
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1178–1193

March 17-22, 2024 c©2024 Association for Computational Linguistics

Improving Generalization in Semantic Parsing
by Increasing Natural Language Variation

Irina Saparina and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

i.saparina@sms.ed.ac.uk mlap@inf.ed.ac.uk

Abstract

Text-to-SQL semantic parsing has made sig-
nificant progress in recent years, with various
models demonstrating impressive performance
on the challenging Spider benchmark. How-
ever, it has also been shown that these models
often struggle to generalize even when faced
with small perturbations of previously (accu-
rately) parsed expressions. This is mainly due
to the linguistic form of questions in Spider
which are overly specific, unnatural, and dis-
play limited variation. In this work, we use
data augmentation to enhance the robustness
of text-to-SQL parsers against natural language
variations. Existing approaches generate ques-
tion reformulations either via models trained
on Spider or only introduce local changes. In
contrast, we leverage the capabilities of large
language models to generate more realistic and
diverse questions. Using only a few prompts,
we achieve a two-fold increase in the number of
questions in Spider. Training on this augmented
dataset yields substantial improvements on a
range of evaluation sets, including robustness
benchmarks and out-of-domain data.1

1 Introduction

Semantic parsing is the task of mapping natural
language utterances to machine-interpretable ex-
pressions such as SQL queries or logical forms. It
has emerged as an important component in many
natural language interfaces (Őzcan et al., 2020)
with applications in robotics (Dukes, 2014), ques-
tion answering (Zhong et al., 2017; Yu et al., 2018),
dialogue systems (Artzi and Zettlemoyer, 2011),
and the Internet of Things (Campagna et al., 2017).

The release of the Spider dataset (Yu et al., 2018)
marked an important milestone in text-to-SQL se-
mantic parsing. Apart from its considerable size,
Spider stands out for including complex and nested

1Model checkpoints and data are available at github.com/
saparina/Text2SQL-NLVariation

queries, and databases from various domains. Im-
portantly, it exemplifies a cross-domain generaliza-
tion setting, i.e., models trained on Spider are ex-
pected to parse natural language questions for any
given database, even in previously unseen domains.
In practice, models trained on Spider degrade sig-
nificantly when tested on different databases from
other datasets, for example, on real-world data
from Kaggle and Stack Exchange websites (Suhr
et al., 2020; Lee et al., 2021; Hazoom et al., 2021).

The linguistic composition of questions in Spider
contributes to this performance gap. Unlike real-
world applications where user questions may be
concise, ambiguous, and necessitate commonsense
reasoning or domain-specific knowledge, questions
in Spider are often overly explicit, directly men-
tioning database entities even when such informa-
tion is unnecessary for inferring the underlying
intent. An example is shown in Figure 1, the first
question includes redundant details (e.g., customer,
first name, last name) which serve as references
to databases entities. Omitting these details would
not change the meaning of the question but rather
make it more colloquial. Due to the limited diver-
sity of questions, Spider falls short in providing
enough examples for learning essential skills such
as grounding and reasoning. As a result, models
tend to overfit to Spider-style questions, and even
minor perturbations in how questions are phrased
lead to considerable performance decrease, some-
times up to 22% (Gan et al., 2021b; Deng et al.,
2021; Pi et al., 2022; Chang et al., 2023).

Efforts to automatically increase its diversity of-
ten rely on text generation models trained on the
same Spider data and unavoidably inherit its char-
acteristics (Zhong et al., 2020b; Wang et al., 2021;
Wu et al., 2021; Jiang et al., 2022). In this work,
we propose to augment the training data for text-to-
SQL parsers with more realistic and diverse ques-
tion reformulations. We leverage the capabilities of
large language models for rewriting utterances and

1178

https://github.com/saparina/Text2SQL-NLVariation
https://github.com/saparina/Text2SQL-NLVariation

devise prompts designed to enhance model robust-
ness against linguistic variations. Our prompts con-
sist solely of instructions and questions and are easy
to use. We train three state-of-the-art text-to-SQL
parsers on Spider (Yu et al., 2018) with augmenta-
tions generated by our approach. Extensive experi-
ments show that a two-fold increase in the number
of questions substantially improves model gener-
alization ability. Our augmentations increase ro-
bustness against question perturbations when mod-
els are evaluated on the challenging Dr.Spider sets
(Chang et al., 2023) and deliver improvements in a
zero-shot setting, when models are tested on out-of-
domain datasets like GeoQuery (Zelle and Mooney,
1996) and KaggleDBQA (Lee et al., 2021).

Our contributions are three-fold: a proposal of
rewrite operations to render questions more diverse
and natural; a methodology for augmenting exist-
ing datasets based on the proposed reformulations;
and empirical results validating our approach im-
proves generalization across models and datasets.

2 Related Work

Out-of-domain Generalization Several datasets
have been released to facilitate the development of
models with generalization capabilities. WikiSQL
(Zhong et al., 2017) is a large-scale benchmark
with different databases but only one table. As
a result, WikiSQL queries are relatively easy to
parse due to the use of a limited set of operations.
Spider (Yu et al., 2018), contains multiple tables
per database which result in complex SQL queries.

Suhr et al. (2020) examine the performance of
Spider-trained models on datasets varying in terms
of the questions being asked, the database structure,
and SQL style. They discover that a key challenge
in achieving generalization lies in linguistic varia-
tion, and propose augmenting Spider’s training set
with WikiSQL data. Our work addresses the prob-
lem of question diversity in Spider, without com-
promising its complex query structures or multi-
table database nature. We evaluate our approach
on GeoQuery (Zelle and Mooney, 1996), a dataset
similar to Spider in terms of database structure
and SQL queries but different in the style of ques-
tions. We also report results on KaggleDBQA (Lee
et al., 2021), a dataset with real-world databases
and questions created by users with access to field
descriptions rather than database schemas.

BIRD (Li et al., 2023b) is a recently released a
text-to-SQL benchmark, aiming to highlight real-

world challenges with large-scale databases which
often contain dirty and noisy values and how to
express SQL queries to improve execution speed.
They show that incorporating manually annotated
external knowledge that includes synonyms im-
proves performance. Our augmentations can be
viewed as an alternative to this approach; we learn
language variations without oracle knowledge.

Robustness to Perturbations Another challenge
for text-to-SQL parsers is robustness to small per-
turbations. Previous studies evaluate robustness in
the single-domain setting (Huang et al., 2021) and
across databases, e.g., by removing or paraphras-
ing explicit mentions of database entities (Spider-
Realistic; Deng et al. 2021) or by substituting such
mentions with synonyms (Spider-Syn; Gan et al.
2021a). Other work explores the effect of perturba-
tions in the database schema (Pi et al., 2022) and
also in questions (Ma and Wang, 2021). Recently,
Chang et al. (2023) released Dr.Spider, a compre-
hensive robustness benchmark with a wide range
of perturbations in the database schema, questions,
and SQL semantics. We evaluate our approach on
their “question sets” which cover a broader range of
language variations compared to previous efforts.

Data Augmentation Several data augmentation
and adversarial training techniques have been pro-
posed to support SQL queries executed on a single
table (Li et al., 2019; Radhakrishnan et al., 2020)
and multiple tables (Zhong et al., 2020b; Wang
et al., 2021; Wu et al., 2021; Deng et al., 2021; Wu
et al., 2021; Jiang et al., 2022). Augmentations in
earlier work (Gan et al., 2021a; Deng et al., 2021;
Ma and Wang, 2021; Huang et al., 2021) target
specific linguistic expressions like synonyms or
paraphrases. We leverage the capabilities of (very)
large languages models (LLMs; Brown et al. 2020;
Chowdhery et al. 2022) to generate linguistically
diverse natural language questions. Recent efforts
(Dai et al., 2023; He et al., 2023) have shown that
LLMs can serve as annotators when given sufficient
guidance and examples mainly for text classifica-
tion tasks.

3 Motivation

3.1 Problem Formulation

Semantic parsing aims to translate a natural lan-
guage utterance into a formal representation of its
meaning. We focus on meaning representations in
the form of SQL queries that can be executed in

1179

some database to retrieve an answer or denotation.
In the cross-domain setting, the parser is not limited
to a specific database and can be in theory applied
to arbitrary databases and questions. In practice,
this task is more or less complex depending on the
database in hand, i.e., the number of tables and
values, the naming conventions used for tables and
columns, the way values are formatted, and spe-
cific domain characteristics. We do not consider
these challenges in this work, focusing instead on
generalization issues that arise from the variation
of questions in natural language.

3.2 Types of Utterances in Semantic Parsing

Recent work has demonstrated the importance of
wording in semantic parsing, indicating that certain
question formulations can be more difficult to parse
than others (Radhakrishnan et al., 2020; Gan et al.,
2021a; Deng et al., 2021; Chang et al., 2023).

The level of difficulty for a question can be influ-
enced by the amount of task-specific background
knowledge used to formulate it. For instance, users
familiar with SQL and the underlying database will
have some idea of the desired program, and will
be able to articulate their intentions more precisely,
e.g., by providing explicit instructions. In contrast,
users unfamiliar with the task are more likely to
ask general questions in a colloquial style. Figure 1
illustrates different question formulations with the
same intent. The first question could have been
posed by a user who is well-versed in SQL and
has knowledge of the database; it mentions spe-
cific database entities and operations like summa-
tion and filtering, unlike the second question which
does not have any such details. More formally, we
distinguish between two types of utterances:

Utterances which demonstrate prior knowledge
are closely aligned with the desired programs, high-
light logical structure operations, and explicit ref-
erences to database entities. Such utterances re-
semble instructions, suggesting the user has some
understanding of the desired program. In Figure 1,
the first question falls under this category, presup-
posing knowledge of summation and filtering oper-
ations and the names of entities (e.g., first_name,
last_name) used in the target SQL query.

Utterances which do not demonstrate prior
knowledge are general descriptions of intent, ex-
pressed in a simple, colloquial language. They
do not provide intentional hints about the desired

Database: driving_school
Customers

customer_id . . . first_name last_name . . . email_address

Lessons
lesson_id . . . customer_id lesson_time . . . price

Prior
Questions SQL DB

1. Calculate the total sum of lesson times filtering
the results by selecting the customer with the first
name "Rylan" and the last name "Goodwin".

✓ ✓

2. How long did Rylan Goodwin’s lesson last? X X

3. How long is the total lesson time taken by a cus-
tomer with a first name as Rylan and a last name
as Goodwin?

X ✓

SQL Query
SELECT sum(T1.lesson_time) FROM Lessons AS T1 JOIN
Customers AS T2 ON T1.customer_id = T2.customer_id WHERE
T2.first_name = "Rylan" AND T2.last_name = "Goodwin".

Figure 1: Different types of questions that are related to
the same database (only relevant tables and columns are
shown) and map to the same SQL query.

program, but are often ambiguous, requiring ad-
ditional reasoning based on domain or common
sense knowledge. In the examples shown in Fig-
ure 1, the second question belongs to this category,
it is laconic, underspecified, and inherently natural.

These types of utterances represent two impor-
tant edge cases but do not cover all possibilities. In
the context of text-to-SQL semantic parsing, infor-
mation about the database schema and its contents
can also be useful when formulating questions. We
thus introduce a third category that falls between
having task-specific knowledge and none at all.

Utterances which demonstrate knowledge of the
database schema are general descriptions of in-
tent but with explicit references to related database
entities. This category differs from the previous
two in the type of prior knowledge used; users
are familiar with the database schema and pos-
sibly database content but have no expertise in
query construction. The third question in Figure 1
includes explicit references to the database table
(e.g., customers) and its columns (e.g., lesson_time,
first_name, last_name). Because of that, questions
may be less coherent and natural. In our example,
the question contains redundant details such as first
name, last name, and customer.

Questions in Spider (Yu et al., 2018) often in-
clude explicit mentions of database elements (Deng
et al., 2021). This is a by-product of Spider’s
creation process which encouraged annotators fa-

1180

miliar with SQL to formulate the questions more
clearly and explicitly. In contrast, other datasets
like GeoQuery (Zelle and Mooney, 1996) or cross-
domain KaggleDBQA (Lee et al., 2021) contain
less explicit questions with a smaller percentage of
database entity mentions. In this work, we auto-
matically augment Spider’s training set with more
general and natural questions aiming to develop se-
mantic parsing models that can effectively handle
all types of utterances mentioned above.

4 Data Generation

We augment the training set of Spider (Yu et al.,
2018) by leveraging large language models. Specif-
ically, we exploit ChatGPT’s2 text generation ca-
pabilities (gpt-3.5-turbo-0301) and ask it to
rephrase Spider questions (no SQL- or database-
specific information is provided; see Table 1), using
three types of rewrite operations:

1. Deletion of words or phrases which are redun-
dant for understanding the question’s intent. For
this purpose, we use two instructions: the first
one simplifies the question, while the second one
explicitly hides unnecessary details that do not
change the meaning. The first instruction affords
ChatGPT more freedom in rewriting the question.
In Table 1, examples 1–2 show how Spider ques-
tions are reformulated with these instructions.

2. Substitution of words or phrases with simpler
ones. We instruct ChatGPT to replace words
with their synonyms and also to more generally
attempt to simplify by substituting a few words in
the question. In Table 1, examples 3–4 show how
questions are rewritten with these instructions.

3. Rewriting of the entire question. Some ques-
tions can have the same meaning, despite being
significantly dissimilar in their surface realisa-
tion. For example, the questions Where do most
people live? and Which cities have the largest
population? are related to the same database
about cities and express the same intent but have
no words in common. We instruct ChatGPT to
provide different ways of expressing a question.
We empirically find that ChatGPT can be too con-
servative at times and also include a prompt with
examples to encourage more drastic reformula-
tions. In Table 1, questions 5–6 show example
outputs for these instructions.

We also ask ChatGPT to paraphrase questions
(see example 7 in Table 1). This instruction may

2chat.openai.com

1. Instruction: Simplify

Original
Question

Which club has the most female students as
their members? Give me the name of the
club.

Output Which club has the most female students?

2. Instruction: Simplify by hiding details

Original
Question

What is the title and credits of the course that
is taught in the largest classroom (with the
highest capacity)?

Output What course is taught in the biggest
classroom and what are its credits?

3. Instruction: Simplify using synonyms

Original
Question

What is the average duration in milliseconds
of tracks that belong to Latin or Pop genre?

Output What is the mean length in milliseconds of
Latin or Pop songs?

4. Instruction: Simplify using substitutions

Original
Question

What are the locations that have gas stations
owned by a company with a market value
greater than 100?

Output Where are the gas stations owned by a
company worth more than 100?

5. Instruction: Express in a different way

Original
Question

What is the number of routes operated by the
airline American Airlines whose destinations
are in Italy?

Output How many routes does American Airlines
have that fly to Italy?

6. Instruction: Examples of the question
simplification: <. . .>

Original
Question

What are the names of body builders whose
total score is higher than 300?

Output Who are the body builders with a score over
300?

7. Instruction: Paraphrase

Original
Question

Return the categories of music festivals that
have the result "Awarded".

Output List the categories of music festivals that
have been recognized with awards.

Table 1: Different types of augmentation generated for
Spider questions. The full version of the instructions for
generation is shown in Appendix A, Table 6.

be viewed as a generalization of previous reformu-
lations, however, in practice it is only somewhat
helpful. ChatGPT often generates very similar ver-
sions of the original question, retaining the same
details, style and structure following this instruc-
tion. We consider this conservative paraphrasing
strategy to be an advantage as almost all machine-
generated questions preserve the meaning of the
original question. To verify the quality of gener-
ated paraphrases, we compute the cosine similarity
between the original and generated questions.

1181

https://chat.openai.com

Augmentation Type # examples

Simplify 774
Simplify by hiding details 1,136
Simplify using synonyms 1,285
Simplify using substitutions 1,316
Paraphrase 1,130
Express in a different way 1,065
Prompt with examples 1,256

Total 7,962

Table 2: Question reformulations generated for Spider;
number of generations per instruction.

5 Experimental Setup

Our experiments aim to evaluate the performance
of models trained specifically for cross-database
text-to-SQL parsing. We are interested in two types
of generalization: robustness to controllable per-
turbations in utterances and adaptation to new do-
mains with different question styles. Perturbations
allow us to study more closely the impact of lan-
guage variations, while new domains provide a
more realistic and challenging setting. We first
describe the datasets we use for training and evalu-
ation and then briefly discuss the semantic parsing
models and metrics we employ in our experiments.

5.1 Training Datasets
Our primary training dataset is Spider (Yu et al.,
2018), which contains 7,000 questions to 140 differ-
ent databases and 3,981 target queries.3 Although
there can be more than one question for the same
intent (usually two), linguistic variations tend to be
scanty and limited. We augment Spider with ad-
ditional questions using ChatGPT as an automatic
annotator. For each intent in the original training
set, we generate two question reformulations based
on the types specified in Section 4. We choose the
augmentation types randomly and do not accept
duplicates.

Figure 2 shows the distribution of cosine simi-
larities between the original Spider questions and
the generated reformulations. We measure cosine
similarity based on the SimCSE embeddings of
Gao et al. (2021). As can be seen, the majority of
paraphrases are semantically similar to the Spider
question (the mean similarity is 0.88). Experiments
with different filtering thresholds (ranging from 0.5
to 0.7 with a step of 0.05) revealed that storing all

3We exclude the single-domain datasets Yu et al. (2018)
employ in addition to their data.

Figure 2: Distribution of cosine similarities between
Spider questions and generated reformulations.

generated examples, effectively adopting a thresh-
old of 0.5, obtained best results. Additionally, we
manually inspected 100 reformulations and found
only 6% to be incorrect (i.e., inaccurate expressions
of intent). Analysis in Appendix B further shows
that our augmentations do not affect the nature of
parsing errors.

The resulting training set contains 14,954 in-
stances; statistics for each category are in Table 2
and examples in Appendix E. The cost of calling
the ChatGPT API to obtain our augmentations is
approximately 7.5$.

5.2 Evaluation Datasets

The Spider development set consists of 1,034 ques-
tions to 20 databases and 564 target SQL Training
Datasets. Since these questions share the same
style and level of detail as the training set, we in-
stead focus on evaluation sets with more natural
and diverse language. Specifically, we present re-
sults on two groups of evaluation sets. The first
group are datasets derived from the Spider develop-
ment set, featuring identical SQL Training Datasets
and databases which allow us to assess the model’s
resilience to variations in linguistic expression. The
second group are independent datasets which not
only differ in language usage but also in SQL style
and database specifics. This allows us to evaluate
model performance in more realistic conditions.

Datasets Based on Spider Chang et al. (2023)
have recently released Dr.Spider, a comprehensive
robustness benchmark which includes 9 evaluation
sets with 7,593 examples of perturbations in nat-
ural language questions (NLQ sets). They have
also created evaluation sets for database and SQL
perturbations which are out of scope for this work.
NLQ perturbation sets are based on the Spider de-
velopment set, they contain the same databases

1182

and gold Training Datasets, deviating only in terms
of the questions asked. They are generated with
OPT (Zhang et al., 2022), a large pretrained lan-
guage model, and manually filtered by SQL experts.
There are three main categories of perturbations:
change one or a few words that refer to SQL key-
words (for example, replace the word maximum
referring to the max SQL function with the largest),
change references to columns (for example, re-
place name of the countries referring to column
CountryName with which countries) and change
references to database values (for example, replace
players from the USA referring to the value USA
with American players). Changes are made by
replacing words with their synonyms or carrier
phrases (e.g., name of the countries and which coun-
tries). Note that our augmentations target solely
language variations and do not manipulate gold
SQL queries.

Other Datasets GeoQuery (Zelle and Mooney,
1996) is a single-domain semantic parsing dataset
with questions to a database of US geography. We
use a version with SQL queries as logical forms
and query-based splits (Finegan-Dollak et al., 2018)
with a test set of 182 examples. GeoQuery ques-
tions are concise and their interpretation often de-
pends on domain knowledge. For example, in the
question what is the largest city in the smallest state
in the usa, the largest city implies the city with the
largest population but the smallest state implies the
state with the smallest area.

KaggleDBQA (Lee et al., 2021) is a cross-
domain text-to-SQL dataset for testing models un-
der more realistic conditions. It contains 272 ex-
amples related to 8 real-world databases which
can have abbreviated table and column names and
“dirty” values. Questions were collected with anno-
tators having access to column descriptions only,
rather than the actual database schema (the dataset
provides these descriptions but we do not use them).
This simulates realistic database usage but also cre-
ates a challenge for semantic parsers as questions
cannot be easily aligned to target SQL queries. For
example, the question Which artist/group is most
productive? to a database with information on hip
hop torrents should be parsed into query SELECT
artist FROM torrents GROUP BY artist ORDER
BY count(groupName) DESC LIMIT 1, as produc-
tive refers to the number of releases and column
groupName contains released titles.

5.3 Models

Current approaches frame text-to-SQL parsing as
a sequence-to-sequence problem. The input is the
concatenation of question and database entities,
including table and column names, and content val-
ues extracted based on string matching, and the
output is an SQL query. Shaw et al. (2021) show
that a pre-trained T5-3B model (Raffel et al., 2020)
fine-tuned on Spider (Yu et al., 2018) is a com-
petitive text-to-SQL parser. Scholak et al. (2021)
build on this approach with PICARD, a method for
constrained decoding that filters the beam at each
generation step, taking into account task-specific
constraints such as grammatical correctness and
consistency with the database. Recently, Li et al.
(2023a) propose RESDSQL, an approach that de-
couples schema linking from SQL parsing. They
first filter relevant database entities and then use
T5-3B to generate a sketch (i.e., SQL keywords)
and then the actual SQL query. We use the best ver-
sion of their model which also leverages NatSQL
intermediate representations (Gan et al., 2021c).

We use the implementations from Scholak et al.
(2021) and Li et al. (2023a) for training models
on augmented data and their released checkpoints
for training on the original Spider. All models are
trained for 100 epochs; we use a batch size of 200
for the base T5-3B to reduce the computational
cost, leaving all other hyperparameters unchanged.
We train on a single NVIDIA A100 GPU.

Our approach to data augmentation is model ag-
nostic but our experiments focus on settings where
the model is specifically trained or fine-tuned on
text-to-SQL data. An alternative is large language
models which are trained on huge text collections
(including code) and able to translate natural lan-
guage to SQL, without further fine-tuning on task-
specific data (Rajkumar et al., 2022). Since our
augmentations are generated by ChatGPT, a model
trained with Reinforcement Learning for Human
Feedback (Christiano et al., 2017), we include it as
a standalone baseline. Following Liu et al. (2023),
we prompt ChatGPT in a zero-shot setting with the
description of the database schema followed by the
question (the full prompt is shown in Appendix C).
Large language models like ChatGPT differ from
task-specific models in many respects, including
potential use cases, resource requirements, trans-
parency, and accessibility and thus any comparison
should be interpreted with a grain of salt.

1183

5.4 Metrics

We report performance as execution accuracy
which compares the execution results of gold and
predicted queries (using the implementation of
Zhong et al. 2020a).

Firstly, we evaluate model robustness to pertur-
bations in questions, by considering zero-shot pars-
ing on Dr.Spider. Evaluation sets for Dr.Spider
NLQ fall in two categories: pre-perturbed sets
are subsets of the Spider development set, while
post-perturbed sets are the same subsets but with
rewritten questions instead of the original Spi-
der ones. Execution accuracy on post-perturbed
sets measures absolute robustness, while the dif-
ference in execution accuracy between pre- and
post-perturbed sets measures relative robustness.
We also evaluate out-of-domain generalization by
considering the execution accuracy of zero-shot
parsers on GeoQuery and KaggleDBQA.

6 Results

Our experiments compare models trained on the
original Spider training data against models trained
on Spider with our augmentations. We also report
results for ChatGPT tested in a zero-shot mode.
Appendix D provides additional results (on more
evaluation sets) and detailed versions of all tables.

6.1 Robustness to Question Perturbations

Table 3 reports average execution accuracy on eval-
uation sets from Dr.Spider (Chang et al., 2023) con-
taining perturbations in natural language questions.
We also present results on the original Spider devel-
opment set. Pre/Post refer to subsets before/after
perturbations (post-perturbation sets are the same
Spider subsets but with the questions rewritten; ab-
solute robustness).

We compare T5-3B with and without PICARD
and RESDSQL models fine-tuned on the original
Spider data and our augmentations; we also pro-
vide results for ChatGPT evaluated in the zero-shot
setting. Our results show that ChatGPT is most
vulnerable to question reformulations among all
models. Chang et al. (2023) reach similar conclu-
sions with Codex (Chen et al., 2021), another large
pre-trained language model, and hypothesize this
is due to the training data being biased towards
docstrings (which is what most natural language
utterances look like on websites like GitHub).

Absolute robustness (accuracy on post-perturbed
sets) improves by more than 3% for augmented

Dr.Spider NLQ

Model Spider Dev ↑ Pre ↑ Post ↑ Diff ↓
T5-3B 74.4 70.3 58.9 11.4

+Augmented 75.3 72.6 62.7 9.9

PICARD 79.3 76.0 65.0 11.0
+Augmented 79.3 76.7 68.3 8.4

RESDSQL 84.1 84.7 69.3 15.4
+Augmented 84.0 84.6 72.5 12.1

ChatGPT 72.2 73.8 57.9 15.9

Table 3: Execution Accuracy on Spider development
set and Dr.Spider NLQ subsets, before (Pre) and after
perturbations (Post: absolute robustness) and the gap
between them (Diff: relative robustness). All models
are tested in a zero-shot setting; +Augmented refers to
models fine-tuned on the augmented Spider data.

models compared to base models in almost all
cases. Moreover, the performance gap on pre-
and post-perturbed data decreases which indicates
better relative robustness for augmented models.
Augmented RESDSQL delivers the highest post-
perturbation accuracy of 72.5% and augmented PI-
CARD demonstrates the smallest gap between pre-
and post-perturbations of 8.4% confirming that our
augmentations improve both absolute and relative
robustness.

Augmented models do not have an advantage
over base models on the original Spider develop-
ment set (see the last row in Table 3). There are
two reasons for this: firstly, we augment questions
only without adding new SQL queries, and sec-
ondly, augmentations shift the language distribu-
tion by removing specific details and rendering
questions more natural, but the development set
remains closer to the original training set.

Augmented models do not have an advantage
over base models on the original Spider develop-
ment set (see the last row in Table 3). There are
two reasons for this: firstly, we augment questions
only without adding new SQL queries, and sec-
ondly, augmentations shift the language distribu-
tion by removing specific details and rendering
questions more natural, but the development set
remains closer to the original training set.

6.2 Generalization to Other Datasets

Table 4 summarizes our results in the more chal-
lenging zero-shot setting. Specifically, we evaluate
model performance on two out-of-domain datasets,
namely GeoQuery (Zelle and Mooney, 1996) and

1184

KaggleDBQA

Model GeoQuery Nuclear Crime Pesticide Math Baseball Fires WhatCD Soccer Avg

T5-3B 54.4 59.4 48.2 16.0 7.1 20.5 43.2 7.3 16.7 27.3
+Augmented 60.4 56.3 48.2 18.0 7.1 20.5 43.2 26.8 22.2 30.3

PICARD 56.6 59.4 51.9 18.0 10.7 25.6 43.2 9.8 22.2 30.1
+Augmented 62.6 56.3 48.1 22.0 14.3 25.6 43.2 24.4 27.8 32.7

RESDSQL 56.6 59.4 48.1 16.0 25.0 23.1 43.2 17.1 22.2 31.8
+Augmented 59.3 65.6 44.4 24.0 25.0 23.1 43.2 19.5 27.8 34.1

ChatGPT 20.9 34.4 18.5 16.0 10.7 15.4 27.0 4.9 16.7 17.9

Table 4: Execution accuracy on GeoQuery test set (query splits) and different databases from KaggleDBQA. All
models are tested in a zero-shot setting; +Augmented refers to models fine-tuned on the augmented Spider data.

KaggleDBQA (Lee et al., 2021). Both datasets
differ from Spider in many respects, i.e., the types
of questions being asked, the style of SQL queries,
and the database structure.

We find ChatGPT performs very poorly on these
datasets compared to models fine-tuned on Spi-
der with or without augmentations. In all cases,
augmented models improve execution accuracy
compared to base models. PICARD trained with
augmentations performs best on GeoQuery reach-
ing an accuracy of 62.6% (a 6% difference against
the base model). Augmented RESDSQL performs
best on KaggleDBQA, which is more challenging,
reaching an average accuracy of 34.1%. Augmenta-
tions are generally helpful but not across all individ-
ual categories (note that categories are represented
by a limited number of examples per database
and even a small number of errors can result in a
drop of several percentage points). We suspect the
low accuracy on KaggleDBQA is primarily due to
challenges that are unrelated to language variation.
In particular, its databases contain abbreviations
which might be difficult to parse and SQL queries
exemplify operations which are not present in Spi-
der (e.g., arithmetic operators between columns).

6.3 Ablations and Analysis

We next investigate the impact of different types of
question reformulations introduced in Section 4,
and also compare against related augmentation
methods: Gan et al. (2021a) manually annotate
Spider-Syn with synonym substitutions, whereas
Ma and Wang (2021) introduce MT-TEQL, a frame-
work for generating semantics-preserving variants
of utterances and database schemas. We use a ver-
sion of MT-TEQL that changes prefixes and aggre-
gator mentions in Spider questions. Additionally,
we include a baseline which follows our procedure

for data generation but uses only one prompt: pro-
vide different ways of expressing a question.

Table 5 shows the execution accuracy of T5-3B
trained with and without augmentations pertain-
ing to Deletion, Substitution, Rewriting, and Para-
phrasing. We also include results with All aug-
mentations combined. The ablation study shows
that different types of augmentation are helpful
for different datasets. On GeoQuery, models aug-
mented with deletions and substitutions perform
best; substitutions also perform best on the NLQ
sets of Dr.Spider and KaggleDBQA. Paraphrasing-
based augmentations are best for the original Spider
development set, with Rewriting trailing behind.
Results obtained with a single prompt (express
in a different way) further illustrate the need
for diverse instructions. We also trained T5-3B
with augmentations from Spider-Syn (Gan et al.,
2021a) and MT-TEQL (Ma and Wang, 2021). For
a fair comparison, we randomly sample MT-TEQL

examples with question transformations to match
the training size obtained through our augmenta-
tions (Spider-Syn and one-prompt baselines also
match our training size). As can be seen in Table 5,
our combined augmentations outperform models
trained on Spider-Syn and MT-TEQL on all eval-
uation sets (Dr.Spider NLG, GeoQuery, and Kag-
gleDBQA) and the improvement comes from refor-
mulating the questions rather than increasing the
training set.

The results in Table 5 reaffirm the observation
that different evaluation sets exemplify different
linguistic variations and that there is no single type
of augmentation that represents them all. Rather,
a combination of augmentations is needed to per-
form well across datasets. This in turn suggests
that a model can acquire useful knowledge by be-
ing exposed to a diverse range of linguistic varia-

1185

Dr.Spider NLQ

Model Spider Dev ↑ Post ↑ Diff ↓ GeoQuery ↑ KaggleDBQA ↑
T5-3B 74.4 58.9 11.4 54.4 27.3

+ Deletion 74.7 59.7 11.5 56.0 28.7
+ Substitution 75.1 62.9 9.8 56.0 31.2
+ Rewriting 75.0 62.3 11.2 53.8 27.4
+ Paraphrase 75.3 61.4 11.6 41.8 25.9
+ All (ours) 75.3 63.2 9.9 60.4 30.3

+ One Prompt 74.4 60.4 15.4 40.7 29.2
+ Spider-Syn 75.6 59.2 13.2 49.5 27.0
+ MT-TEQL* 75.0 62.0 11.1 47.8 29.2

Table 5: Execution accuracy on Spider development set, Dr.Spider NLQ (Post: absolute robustness; Diff: relative
robustness), GeoQuery, and KaggleDBQA for T5-3B base and trained with different augmentations including
Spider-Syn (Gan et al., 2021a) and sub-sampled (diacritic *) version of MT-TEQL (Ma and Wang, 2021).

tions. We also observe that a model trained on com-
bined augmentations outperforms models trained
on more specialized datasets (i.e., Spider-Syn and
MT-TEQL) which confirms that relying solely on
local transformations of the questions is not suffi-
cient for better generalization.

7 Conclusion

We propose to enhance the generalization capa-
bilities of text-to-SQL parsers by increasing nat-
ural language variation in the training data. We
leverage a large language model like ChatGPT to
automatically generate a variety of question refor-
mulations, thereby augmenting existing datasets
with more natural and diverse questions. We eval-
uate state-of-the-art models trained with and with-
out our augmentations on a variety of challenging
datasets focusing on robustness (to perturbations)
and out-of-domain generalization. Across models
and datasets we find that augmentations improve
performance by a wide margin. Our experiments
further underscore the need for a broad range of
augmentations representing the full spectrum of
rewrite operations. In the future, we plan to ex-
plore the potential of large language models for
multilingual semantic parsing.

Limitations

Our work aims to increase the robustness of seman-
tic parsers against natural language variation but
does not handle problems related to SQL queries
and database structures that are also important for
out-of-domain generalization. We obtain augmen-
tations using ChatGPT, a black-box model pro-
vided by OpenAI, which limits its usage for non-

academic purposes. Our augmentations are un-
filtered and may add a small amount of noise to
training data. Moreover, even though our proposed
rewrite operations are diverse, they may still not
cover all possible reformulations. In fact, we found
it challenging for ChatGPT to generate wildly dif-
ferent expressions of the original intent. Finally,
this work does not consider multilingual or conver-
sational semantic parsing which we hope to explore
in the future.

Acknowledgments
We thank the meta-reviewer and anonymous re-
viewers for their constructive feedback. The au-
thors also thank Hao Zheng for insightful com-
ments on earlier versions of this work. We grate-
fully acknowledge the support of the UK Engineer-
ing and Physical Sciences Research Council (grant
EP/L016427/1).

References
Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping

semantic parsers from conversations. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 421–432, Edin-
burgh, Scotland, UK. Association for Computational
Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.

1186

https://aclanthology.org/D11-1039
https://aclanthology.org/D11-1039

Language models are few-shot learners. In Proceed-
ings of the 33st Annual Conference on Neural Infor-
mation Processing Systems, volume 33, pages 1877–
1901. Curran Associates, Inc.

Giovanni Campagna, Rakesh Ramesh, Silei Xu,
Michael Fischer, and Monica S. Lam. 2017. Al-
mond: The architecture of an open, crowdsourced,
privacy-preserving, programmable virtual assistant.
In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, page 341–350, Re-
public and Canton of Geneva, CHE. International
World Wide Web Conferences Steering Committee.

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin
Pan, Henghui Zhu, Alexander Hanbo Li, Wuwei
Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien,
Steve Ash, William Yang Wang, Zhiguo Wang, Vit-
torio Castelli, Patrick Ng, and Bing Xiang. 2023.
Dr.spider: A diagnostic evaluation benchmark to-
wards text-to-SQL robustness. In The 11th Interna-
tional Conference on Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, Guss, et al. 2021. Evaluating large
language models trained on code.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. Palm: Scaling language
modeling with pathways.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Proceedings of the 31st Annual Conference on Neural
Information Processing Systems, volume 30, Long
Beach, CA, USA. Curran Associates, Inc.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen
Xu, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu,
Hongmin Cai, Lichao Sun, Quanzheng Li, Dinggang
Shen, Tianming Liu, and Xiang Li. 2023. Auggpt:
Leveraging chatgpt for text data augmentation.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337–1350, Online. As-
sociation for Computational Linguistics.

Kais Dukes. 2014. SemEval-2014 task 6: Supervised
semantic parsing of robotic spatial commands. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 45–53,
Dublin, Ireland. Association for Computational Lin-
guistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505–
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8926–8931, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021c. Natural SQL: Making SQL easier to infer
from natural language specifications. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 2030–2042, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021.
Text-to-SQL in the wild: A naturally-occurring
dataset based on stack exchange data. In Proceedings
of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), pages 77–87,
Online. Association for Computational Linguistics.

Xingwei He, Zhenghao Lin, Yeyun Gong, A-Long Jin,
Hang Zhang, Chen Lin, Jian Jiao, Siu Ming Yiu, Nan
Duan, and Weizhu Chen. 2023. Annollm: Making
large language models to be better crowdsourced
annotators.

1187

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://openreview.net/forum?id=Wc5bmZZU9cy
https://openreview.net/forum?id=Wc5bmZZU9cy
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.3115/v1/S14-2006
https://doi.org/10.3115/v1/S14-2006
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
http://arxiv.org/abs/2303.16854
http://arxiv.org/abs/2303.16854
http://arxiv.org/abs/2303.16854

Shuo Huang, Zhuang Li, Lizhen Qu, and Lei Pan. 2021.
On robustness of neural semantic parsers. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3333–3342, Online.
Association for Computational Linguistics.

Jiarong Jiang, Yiqun Hu, Wuwei Lan, Henry Zhu, Anuj
Chauhan, Alexander Li, Lin Pan, Jun Wang, Chung-
Wei Hang, Sheng Zhang, Marvin Dong, Joe Lilien,
Patrick Ng, Zhiguo Wang, Vittorio Castelli, and
Bing Xiang. 2022. Importance of synthesizing high-
quality data for text-to-sql parsing. In NeurIPS 2022
Workshop on SyntheticData4ML.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261–2273, Online. As-
sociation for Computational Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the 37th AAAI Conference on Artificial Intelligence,
pages 13067–13075, Washington, DC, USA. AAAI
Press.

Jingjing Li, Wenlu Wang, Wei-Shinn Ku, Yingtao Tian,
and Haixun Wang. 2019. Spatialnli: A spatial do-
main natural language interface to databases using
spatial comprehension. In Proceedings of the 27th
ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, SIGSPA-
TIAL ’19, page 339–348, New York, NY, USA. As-
sociation for Computing Machinery.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Chenhao Ma, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li.
2023b. Can llm already serve as a database interface?
a big bench for large-scale database grounded text-
to-sqls.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023. A comprehensive evaluation of chatgpt’s zero-
shot text-to-sql capability.

Pingchuan Ma and Shuai Wang. 2021. Mt-teql: Eval-
uating and augmenting neural nlidb on real-world
linguistic and schema variations. Proceedings of the
VLDB Endowment, 15(3):569–582.

Fatma Őzcan, Abdul Quamar, Jaydeep Sen, Chuan Lei,
and Vasilis Efthymiou. 2020. State of the art and
open challenges in natural language interfaces to data.
In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data, SIG-
MOD ’20, page 2629–2636, New York, NY, USA.
Association for Computing Machinery.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun
Li, and Jian-Guang Lou. 2022. Towards robustness
of text-to-SQL models against natural and realistic
adversarial table perturbation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2007–2022, Dublin, Ireland. Association for Compu-
tational Linguistics.

Karthik Radhakrishnan, Arvind Srikantan, and Xi Vic-
toria Lin. 2020. ColloQL: Robust text-to-SQL over
search queries. In Proceedings of the First Work-
shop on Interactive and Executable Semantic Parsing,
pages 34–45, Online. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online. Association for Computational Lin-
guistics.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2760–2766, Online. As-
sociation for Computational Linguistics.

Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan
Xiao, Hua Wu, Min Zhang, and Haifeng Wang.
2021. Data augmentation with hierarchical SQL-
to-question generation for cross-domain text-to-SQL

1188

https://doi.org/10.18653/v1/2021.eacl-main.292
https://openreview.net/pdf?id=9Ue2wCnvdMy
https://openreview.net/pdf?id=9Ue2wCnvdMy
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://arxiv.org/pdf/2302.05965.pdf
https://arxiv.org/pdf/2302.05965.pdf
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2303.13547
http://arxiv.org/abs/2303.13547
https://doi.org/10.14778/3494124.3494139
https://doi.org/10.14778/3494124.3494139
https://doi.org/10.14778/3494124.3494139
https://doi.org/10.1145/3318464.3383128
https://doi.org/10.1145/3318464.3383128
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2020.intexsempar-1.5
https://doi.org/10.18653/v1/2020.intexsempar-1.5
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2021.naacl-main.220
https://doi.org/10.18653/v1/2021.naacl-main.220
https://doi.org/10.18653/v1/2021.emnlp-main.707
https://doi.org/10.18653/v1/2021.emnlp-main.707

parsing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8974–8983, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the 13th AAAI Con-
ference on Artificial Intelligence, volume 2, pages
1050–1055, Portland, Oregon. AAAI Press.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020a. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396–411, Online. Association for Computa-
tional Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020b. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries from
natural language using reinforcement learning.

1189

https://doi.org/10.18653/v1/2021.emnlp-main.707
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

A Data Generation

Table 6 shows the full versions of the prompts we
use to generate the augmentations defined in Sec-
tion 4 for the Spider training set.

1. Instruction: Simplify

Full version Simplify the following sentence: . . .

2. Instruction: Simplify by hiding details

Full version Simplify the sentence by hiding unnecessary
details that do not change the meaning: . . .

3. Instruction: Simplify using synonyms

Full version Simplify the following sentence using
synonyms: . . .

4. Instruction: Simplify using substitutions

Full version Make the sentence simpler by substituting
some words in . . .

5. Instruction: Express in a different way

Full version What are different ways of expressing this
question: . . .

6. Instruction: Examples of the question
simplification: <. . .>

Full version Examples of the question simplification:
Original: Find the names of stadiums whose
capacity is smaller than the average capacity.
Simplified: Which stadiums are smaller than
the average?
Original: Show the fleet series of aircraft
flown by pilots younger than 34.
Simplified: Return the fleet series of the
planes whose captains are younger than 34.
Original: Which cities have the largest
population?
Simplified: Where do most people live?
Original: In which year was most of the ships
built?
Simplified: When were most of the ships
constructed?
Original: Tell me the number of orders with
"Second time" as the order detail.
Simplified: How many orders have "Second
time" as an order detail?
Original: . . .
Simplified:

7. Instruction: Paraphrase

Full version Give me a paraphrase of the following
question: . . .

Table 6: Prompts used for data generation.

B Error Analysis

In order to verify that our augmentations do not
introduce new parsing errors, we examined exam-
ples in the Spider development set which were cor-
rectly parsed by a T5 model trained without aug-
mentations but rendered incorrect after the same

T5 model was trained with augmentations. Based
on a sample of 60 instances, we observed that the
majority of errors are similar in nature and symp-
tomatic of a T5-trained semantic parser, e.g., errors
in the output columns or join operation.

The only type of error that might be due to our
augmentations concerns minor changes in values.
Baseline T5 almost always copies values from the
question but T5 trained with augmentations can
slightly change them, e.g., use the full name in-
stead of an abbreviation or lowercase instead of
uppercase. We found this occurs in 10% of cases.
Database values are mentioned verbatim in Spider
questions but this could be different in real-world
settings or other datasets where some tolerance to
surface variations might be advantageous.

C ChatGPT Zero-Shot Prompt

Below we show the prompt we used when evaluat-
ing the zero-shot ChatGPT on text-to-SQL datasets
following Liu et al. (2023):
SQL tables , with their properties:
#
stadium(Stadium_ID , Location , Name ,

Capacity , Highest , Lowest , Average)
singer(Singer_ID , Name , Country ,

Song_Name , Song_release_year , Age ,
Is_male)

concert(concert_ID , concert_Name ,
Theme , Stadium_ID , Year)

singer_in_concert(concert_ID ,
Singer_ID)

#
How many singers do we have? Return

only a SQL query.
SELECT

D Additional Results

Table 7 shows our results on all Dr.Spider pertur-
bation subsets (NLQ refers to subsets with pertur-
bations in natural language questions, SQL and
DB are perturbations in SQL and database tokens).
We compare three models trained with and without
augmentations: T5-3B, PICARD, and RESDSQL.
We also employ ChatGPT in a zero-shot setting.
Overall, the best model is augmented RESDSQL
(74.1%) which is better than the base version by
more than 2% on post-perturbed sets. Augmented
T5-3B and PICARD also improve robustness com-
pared to base models. Augmented RESDSQL de-
livers the best average results for all three types
of perturbations and performs best on the major-
ity of individual categories, even though our aug-
mentations are not designed to improve robustness
against SQL and DB perturbations.

1190

Augmented Augmented Augmented
T5-3B T5-3B PICARD PICARD RESDSQL RESDSQL ChatGPT

Perturbation Set Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

NLQ

Keyword-synonym 70.2 62.6 73.8 65.4 72.6 66.3 75.3 69.4 81.5 72.4 84.2 74.7 64.7 55.7
Keyword-carrier 82.7 76.4 83.0 79.2 85.0 82.7 88.7 84.0 89.0 83.5 87.5 85.0 85.0 82.0
Column-synonym 63.9 51.3 66.3 54.2 71.0 57.2 68.7 59.7 78.7 63.1 77.4 66.1 66.1 48.8
Column-carrier 83.1 61.7 82.0 70.5 86.9 64.9 85.0 73.1 86.5 63.9 86.4 76.3 82.2 52.0
Column-attribute 49.6 48.7 60.5 58.8 58.8 56.3 63.9 62.2 82.4 71.4 82.4 71.4 77.3 62.2
Column-value 69.1 58.6 76.3 58.9 82.9 69.4 83.2 70.4 96.4 76.6 95.1 77.6 74.0 57.9
Value-synonym 68.6 46.4 68.6 53.0 72.5 53.0 70.8 57.1 79.2 53.2 79.6 55.1 69.0 45.8
Multitype 70.1 51.1 71.4 56.3 74.4 57.1 74.0 61.4 83.8 60.7 83.8 65.7 71.9 49.8
Others 75.3 73.1 76.6 72.7 79.6 78.3 80.9 77.6 85.2 79.0 84.8 80.2 74.0 66.4

Average 70.3 58.9 73.2 63.2 76.0 65.0 76.7 68.3 84.7 69.3 84.6 72.5 73.8 57.9

SQL

Comparison 62.9 62.4 71.3 66.3 68.0 68.0 74.2 70.8 80.9 82.0 84.3 83.7 73.6 64.0
Sort-order 75.0 70.3 76.0 75.5 79.2 74.5 78.1 76.6 88.0 85.4 88.5 83.3 66.7 57.8
NonDB-number 77.1 73.3 71.8 77.1 83.2 77.1 73.3 77.9 87.8 85.5 90.8 90.8 90.8 90.1
DB-text 59.5 58.3 59.9 61.6 64.7 65.1 66.2 66.7 77.2 74.3 91.5 75.0 67.5 68.2
DB-number 83.9 83.7 79.8 78.8 86.3 85.1 84.6 83.2 88.8 88.8 91.5 91.2 82.7 79.8

Average 71.7 69.6 71.8 71.9 76.3 74.0 75.3 75.0 84.5 83.2 89.3 84.8 76.3 72.0

DB

Schema-synonym 66.4 46.9 67.8 52.8 73.0 56.5 73.4 61.9 81.3 68.3 80.9 70.4 67.6 56.0
Schema-abbreviation 69.5 53.3 71.0 55.5 74.9 64.7 75.2 65.3 82.4 70.0 81.8 71.7 68.8 63.5
Content-equivalence 84.6 40.8 72.3 46.1 88.7 43.7 86.9 37.2 90.3 40.1 91.9 41.4 81.2 46.3

Average 73.5 47.0 72.3 46.1 78.9 55.0 78.5 54.8 84.7 59.5 84.9 61.1 72.5 55.3

All 71.3 59.9 72.6 62.7 76.6 65.9 76.6 67.9 84.7 71.7 86.0 74.1 74.3 61.5

Table 7: Execution Accuracy on subsets taken from Dr.Spider (NLQ, DB, and SQL sets); model performance is
shown before (Pre) and after perturbations (Post). We compare T5-3B, T5-3B+PICARD, and RESDSQL fine-tuned
with and without augmentations, and zero-shot ChatGPT.

Augmented Augmented Augmented
Dataset T5-3B T5-3B PICARD PICARD RESDSQL RESDSQL ChatGPT

Realistic 64.2 66.7 71.4 79.3 80.7 84.0 63.4
Spider-Syn 62.4 70.8 69.8 72.8 76.9 79.2 58.6
GeoQuery dev 59.1 64.2 64.2 68.6 59.7 54.1 25.8

Table 8: Execution accuracy on Spider-Realistic, Spider-Syn and GeoQuery dev set for T5-3B with and without
PICARD and RESDSQL trained with or without augmentations.

Table 8 shows results on the additional eval-
uation sets, Spider-Realistic, (Gan et al., 2021a)
Spider-Syn with 1,034 examples, and GeoQuery
dev set with 152 examples (query splits of Finegan-
Dollak et al. 2018). Both evaluation sets are based
on the Spider development set, aiming to remove
from the questions explicit references to database
entities. These references were manually deleted or
paraphrased in Spider-Realistic and replaced with
synonyms in Spider-Syn. Augmented RESDSQL
obtains best results on both datasets (84.0% on
Spider-Realistic and 79.2% on Spider-Syn) and is
better than the base version by more than 4%. On

the GeoQuery development set, the best model is
augmented PICARD with 68.6% accuracy. Across
all benchmarks, fine-tuned text-to-SQL parsers sig-
nificantly outperform zero-shot ChatGPT.

E Examples of Spider Augmentations

We provide samples of the augmented Spider train-
ing set. Questions are grouped based on intent;
types indicate whether they are in the original Spi-
der training set or were generated with instructions:
simplify, simplify by hiding details, simplify by
synonyms, simplify by substitutions, express differ-
ently, paraphrase, or by showing examples.

1191

1. SQL query SELECT personal_name FROM Students EXCEPT SELECT T1.personal_name FROM
Students AS T1 JOIN Student_Course_Enrolment AS T2 ON T1.student_id = T2.student_id

Questions Find the personal names of students not enrolled in any course. Type: original
Which students not enrolled in any course? Find their personal names. Type: original
Find names of unenrolled students. Type: hide-details
Can you provide me with the names of the students who are not currently registered
in any course?

Type: paraphrase

2. SQL query SELECT donator_name , sum(amount) FROM endowment GROUP BY donator_name
ORDER BY sum(amount) DESC

Questions List each donator name and the amount of endowment in descending order of the
amount of endowment

Type: original

Enumerate contributors and their endowment sums in decreasing order Type: synonyms
List donors and their endowments in descending order Type: hide-details

3. SQL query SELECT count(*) FROM CLASS AS T1 JOIN enroll AS T2 ON T1.class_code = T2.class_code
WHERE T1.crs_code = ’ACCT-211’

Questions How many students enrolled in class ACCT-211? Type: original
What are the total number of students enrolled in ACCT-211? Type: original
How many pupils registered for course ACCT-211? Type: synonyms
How many students are enrolled in ACCT-211? Type: from-examples

4. SQL query SELECT T2.roomName FROM Reservations AS T1 JOIN Rooms AS T2 ON T1.Room = T2.RoomId
WHERE firstname LIKE ’%ROY%’

Questions Find the name of rooms booked by some customers whose first name contains ROY. Type: original
What are the name of rooms booked by customers whose first name has "ROY" in
part?

Type: original

What are the room names that have been reserved by customers with "ROY" in their
first name?

Type: paraphrase

What rooms did customers with "ROY" in their first name book? Type: substitutions

5. SQL query SELECT T1.account_name , T1.other_account_details FROM Accounts AS T1 JOIN
Customers AS T2 ON T1.customer_id = T2.customer_id WHERE
T2.customer_first_name = ’Meaghan’ AND T2.customer_last_name = ’Keeling’

Questions Show the account name and other account detail for all accounts by the customer
with first name Meaghan and last name Keeling.

Type: original

What are the names and other details for accounts corresponding to the customer
named Meaghan Keeling?

Type: original

What are Meaghan Keeling’s account names and details? Type: simplify
I am looking for the account details and names associated with Meaghan Keeling.
Can you help me with that?

Type: paraphrase

6. SQL query SELECT sum(acc_bal) FROM customer WHERE state = ’Utah’ OR state = ’Texas’

Questions Find the total account balance of each customer from Utah or Texas. Type: original
What are the total account balances for each customer from Utah or Texas? Type: original
Add up the account balances of customers who live in Utah or Texas. Type: express-differently
What is the total account balance for customers from Utah or Texas? Type: from-examples

7. SQL query SELECT date_of_enrolment , date_of_completion FROM Student_Course_Enrolment

Questions List all the dates of enrollment and completion of students. Type: original
What are all the dates of enrollment and completion in record? Type: original
Provide a record of the enrollment and completion dates for all students. Type: paraphrase
What are the enrollment and completion dates of all students? Type: from-examples

8. SQL query SELECT headquarter FROM manufacturers WHERE founder = ’James’

Questions Where is the headquarter of the company founded by James? Type: original
What is the headquarter of the company whose founder is James? Type: original
Where was the company founded by James headquartered? Type: express-differently
Where is the main office of the company established by James? Type: paraphrase

1192

9. SQL query SELECT max(Price) , max(Score) FROM WINE WHERE Appelation = ’St. Helena’

Questions What are the maximum price and score of wines produced by St. Helena
appelation?

Type: original

Give the maximum price and score for wines produced in the appelation St. Helena. Type: original
What is the topmost price and score that can be obtained by wines produced in St.
Helena?

Type: paraphrase

What is the highest price and score for St. Helena wines? Type: simplify

10. SQL query SELECT degrees FROM campuses AS T1 JOIN degrees AS T2 ON t1.id = t2.campus
WHERE t1.campus = ’San Francisco State University’ AND t2.year = 2001

Questions What are the degrees conferred in "San Francisco State University" in 2001. Type: original
What degrees were conferred in San Francisco State University in the year 2001? Type: original
What diplomas were granted at SF State in 2001? Type: synonyms
What degrees were given at San Francisco State University in 2001? Type: substitutions

11. SQL query SELECT membership_card FROM member WHERE address = ’Hartford’ INTERSECT
SELECT membership_card FROM member WHERE address = ’Waterbury’

Questions What is the membership card held by both members living in Hartford and ones
living in Waterbury address?

Type: original

What is the membership card for people in Hartford and Waterbury called? Type: substitutions
Is there a membership card that is valid for both Hartford and Waterbury residents? Type: express-differently

12. SQL query SELECT kids FROM Reservations WHERE FirstName = ’ROY’ AND LastName = ’SWEAZY’

Questions How many kids stay in the rooms reserved by ROY SWEAZY? Type: original
Find the number of kids staying in the rooms reserved by a person called ROY
SWEAZ.

Type: original

How many children are staying in ROY SWEAZY’s reserved rooms? Type: from-examples
How many kids are in Roy Sweaz’s reserved rooms? Type: hide-details

13. SQL query SELECT count(*) FROM products AS t1 JOIN product_characteristics AS t2
ON t1.product_id = t2.product_id JOIN CHARACTERISTICS AS t3
ON t2.characteristic_id = t3.characteristic_id WHERE t1.product_name = ’laurel’

Questions How many characteristics does the product named "laurel" have? Type: original
Count the number of characteristics of the product named ’laurel’. Type: original
How many features does "laurel" have? Type: simplify
How many qualities does the product "laurel" have? Type: substitutions

14. SQL query SELECT customer_name FROM customers WHERE payment_method = (SELECT payment_method
FROM customers GROUP BY payment_method ORDER BY count(*) DESC LIMIT 1)

Questions What are the names of customers using the most popular payment method? Type: original
Find the name of the customers who use the most frequently used payment method. Type: original
Who are the customers using the popular payment method? Type: hide-details
Who are the customers utilizing the most favored payment option? Type: synonyms

15. SQL query SELECT TYPE FROM ship WHERE Tonnage > 6000 INTERSECT SELECT TYPE FROM ship
WHERE Tonnage < 4000

Questions Show the types of ships that have both ships with tonnage larger than 6000 and
ships with tonnage smaller than 4000.

Type: original

What are the types of the ships that have both shiips with tonnage more than 6000
and those with tonnage less than 4000?

Type: original

Display ships with tonnage above 6000 and below 4000. Type: simplify
Which types of ships have tonnage exceeding 6000 and also less than 4000? Type: express-differently

16. SQL query SELECT customer_name FROM customers EXCEPT SELECT t1.customer_name FROM customers AS t1
JOIN customer_addresses AS t2 ON t1.customer_id = t2.customer_id JOIN addresses AS t3
ON t2.address_id = t3.address_id WHERE t3.state_province_county = ’California’

Questions Find the names of customers who are not living in the state of California Type: original
Discover the names of non-California customers. Type: substitutions
Who are the customers not residing in California? Type: from-examples

1193

