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Abstract

Large pre-trained language models have re-
cently been expanded and applied to program-
ming language tasks with great success, often
through further pre-training of a strictly-natural
language model–where training sequences typ-
ically contain both natural and (linearised) pro-
gramming language. Such approaches effec-
tively map both modalities of the sequence into
the same embedding space. However, program-
ming language keywords (e.g. “while”) often
have very strictly defined semantics. As such,
transfer learning from their natural language
usage may not necessarily be beneficial to their
code application and vise versa. Assuming
an already pre-trained language model, in this
work we investigate how sequence tokens can
be adapted and represented differently, depend-
ing on which modality they belong to, and to
the ultimate benefit of the downstream task. We
experiment with separating embedding spaces
between modalities during further model pre-
training with modality-relative training objec-
tives. We focus on text-to-code generation and
observe consistent improvements across two
backbone models and two test sets, measuring
pass@k and a novel incremental variation.1

1 Introduction

Increasingly more large pre-trained language mod-
els (Radford et al., 2018; Devlin et al., 2019; Raffel
et al., 2020; Han et al., 2021, PLMs) based on
the Transformer (Vaswani et al., 2017) architecture
have been proposed and shown to achieve state-
of-the-art results on a variety of Natural Language
Processing (NLP) tasks. Lately, such models have
been adapted to more specific language domains,
e.g. Biomedical (Huang et al., 2019; Lee et al.,
2020; Beltagy et al., 2019), Legal (Chalkidis et al.,
2020), Cyber Security (Aghaei et al., 2022) and

1Code, data and models are publicly available at https:
//github.com/huawei-noah/noah-research/
tree/master/NLP/text2code_mrpt
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Figure 1: Overview of modality-agnostic/relative pre-
training and training objectives.

Finance (Araci, 2019), while also expanding to
include signals from modalities other than natu-
ral language, such as Vision (Trinh et al., 2019;
Chen et al., 2022, 2020; Carion et al., 2020; Tou-
vron et al., 2021; Dosovitskiy et al., 2021), Pro-
teins (Brandes et al., 2022), Time Series (Wu et al.,
2020a,b; Qin and Zong, 2022) and Code (Kanade
et al., 2020; Wang et al., 2021; Feng et al., 2020;
Guo et al., 2022; Phan et al., 2021).

In this work, we experiment with pre-trained lan-
guage models specifically created for text-to-code
generation, i.e. the task of program synthesis given
Natural Language (NL) descriptions (e.g. prob-
lem definitions or docstrings). While some of the
proposed models for this task adopt the encoder-
decoder architecture (Li et al., 2022), most are
trained as decoder-only Transformer models (Chen
et al., 2021; Fried et al., 2023; Nijkamp et al., 2023;
Li et al., 2023; Roziere et al., 2023). The latter ap-
proach is often preferred, since single-component
architectures are well-suited for continuous train-
ing over vast amounts of raw non-annotated data,
such as Github.2

When employing a single-component architec-
ture, all tokens in the sequence are often vectorised

2https://github.com
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DESCR. Return a greatest common
divisor of two integers a and b

SIGN. def gcd(a: int, b: int) -> int:

BODY
while b:

a, b = b, a % b
return a

TESTS
gcd(3, 5) = 1
gcd(25, 15) = 5

Table 1: Example from the HumanEval dataset.

via the same embedding layer; effectively assuming
that all parts of the sequence share the same seman-
tic space despite language or modality. This may
be well suited for many NLP tasks or multilingual
models, as transfer learning between languages
has been shown to be beneficial (Conneau et al.,
2020). However, we posit that due to their strict
technical and logical implications, programming
language tokens have distinct semantic meaning
that does not necessarily benefit by transfer learn-
ing from natural language. To investigate this, we
propose modality-relative embedding-spaces and
training objectives. Specifically, our work treats
the docstring and code subsequences of our data as
separate modalities, and further tunes separate em-
beddings with different training objectives–initially
tuning them on a shared space (see Figure 1).

As our test case, we focused on Python and car-
ried out zero-shot experiments demonstrating that
our modality-relative embeddings and training ob-
jectives achieve consistent improvements over two
baselines on the HumanEval (Chen et al., 2021)
and MBPP (Jain et al., 2021) datasets. We also
introduce a novel variation of the pass@k (Chen
et al., 2021) evaluation metric for program synthe-
sis, namely incremental pass@k, that combines
both synthesis and completion tasks to better dif-
ferentiate models capabilities.

2 Methodology

In this work, we focus on the task of text-to-
code generation, i.e. to synthesise running code
that successfully solves the problem described
in a NL description. Table 1 shows an exam-
ple from the HumanEval dataset (Chen et al.,
2021), which is typical for the task; the input
consists of a NL description of the problem, fol-
lowed by the function signature of the solution
(the function argument types and the expected re-
turn type may or may not be included). In addi-
tion, the problems may be accompanied by some

unit tests, in the form of function calls with spe-
cific inputs and the corresponding expected out-
puts, e.g. greatest_common_divisor(3,
5) = 1. The model is then asked to produce the
body of the code, where its proper functionality is
evaluated against a number of held-out unit tests.
This task is closely related to code completion,
where the input also includes partial code.

2.1 Modality-agnostic Pre-Training
Following previous work (Chen et al., 2021),
here we assume access to already pre-trained lan-
guage models on raw natural language and code
data (namely, Code LMs) as our starting point.
These models have been pre-trained with modality-
agnostic pre-training (MAPT), i.e. training that
is agnostic with respect to the underlying modali-
ties and all token embeddings are shared between
the two. We employ the PyCodeGPT (Zan et al.,
2022) model that is based on GPT-Neo (Black et al.,
2021), pre-trained on an undisclosed subset of open
source Github repositories in Python. In addition,
we pre-train PanGu-Coder (Christopoulou et al.,
2022) with regular Causal Language Modelling
(CLM) (Radford et al., 2018) on a different batch
of Python data from Github (see Appendix A for
details regarding our data collection process).

Our proposed modality-relative training objec-
tives and embedding-spaces are subsequently ap-
plied through further pre-training of the Code
LMs on program synthesis-specific data, consisting
solely of text-to-code pairs. Through this two-stage
pre-training approach a model is able to learn how
to encode both general code structures and natu-
ral language through raw data in the first stage,
and later focus on how to best generate the correct
output code given the NL input.

2.2 Modality-relative Continual Pre-Training
Assuming a modality-agnostic Code LM (e.g. Py-
CodeGPT or PanGu-Coder) that has attained gen-
eral knowledge about NL and code during initial
pre-training, we continue pre-training with a dedi-
cated focus on the downstream task of text-to-code
generation. The training data we use consist of
functions crawled from existing, public GitHub
repositories. If a function is accompanied by a
docstring, we assume that to be a corresponding
NL description of the function forming a text-to-
code pair instance. Details on how the data were
gathered and filtered can be found in Appendix A.
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Figure 2: TEXT-CODE CLM, CODE-CLM, CORRUPT-CODE-CLM and PREFIX-CODE-CLM pre-training objectives.

Formally, we denote a training instance as a
single sequence of tokens X = XD + XC =
{d1, ..., dND

, c1, ..., cNC
}, with XD and XC corre-

sponding to all the tokens of the docstring modality
and the code modality of the input, respectively.
CLM is then applied as follows:

LCLM(X) = −
N∑

n=1

log p(xn|x<n; θ),

where N = ND+NC indicates the total number of
tokens in the input sequence X (with ND, NC the
number of docstring and code tokens, respectively)
and θ corresponds to the model parameters.

An important design decision was to formulate
the data specifically for function-level code synthe-
sis. As such, we ensured that the training data con-
tain functions that are always accompanied by a nat-
ural language description (i.e. using the docstring
as the function’s problem description), essentially
aligning NL with code. Based on this data format,
we propose to train the model via modality-relative
pre-training (MRPT), i.e. treating the docstring and
code subsequences of each instance distinctly.

2.2.1 Space Separation
To investigate our hypothesis that code tokens
should be distinct from NL ones due to the strict
semantic meaning of the former, we propose sep-
arating the embedding space E after MAPT (see
Figure 1) through the following two strategies:

Partial Embedding Separation (PES) Reason-
ably, programming language-specific tokens such
as join, for, return, class, etc, might suf-
fer more from conflicting signals during modality-
agnostic pre-training. On the other hand, tokens
used in variables and function names should remain
shared between NL and code, as transfer learning
can benefit their encoding. In our first space sep-
aration approach, namely Partial Embedding Sep-
aration (PES), we associate separate embeddings
ecode and eNL only to tokens that appear in the
programming language’s grammar. Since we are

using Python as our use-case, we extract all neces-
sary tokens from the official Python grammar3 and
built-in functions.4 Although this method creates
two embeddings only for language-related tokens,
minimally expanding the model’s embedding space,
it requires manual effort and is dependent on the
programming language one investigates.

Full Embedding Separation (FES) Since PES
is programming language-specific and cannot cap-
ture the distinction among other tokens that might
be equally important, our second approach sepa-
rates the entire embedding space E of the modality-
agnostic model, namely Full Embedding Separa-
tion. We thus associate a distinct embedding eNL

and ecode with each modality for the entire vocabu-
lary of the model. This effectively results in dou-
bling the number of embeddings of the model, i.e.
|ENL|+ |Ecode| = 2 ∗ |E|.

In both PES and FES, the NL and code embed-
dings are initialised with their values as they stand
after MAPT and are further trained through MRPT.

Alternatively, the separation of embeddings
could be performed by using two distinct tokeniz-
ers for the NL and code part respectively, but that
would forego the MAPT stage and any potential
benefit resulting from it. Preliminary experiments
were inconclusive on whether using distinct tok-
enizers was beneficial compared to starting from a
modality-agnostic model with a shared embedding
space. We opted to keep the MAPT stage constant
across all settings, to keep comparisons fair.

2.2.2 Training Objectives
We train modality-aware models with a few training
objectives, as shown in Figure 2 and detailed below.
As a baseline objective we consider standard causal
language modelling over the entire input sequence,
which we denote as TEXT-CODE-CLM seen in the
leftmost part of Figure 2. These training objectives

3https://docs.python.org/3/reference/
grammar.html

4https://docs.python.org/3/library/
functions.html
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can then be further combined with the proposed
embedding separation strategies.

CODE-CLM: Causal Language Modelling on
Code We calculate the loss only on the code sub-
sequence, following Chen et al. (2021), namely
CODE-CLM, training implicitly on the docstring.
Each code token is predicted based on all previous
tokens, including the tokens of the docstring.

CORRUPT-CODE-CLM: Corrupted Docstring
We also experiment with corrupting the docstring
by randomly masking out some of its tokens.
Specifically, a set of random tokens with indices
XM = {π1, ..., πM} in the docstring are replaced
with a mask ([MASK]), a random token, or the
same token with 0.8/0.1/0.1 chance, respectively,
similar to Devlin et al. (2019). Analogous to the
previous objective, we do not measure any loss
over the docstring but solely on the code that has
to be generated based on the corrupted input.

PREFIX-CODE-CLM: Bidirectional Attention on
Docstring Since the down-stream task is not re-
liant on next word prediction for the docstring, we
experiment with allowing bidirectional attention
on the docstring tokens, as we assume that addi-
tional context can result in better docstring repre-
sentations. This is similar to how prefix language
models work (Dong et al., 2019; Bao et al., 2020;
Guo et al., 2022), with the difference that we do
not calculate any loss over the prefix, which in our
scenario, corresponds to the docstring (Wang et al.,
2022). Due to the formatting of their input (see
Section 3.1), in PyCodeGPT we consider both the
docstring and the signature as part of the prefix,
while in PanGu-Coder only the docstring is playing
the role of the prefix.

3 Experimental Settings

3.1 Data Formulation
We formulate each model’s input according to their
original training data format. PanGu-Coder’s input
is formed by combining a docstring and its corre-
sponding code as follows, since it was designed to
accommodate both code-only and text-code pairs
during MAPT pre-training (see Appendix B).

[descr] docstring [python] signature
code [eoc]

where [descr] indicates the beginning of a de-
scription, [python] indicates the beginning of
the code and [eoc] corresponds to the end of the

code sequence. On the other end, PyCodeGPT was
trained on general purpose, raw code repositories,
that follow the standard format of the docstring
appearing after the code signature, with a start-of-
sequence token ([sos]) at the beginning of each
instance. We form its input as shown below:

[sos] signature [descr] docstring
[python] code [eoc]

3.2 Inference
We follow the standard (left-to-right) decoding
process used for auto-regressive language models,
with temperature scaling (t) and nucleus sampling
(p) (Holtzman et al., 2020). Inference adopts a
prompt that is similar to the data format used dur-
ing pre-training, for each model respectively (see
Section 3.1), until the keyword [python], af-
ter which the model is requested to generate the
problem solution. Generation continues until the
[eoc] token is generated or a maximum length is
reached. In the case of the PREFIX-CODE-CLM ob-
jective, we allow bidirectional attention during in-
ference on the given prompt, similar to pre-training.
Due to the nature of our applied tasks, we assume
there is always a problem description available dur-
ing inference. We remove any superfluous white-
spaces and line breaks from the descriptions.

Formally, the prompt is a sequence of tokens
P = PD + PS = {d1, ..., dND

, s1, ..., sNS
} where

ND, NS denote the number of tokens in the doc-
string and the signature, respectively. In the case
of PyCodeGPT the prompt is formatted as P =
PS +PD. The model then generates a continuation
C ′ of the prompt in a left-to-right manner, decoding
one token at a time while attending on previous.

C ′(P ) = PANGU-CODER(c′t|c′<t, d<Nd
, s<NS

)

C ′(P ) = PYCODEGPT(c′t|c′<t, s<NS
, d<ND

)

3.3 Evaluation
To evaluate our models, we consider two commonly
used datasets for checking the functional correct-
ness of generated programs: HumanEval (Chen
et al., 2021), and the Mostly Basic Programming
Problems (Austin et al., 2021, MBPP).

HumanEval5 contains 164 handcrafted Python
problems accompanied by a set of held-out unit
tests (average of 7.7 unit tests per problem), all of
which must pass in order to count as a successful

5https://github.com/openai/human-eval
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solution. The dataset prompts include a problem de-
scription and a signature. In a similar vein, MBPP6

is comprised of 974 programming problems (374
train, 90 validation, 500 test and 10 few-shot) de-
signed to be solved by entry-level Python program-
mers. We use only the test set for evaluation.

We checked the overlap of any natural language
prompt from all datasets in our training data with
exact string matching (non-whitespace text) and
found 1 contaminated example with HumanEval
and none with the MBPP test set. Evaluation
was performed via adapting the CodeGeeX frame-
work (Zheng et al., 2023).7

3.4 Evaluation Metrics
In order to estimate model performance, we sample
n programs/solutions per problem and calculate
the unbiased estimator of pass@k for k = [1, 10,
100], originally introduced in Kulal et al. (2019)
and further adapted by Chen et al. (2021). In all
experiments, we use greedy decoding for pass@1
and a sample size of n = 200 with p = 0.8, t =
0.95 for k = [10, 100]. Those values were selected
via preliminary analysis and remain fixed for all
experiments (no further tuning).

Incremental pass@k: A drawback of pass@k
is that it only considers a code solution correct
if it passes all provided unit tests, and provides
no partial credit for incomplete programs however
close they may be to a valid solution. Other metrics
may provide partial credit based on syntactic or
semantic overlap between the generated program
and a reference, e.g. CodeBLUE (Ren et al., 2020)
and CodeBERTScore (Zhou et al., 2023), but these
do not directly check for functional correctness.

In an effort to provide more granular functional
correctness, we propose and report a variation on
the pass@k metric; incremental pass@k, which
aims to measure the code completion capabilities
of Code LMs in addition to full program synthesis.
We automatically create an augmented test set for
each dataset by using the provided code solution
reference to construct partial code solutions as ad-
ditional evaluation prompts; partial solutions are
constructed by incrementally adding one line of
the reference to the previous prompt. The pass@k
metric is then calculated over the original and aug-
mented prompts, reporting micro-averaged scores.

6https://github.com/google-research/
google-research/tree/master/mbpp

7https://github.com/THUDM/CodeGeeX

3.5 Training details
We train models using the Adam opti-
miser (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.95 and weight decay of 0.01. For MAPT,
the maximum learning rate is set to 1e−4, which
is decayed by a cosine scheduler until 5e−6. For
MRPT, the maximum and minimum learning rates
are 1e−5 and 5e−6, respectively. The gradients are
clipped at 3.0 during modality-agnostic and 1.0
during modality-relative pre-training. For both
models we set the maximum sequence length to
1, 024 tokens, the batch size to 1, 024 instances
and warm-up to 1% of the total training steps.

For MAPT, PanGu-Coder is initialised with ran-
dom weights and trained for 500K steps from
scratch (more details in Appendix B). For MRPT,
we initialise the models from their MAPT check-
point and continue training for 5 epochs for Py-
CodeGPT and 10 epochs for PanGu-Coder. We
report performance of all models at the end of
modality-relative pre-training. Further technical
details can be found in Appendix C.

4 Zero-shot Results

We first perform an ablation analysis on the 100M
model variants to determine the gains based on
our training data, the training objective and the
embedding separation approaches. Our primary
comparisons are against two baseline model vari-
ants (marked with a gray background), i.e. after
modality-agnostic (MAPT) training and after stan-
dard next-token-prediction (TEXT-CODE) on the
entire sequence. The latter facilitates comparison
against continual training on the given data for the
same number of epochs as the other objectives.

In Table 2a, we evaluate PyCodeGPT across the
two datasets and four objectives. Additional train-
ing with text-to-code pairs improves performance
up to +1.2, +2.4 and +4.3 points for k=1,10,100
over MAPT training on HumanEval and correspond-
ingly +1.6, +3.0 and +2.9 on MBPP. PyCodeGPT
benefits more from the task-specific data as it was
not exposed to them during MAPT. Embedding
separation additionally improves up to +3.0, +1.1,
+2.1 pass@k for HumanEval and up to +0.2, +0.8,
+1.7 for MBPP. We observe stronger benefits when
looking at incremental pass@k, with gains up to
+6.2, +9.5, +5.9 on HumanEval and +4.4, +4.3,
+2.2 on MBPP.

Moving on to Table 2b we show results for
PanGu-Coder model of 100M parameters under
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HUMAN EVAL INCR HUMAN EVAL MBPP INCR MBPP
SEPARATION P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100

MAPT - 9.15 13.26 20.80 13.21 29.82 46.13 7.40 19.40 37.87 21.30 45.59 63.25

TEXT

CODE

- 10.37 15.66 25.19 11.69 27.28 52.63 9.00 22.46 40.81 20.23 49.07 68.51
PARTIAL 11.59 14.96 23.83 16.66 32.32 51.75 7.80 22.63 41.70 23.08 49.74 68.12

FULL 11.59 14.81 23.94 15.30 33.36 54.87 7.80 22.69 41.77 23.39 50.77 68.22

CODE

- 12.80 16.81 26.94 17.98 34.54 54.61 8.80 23.29 41.46 23.81 52.37 70.10
PARTIAL 12.80 16.47 26.25 17.13 32.83 52.42 9.00 23.28 42.53 24.44 52.35 70.49

full 13.41 15.97 27.32 17.88 36.82 57.91 8.00 23.32 42.47 24.39 53.42 70.50

CORRUPT

CODE

- 11.59 16.15 26.34 16.39 33.97 54.84 8.60 23.00 42.04 22.46 51.36 69.60
PARTIAL 11.59 15.96 27.04 16.24 33.45 54.07 9.20 22.59 41.36 23.57 50.56 68.32

FULL 10.98 15.73 27.11 17.51 36.67 58.59 9.20 22.92 41.15 24.67 52.76 70.15

PREFIX

CODE

- 7.32 9.87 16.84 14.37 32.69 52.93 8.60 20.93 39.89 23.63 51.39 70.21
PARTIAL 9.15 13.53 22.18 14.48 33.90 53.10 9.20 19.84 39.61 24.19 50.42 68.02

FULL 9.76 13.67 22.00 16.30 36.10 56.56 9.20 21.45 40.59 24.45 53.10 70.72

(a) PyCodeGPT 100M model performance.

HUMAN EVAL INCR HUMAN EVAL MBPP INCR MBPP
SEPARATION P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100

MAPT - 9.76 17.07 28.88 20.70 48.04 63.08 11.60 24.99 44.84 5.93 28.80 44.63

TEXT

CODE

- 12.20 18.97 29.50 22.93 49.96 64.23 11.80 26.18 45.73 11.78 38.99 61.38
PARTIAL 11.59 19.49 31.70 22.91 49.60 64.91 12.00 26.35 46.76 11.93 39.43 60.87

FULL 13.41 19.31 29.61 23.54 49.98 63.48 11.40 26.65 46.82 12.80 41.93 63.27

CODE

- 12.20 19.63 32.45 23.65 50.25 64.89 12.20 26.69 46.61 14.76 44.75 64.84
PARTIAL 13.41 20.27 31.27 24.44 50.63 65.46 12.00 27.14 47.08 13.27 41.79 63.06

FULL 12.20 19.74 30.82 23.81 50.51 66.21 12.60 27.01 46.14 14.23 43.80 64.21

CORRUPT

CODE

- 12.80 19.06 28.20 23.83 49.89 63.98 12.20 26.46 46.57 15.17 45.41 65.95
PARTIAL 13.41 19.21 29.70 23.83 50.12 65.22 11.80 26.44 45.15 13.53 42.36 62.85

FULL 12.80 18.65 28.54 23.91 49.48 64.02 11.60 26.96 44.85 15.49 46.38 65.60

PREFIX

CODE

- 10.98 18.33 27.56 23.27 49.98 63.78 11.00 26.10 45.90 11.23 38.49 60.80
PARTIAL 12.80 19.26 30.77 23.88 50.16 64.23 10.80 26.20 46.00 10.39 35.19 57.44

FULL 12.80 19.37 30.21 23.59 49.64 64.95 11.20 26.28 46.27 9.13 33.67 56.52

(b) PanGu-Coder 100M model performance.

Table 2: Pass@k and Incremental pass@k across objectives, embedding separation strategies and datasets. Bold
numbers denote best performance across separation methods and highlighted denote overall best for each metric.

the same datasets and methods. Firstly, we notice
that we get an improvement of +2.4, +1.9 and +0.6
points for k=1,10,100 over MAPT training on Hu-
manEval and correspondingly +0.2, +1.1 and +0.8
on MBPP. We attribute this gain to the formulation
of the data in a format that exactly matches the
task at hand. Overall, embedding separation con-
sistently offers additional improvements up to +1.2,
+1.3, +2.9 on HumanEval and +0.8, +0.9, +1.3 on
MBPP. In terms of incremental pass@k, again we
observe larger gains over TEXT-CODE, mostly on
MBPP with +3.7, +7.3 and +4.5 points.

Across training objectives, we notice that in
the majority of settings, CODE-CLM outperforms
across the board. Across datasets, separation offers
the most notable gains in the PREFIX-CODE-CLM

objective, probably because it helps the model to
better adapt to bidirectional attention on the doc-
string. We note that most of the gains from em-

bedding separation seem to affect pass@10 and
pass@100, which implies that separation helps in-
crease the expressiveness of the model but not the
MAP (maximum a posteriori) solution as much.

4.1 Scaling Up
To determine whether our observations regarding
embedding separation hold for different model
sizes, we also test our hypothesis on a larger version
of PanGu-Coder, consisting of 350M parameters,
for the reported best training objective CODE-CLM

of its smaller variant (see Table 2). In Table 3, we
observe again improvements over MAPT with +2.4,
+1.2, +2.0 pass@1/10/100 on HumanEval. Simi-
lar trends can be observed on the MBPP dataset,
though the differences appear smaller due to its
larger sample size and difficulty. More evident
improvements are noticed over no separation with
+2.4, +1.9, +3.8 on HumanEval and +1.2, +0.1,
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HUMAN EVAL INCR HUMAN EVAL MBPP INCR MBPP
SEPARATION P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100

MAPT - 16.46 24.51 35.39 27.82 55.68 68.34 18.80 35.36 53.24 8.14 35.26 57.77

TEXT CODE
- 18.90 25.79 37.46 31.39 56.36 69.22 17.60 37.59 54.37 10.95 42.27 66.62

partial 18.29 25.54 37.82 30.81 56.39 69.44 18.00 37.70 55.60 9.97 39.19 64.93
full 18.29 26.48 41.30 30.85 56.28 68.81 16.40 37.43 55.35 9.71 40.22 65.49

CODE

- 20.73 25.96 37.79 32.16 56.66 69.88 18.80 37.54 54.99 12.27 44.87 68.65
partial 21.34 26.27 37.94 32.88 56.82 69.20 18.60 37.36 54.39 12.38 45.37 68.58

full 18.29 26.98 39.94 30.10 57.12 70.15 18.80 37.45 54.33 9.16 37.84 63.13

Table 3: PanGu-Coder 350M CodeLM performance.

TEST SET HUMANEVAL MBPP DEV MBPP TEST

HUMANEVAL - 0.099 0.163
MBPP DEV - - 0.046
MBPP TEST - - -

Table 4: Average Pearson correlation between pass@1
performance of different model checkpoints.

+1.2 on MBPP, respectively. Incremental pass@k
shows +1.4, +0.7, +0.9 and +1.4, +3.1, +2.0 over
each dataset. We present a comparison against
other Code LMs in Appendix D.

5 Visualising Separated Embeddings

We attempt to qualitatively check the embedding
space separation by visualising token embeddings
on a 2D plane via T-SNE plots. Figure 3 illustrates
the 20 closest neighbours of the tokens open and
join in the two modality spaces, as measured us-
ing cosine similarity for PanGu-Coder 350M model
with partial embedding separation (PES).

For open, in the docstring space we observe that
its representation is separate from close or other
build-in operations, e.g. get. On the contrary,
in the code space open and close are grouped
together with other operations that are used in a
similar way in code. Analogously, join in the doc-
string space is close to words with a similar natural
language meaning and surface form, while in the
code space its representation is close to function-
alike tokens in Python such as remove, get,
split, etc. We observe similar behaviours for
other tokens; see additional plots in Appendix E.

6 Generalisation Analysis and Discussion

We performed an analysis over the performance of
all the checkpoints of our trained models (check-
points were cached every 10K steps), to determine
whether performance on any test set was predic-
tive on the performance of other sets; we included
HumanEval and both development and test sets of
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Figure 3: T-SNE plots of the top 20 neighbours of
the tokens open (top) and join (bottom) on different
embedding spaces for PanGu-Coder 350M parameter
model with partial embedding space separation (PES).

MBPP. Pearson analysis between checkpoint per-
formance suggests very weak correlation between
model performance overall; consult Table 4.

This seems to indicate that the distribution of
problems that are covered by any one test set is
relatively unique, and raises the question whether
comparisons over any particular dataset should be
expected to generalise on unseen problems when
models are deployed. Potentially, this is partially
explained by the small size of the test sets, but
could be indicative of a larger problem; that due to
the specificity of problems contained in these test
sets, they do not evaluate generalisable model cod-
ing capabilities as much as they measure whether
they have been exposed to very similar problems
and definitions during pre-training. To offer an
example, if the model has not been exposed to
problems regarding Fibonacci sequences during
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pre-training, it is unrealistic to expect it to generate
a relevant code solution in a zero-shot setting. Sim-
ilarly, whether a model can generate a solution to
a Fibonacci problem offers no indication of the its
capabilities to solve other problems.

7 Related Work

Recently, there has been an increasing interest
in extending proven natural language understand-
ing and generation methods to code understand-
ing and generation tasks. CodeBERT (Feng et al.,
2020), for instance, was trained using a combina-
tion of Masked Language Modelling inspired by
Devlin et al. (2019, BERT) and Replaced Token
Detection from Clark et al. (2020, ELECTRA).
CodeT5 (Wang et al., 2021) and PYMT5 (Clement
et al., 2020) were built on top of (Raffel et al.,
2020, T5) while UniXcoder (Guo et al., 2022) was
based on UniLM (Dong et al., 2019) and combines
three pre-training objectives using different atten-
tion masks to control access to surrounding context
for a token to be predicted. Focused on the task of
text-to-code generation, Chen et al. (2021) intro-
duced CodeX, a set of GPT-based language models
trained on publicly available code from GitHub, up
to 12B parameters in size. Li et al. (2022) intro-
duced AlphaCode, a set of sequence-to-sequence
models with up to 41B parameters, trained on data
from programming competitions, e.g. Codeforces8

as well as GitHub code in several programming
languages. CodeGen (Nijkamp et al., 2023) was
proposed as a conversational text-to-code approach
using large language models with sizes of up to
16B parameters. The authors proposed three model
variants, trained on The Pile (Gao et al., 2021),
continuously trained on BigQuery (with 6 program-
ming languages) and finally trained on Python-
only data. InCoder (Fried et al., 2023) extends
left-to-right code generation with an infilling train-
ing objective, similar to Bavarian et al. (2022),
and is able to predict spans of partial programs
as well. SantaCoder (Allal et al., 2023) is one of
the latest Code LMs, sizing up to 1.1B parameters,
supporting Python, Java, and JavaScript. It was
trained with multi-query attention and the fill-in-
the-middle (FIM) objective (Bavarian et al., 2022)
on The Stack (Kocetkov et al., 2022), a 3 TB pub-
licly available dataset supporting 358 programming
languages collected from permissively-licensed
source code files from Github. StarCoder (Li et al.,

8https://codeforces.com/

2023) is a 15.5B parameter model, similarly pre-
trained with multi-query attention and FIM on 80+
programming languages from The Stack. With the
exception of CodeX (Chen et al., 2021) calculating
CLM loss on code exclusively, this is the first work
to consider modality-relative embedding separation
and training objectives.

Methods that consider NL and code as differ-
ent modalities mostly focus on taking into account
different views of code. For instance, GraphCode-
BERT (Guo et al., 2021), noted that previous pre-
trained models treat code snippets as sequences of
tokens while ignoring the inherent structure of code.
They presented GraphCodeBERT, which showed
that incorporating the data flow, i.e. a semantic-
level structure of code extracted from the Abstract
Syntax Tree (AST), leads to richer code representa-
tions. Jiang et al. (2021, TREEBert) instead, used
the actual AST together with code snippets. To
the best of our knowledge we are not aware of any
work assigning different embeddings to tokens of
the same sequence depending on which type of text
(natural language/code) they appear.

8 Conclusion

Existing CodeLMs consider both code and natural
language as a single modality, mapping them into
a shared embedding space. However, in this work,
we posit that the semantics and usage of tokens
can differ between code and NL, requesting for a
possible space separation. As such, we proposed
to consider code and natural language as different
modalities for the task of text-to-code generation by
introducing modality-aware embedding separation
strategies and training objectives. In detail, assum-
ing a general CodeLM trained on raw data–where
modalities are shared–we continue training on task-
specific data with separated embedding spaces. We
present partial separation, which targets language-
specific tokens, as well as full separation that dupli-
cates the entire model’s vocabulary. In addition, we
proposed incremental pass@k, as a variant of the
standard metric that evaluates the code completion
capabilities of models.

Zero-shot evaluation on the HumanEval and
MBPP datasets, with two 100M and one 350M
parameters models, indicate that embedding space
separation improves code generation across differ-
ent objectives. We also observe that further pre-
training on data formatted to match the target task
consistently boosts performance.
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Although there is no clear winner among partial
versus full space separation, each method comes
with advantages and drawbacks. While partial sepa-
ration minimally increases the model’s vocabulary,
it requires manual effort for each target program-
ming language. On the other end, full separation
is automatic but significantly increases vocabulary
size. Given these observations, future work could
target efficient approaches for separating only cer-
tain tokens to strike a balance between the two.

Limitations

We enumerate the limitations of this work as part of
our experimental process. Firstly, our analysis was
focused on Python only. While our proposed meth-
ods are orthogonal to the programming language
they are applied to, it remains to be confirmed that
our findings generalise to other languages. Over-
all, our observations should stand for high-level
programming languages that resemble natural lan-
guage. Secondly, our trained models are limited
to function-level text-to-code generation (both pro-
gram synthesis and code completion), as we opted
for a particular use case to study the connection be-
tween programming and natural language. These
models are unable to perform multi-turn generation
or generation of multiple code functions given a
problem description, as mentioned in Section 3.3.
We leave such explorations for future work.
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A Data Collection and Processing

A.1 Collection
We crawled existing, public repositories from
GitHub before May 2021, resulting in approxi-
mately 65 million Python files with a total size
of 380 GB. We then removed duplicate files based
on the rowKey of each file’s MD5, which resulted
in 40 million files (186 GB). We further kept files
that meet the following criteria: (a) the file size is
under 1MB; (b) the code is Python3 compatible,
using Abstract Syntactic Tree (AST) parsing; (c)
there are fewer than 100 characters per line on aver-
age; (d) and there are fewer than 1, 000 characters
in any single line. We then removed the duplicated
functions from the remaining files. In the end, 120
GB of training data was obtained.

A.2 Pre-processing
The collected data include both plain Python code
and code accompanied by a natural language de-
scription after the function signature. The latter can
be used to create text-to-code instances which are
considered task-specific data for program synthe-
sis, while code-only function snippets can expose
models to generic Python programming.

We apply AST parsing9 on the remaining Python
files to extract valid functions and their correspond-
ing docstrings.10 While we also extract classes,
we will only refer to functions as the process is
identical. An example is shown below:

def gcd(a: int, b: int): -> int
"""

9https://tree-sitter.github.io/
tree-sitter/

10The strings that follow Python docstring conventions:
https://peps.python.org/pep-0257/
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Return a greatest common divisor of
the two integers a and b
"""
while b:

a, b = b, a % b
return a

For all extracted functions, we also remove com-
ments. Many comments are simple housekeep-
ing messages, such as dates, contributor’s identity
and “Do not delete”.11 We then replace new lines,
indentation and dedentation with [new_line],
[indent] and [dedent], respectively, to nor-
malise spaces, which effectively reduces the length
of input sequences to the model.

Finally, we apply deduplication to all available
training data. In the end, we gather 25 million text-
to-code pairs and 80.8 million code-only function
snippets, respectively.

B Training of PanGu-Coder

Here we provide additional details with respect to
PanGu-Coder’s modality-agnostic pre-training.

B.1 Tokenization
We use SentencePiece (Kudo and Richardson,
2018) as our primary tokenizer. We train the tok-
enizer on 10 million samples randomly drawn from
the training data, including both docstrings and
code. During training, the normalising symbols,
[new_line], [indent] and [dedent], are
passed to SentencePiece to preserve their integrity.
The tokenizer’s vocab size is set to 32, 000 tokens.

B.2 Data Formatting
When a docstring exists within a function, we
form a text-to-code instance by re-organising
the function according to the following template,
[descr] docstring [python] code
[eoc], where [descr] stands for the be-
ginning of a problem description placeholder,
[python] for start of python code and [eoc]
for end-of-code, as follows:

[descr] Return a greatest common divisor
of two integers a and b [python] def

gcd(a: int, b: int) -> int: [new_line]
[indent] while b: [new_line] [indent] a,
b = b, a % b [new_line] [dedent] return
a [eoc]

In case there is no available docstring for a code
snippet we simply omit the [descr] portion. In

11We leave training with comments as future work.

...
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Instance IA Docstr-Code |EA|

Code 1

Docstr-Code 1

(a) MAPT samples, using all available data.

Instance 1

Instance 2
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Docstr-Code 1

...

Docstr-Code 2

Docstr-Code |EB|

(b) MRPT samples, using only docstring-code pairs.

Figure 4: Input data formats during modality-agnostic
(MAPT) and modality-relative pre-training (MRPT).

our MAPT training, we use all the available train-
ing samples including text-to-code pairs and code-
only instances. For MRPT training, we consider
only text-to-code instances, as shown in Figure 4b.

B.3 Sample Concatenation
We observe that a large portion of the training
samples are shorter than 512 tokens after tokeniza-
tion. Padding the samples up to the context size
can increase training time and waste resources. In
this work, we adopt a data concatenation approach,
known as packing, to improve training and energy
efficiency. We shuffle the data and start appending
examples until the maximum sequence length is
reached, forming a new sample. If appending an
instance exceeds the maximum sequence length,
then we continue forming the next sample. Al-
though padding is not completely eliminated with
this technique, the amount of padding is greatly
reduced and we end up with only 23.2M concate-
nated training samples almost 18% of the origi-
nal training samples for Modality-agnostic training
of PanGu-Coder. Similarly, for Modality-relative
training we have 6.1M examples for PyCodeGPT
(26% of original) and 5.7M for PanGu-Coder (24%
of original).

Since each concatenated training sample con-
tains several original training samples, we use the
[eoc] placeholder as an anchor to reset the at-
tention mask and position ids, so that each unique
sample only attends to itself.

C Additional Training Details

We report the size of the models that we trained
in terms of model settings in Table 5. We used 8
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V100 32GB GPUs for training the 100M models
and 16 to train the 350M ones. The total training
time of PyCodeGPT was approximately 5 days, 7
days for PanGu-Coder 100M model and 10 days
for the 350M model.

D Comparison with other Code PLMs

We compare our best setting (i.e. PanGu-Coder
with partial embedding separation) with existing
Code LMs in Table 6, reporting model and data
sizes, the contextual window allowed (cCNTX), vo-
cabulary size (nVOCAB) and number of tokens the
models were trained for.

For CODEX (Chen et al., 2021), the total data
size and the number of trained tokens are calculated
by considering the initial training of GPT-3 (Brown
et al., 2020) for 300 billion tokens on a collection of
data equivalent to 570GB of compressed plain text.
We include the decoder-only baseline presented by
ALPHACODE, and not the encoder-decoder model,
as HumanEval results are only reported on the for-
mer. The number of train tokens of this baseline is
not reported. For CODEGEN (Nijkamp et al., 2023)
models, the dataset size of CODEGEN-MULTI was
computed by accumulating The Pile (Gao et al.,
2021) and BigQuery12, while CODEGEN-MONO

was additionally trained on BigPython. To calcu-
late the number of training tokens for the CODE-
GEN models, we assume the batch size reported
in the paper corresponds to tokens instead of in-
stances. For INCODER, the vocabulary size was
calculated as 55% of GPT-2 vocabulary, based on
Fried et al. (2023). For SANTACODER the reported
numbers and the number of trained tokens were
collected from the model card on the HuggingFace
Hub.13 For the other models, explicit information
was provided in the corresponding papers.

For all models, pass@k rates are computed with
200 samples, except for ALPHACODE where the
reported rates used 1, 000 samples and CODEGEN

which used 100 samples. Our proposed model
achieves the best performance among similar-sized
models across all metrics, even having been trained
on much less training data.

Regarding the MBPP dataset, our model outper-
forms all other reported models on pass@1, while

12https://cloud.google.com/bigquery/
public-data/

13https://huggingface.co/bigcode/
santacoder

14We did not include even larger scale models, since they
would not be directly comparable with this work.

being second best for pass@10 and pass@100.
It also outperforms INCODER despite being sig-
nificantly smaller. Overall, we observe, that our
PanGu-Coder performs better for lower k val-
ues. We speculate that the gap in performance
for pass@100 is a result of the small context size
(1, 024) the model has been trained on, which pre-
vents the model from learning to generate long so-
lutions, or solutions that have to attend over quite
long descriptions. Allowing the model to be trained
on longer inputs can be beneficial when scaling to
many more sample solutions, which enables the
generation of exhaustive solutions, e.g. enumerat-
ing all possible cases of a for loop.

Finally, the numbers of SantaCoder are using
the MultiPL-E benchmark (Cassano et al., 2022)
that includes small changes compared to the orig-
inal datasets (e.g. three problems were removed
from the HumanEval test set). As such, aside from
the difference in model size, performance is not
directly comparable.

E Additional T-SNE plots

We show additional T-SNE plots in Figure 5 as part
of a qualitative analysis of the embedding separa-
tion between modalities for the CODE-CLM objec-
tive and the 350M PanGu-Coder model.15

In the scenario of def, we can see that definition
go further apart from default as we move to the
code embedding space. For when, the neighbours
in each space are quite different. In the docstring
space, some random tokens appear that are not
present in the code space. For except, including
and excluding in NL are close in the docstring space
but further apart in the code space. Finally, for
split, we observe it gets closer with replace,
lower and strip in the code space while in the
docstring space, it can be found bundled together
with many other tokens.

15We attribute credits to https://github.com/
Phlya/adjustText for the aligning labels with points.
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Model Model Params Layers FFN size Heads Context Size Vocab
(cCNTX) (nVOCAB)

PyCodeGPT (Zan et al., 2022) 111 M 12 768 12 1,024 32,000
PanGu-Coder (Christopoulou et al., 2022) 118 M 12 768 12 1,024 32,012
PanGu-Coder (Christopoulou et al., 2022) 349 M 24 1,024 16 1,024 32,012

Table 5: Models configuration.

MODEL SIZE nCNTX nVOCAB
DATA TRAIN HUMANEVAL (%) MBPP (%)
(GB) TOKENS P@1 P@10 P@100 P@1 P@10 P@100

PANGU-CODER (CCLM-PARTIAL) 300 M 1,024 32.4 K 97 179 B 21.3 26.3 37.9s 18.6 37.4 54.4
CODEX 300 M 4,096 50 K 729 400 B 13.2 20.4 36.3 - - -
ALPHACODE 302 M 2,304 8 K 715 - 11.6 18.8 31.8 - - -
CODEGEN MULTI 350 M 2,048 50 K 1,595 250 B 6.7 10.6 16.8 7.5 24.2 46.4
CODEGEN MONO 350 M 2,048 50 K 1,812 325 B 12.8 23.1 35.2 14.6 41.5 63.0
PANGU-CODER 317 M 1,024 42 K 147 211 B 17.1 24.1 34.6 16.2 34.4 53.7

ALPHACODE 1.1 B 2,304 8 K 715 - 17.1 28.2 45.3 - - -
SANTACODER 1.1 B 2,048 49 K 268 236 B 18.0 29.0 49.0 35.0 58.0 77.0
INCODER 1.3 B 2,048 27.6 K 204 52 B 8.0 - - 10.9 - -

INCODER 6.7 B 2,048 27.6 K 204 52 B 15.2 27.8 47.0 19.4 - -

Table 6: Pass@k rates on the HumanEval dataset, among various models. Sizes are reported in thousands (K), mil-
lions (M), billions (B) and trillions (T). CB refers to CodeBLUE. Models: CodeX (Chen et al., 2021), AlphaCode (Li
et al., 2022), CodeGen (Nijkamp et al., 2023), PanGu-Coder (Christopoulou et al., 2022), SantaCoder (Allal et al.,
2023), InCoder (Fried et al., 2023)14. Best results across the 300M models are bolded.
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Figure 5: T-SNE plots of the top 20 neighbours of the tokens def, when, except and split (top to bottom) on
different embedding spaces.
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