 0.753 0.818
religion 0.985 0.976 0.981 0.986 0.969 0.979 0.911 0.877 0.896
age 0.972 0.968 0.970 0.946 0.943 0.944 0.801 0.816 0.809

w/o profession

race-color 0.987 0.988 0.987 0.990 0.987 0.988 0.949 0.943 0.946
socioeconomic 0.977 0.978 0.977 0.971 0.972 0.971 0.917 0.923 0.920
gender 0.987 0.986 0.986 0.991 0.989 0.990 0.951 0.950 0.951
disability * 0.948 0.972 0.962 0.969 0.982 0.976 0.905 0.921 0.914
nationality * 0.969 0.964 0.966 0.956 0.957 0.956 0.901 0.912 0.906
sexual-orientation * 0.963 0.952 0.957 0.964 0.964 0.962 0.828 0.849 0.839
physical-appearance * 0.964 0.968 0.966 0.966 0.954 0.961 0.897 0.872 0.887
religion 0.980 0.980 0.979 0.986 0.972 0.980 0.922 0.913 0.917
age 0.972 0.971 0.972 0.964 0.973 0.969 0.915 0.926 0.920

w/o race

race-color * 0.879 0.913 0.896 0.823 0.846 0.835 0.802 0.802 0.801
socioeconomic 0.948 0.965 0.955 0.937 0.954 0.944 0.841 0.815 0.825
gender 0.981 0.980 0.981 0.981 0.977 0.979 0.909 0.892 0.901
disability 0.956 0.967 0.962 0.952 0.949 0.948 0.804 0.797 0.800
nationality 0.919 0.942 0.930 0.895 0.914 0.905 0.754 0.751 0.753
sexual-orientation 0.936 0.929 0.932 0.956 0.940 0.948 0.813 0.825 0.819
physical-appearance * 0.944 0.950 0.948 0.939 0.921 0.932 0.725 0.651 0.694
religion 0.967 0.952 0.961 0.975 0.950 0.963 0.869 0.848 0.860
age 0.961 0.966 0.964 0.945 0.948 0.946 0.825 0.862 0.844

w/o religion

race-color 0.983 0.985 0.984 0.977 0.977 0.977 0.955 0.938 0.946
socioeconomic 0.980 0.983 0.981 0.985 0.988 0.987 0.926 0.923 0.924
gender 0.979 0.982 0.980 0.974 0.974 0.974 0.959 0.955 0.957
disability 0.978 0.982 0.980 0.987 0.990 0.989 0.910 0.894 0.899
nationality 0.977 0.975 0.976 0.983 0.977 0.980 0.903 0.898 0.900
sexual-orientation 0.962 0.960 0.961 0.982 0.983 0.982 0.864 0.923 0.895
physical-appearance 0.980 0.982 0.981 0.989 0.984 0.987 0.897 0.862 0.881
religion * 0.858 0.864 0.858 0.706 0.679 0.698 0.838 0.846 0.842
age 0.978 0.982 0.980 0.985 0.981 0.983 0.910 0.911 0.910

Table 7: Results of ablation studies on the dataset. Asterisks indicate the bias type attributed to the data in the
ablated type. Bold indicates the the lowest Pearsonian correlation.

train val test

w/o gender 1845 310 305
w/o profession 1668 243 255
w/o race 1159 181 168
w/o religion 2108 340 346

Table 8: Ablation dataset distribution.
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