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Abstract

Language models (LMs) have recently shown
remarkable performance on reasoning tasks by
explicitly generating intermediate inferences,
e.g., chain-of-thought prompting. However,
these intermediate inference steps may be in-
appropriate deductions from the initial context
and lead to incorrect final predictions. Here
we introduce REFINER, a framework for fine-
tuning LMs to explicitly generate intermediate
reasoning steps while interacting with a critic
model that provides automated feedback on
the reasoning. Specifically, the critic provides
structured feedback that the reasoning LM uses
to iteratively improve its intermediate argu-
ments. Empirical evaluations of REFINER on
three diverse reasoning tasks show significant
improvements over baseline LMs of compara-
ble scale. Furthermore, when using GPT-3.5
or ChatGPT as the reasoner, the trained critic
significantly improves reasoning without fine-
tuning the reasoner. Finally, our critic model is
trained without expensive human-in-the-loop
data but can be substituted with humans at in-
ference time.

1 Introduction

Large language models (LLMs) have made signifi-
cant strides in natural language processing (NLP)
tasks (Brown et al., 2020). Recent work has shown
that explicitly generating intermediate steps during
reasoning tasks significantly improves a model’s
performance and interpretability (Shwartz et al.,
2020; Paul and Frank, 2021; Marasovic et al., 2022;
Lampinen et al., 2022; Wei et al., 2022). Producing
such intermediate representations provides insight
into the model’s predictions and allows humans to
inspect the model’s reasoning process. However,
these intermediate representations1 can be unre-
liable (Ye and Durrett, 2022) and result in poor

1In a reasoning task, the intermediate representations can
be viewed as inference rules, explanations or reasoning steps.
* Work done at EPFL

Context: Frank had 
number0 pieces of candy. 
He lost number1 of them. 
If he put the remaining 
pieces into bags with 
number2 pieces in each 
bag,
Question: How many bags 
would he have?

Intermediate Equation: 
#0: 	𝑑𝑖𝑣𝑖𝑑𝑒	(	𝑛𝑢𝑚𝑏𝑒𝑟0, 𝑛𝑢𝑚𝑏𝑒𝑟2	)	|	
#1: 	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦	(	#0, 𝑛𝑢𝑚𝑏𝑒𝑟1	)	|	𝐸𝑂𝑆 Generator

Generator

Generator

🤖
Critic

🤖
Critic

🤖
Critic

No hint.

The second number in #1 is incorrect. 

The operator in #0 is incorrect, the second number 
in #0 is incorrect, the operator in #1 is incorrect,  
and the second number in #1 is incorrect. 

Intermediate Equation: 
#0: 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡	(	𝑛𝑢𝑚𝑏𝑒𝑟0, 𝑛𝑢𝑚𝑏𝑒𝑟1	)	|
#1: 𝑑𝑖𝑣𝑖𝑑𝑒	(	#0, 𝑛𝑢𝑚𝑏𝑒𝑟0	)	|	𝐸𝑂𝑆

Intermediate Equation: 
#0: 	𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡	(	𝑛𝑢𝑚𝑏𝑒𝑟0, 𝑛𝑢𝑚𝑏𝑒𝑟1	)	|	
#1: 	𝑑𝑖𝑣𝑖𝑑𝑒	(	#0, 𝑛𝑢𝑚𝑏𝑒𝑟2	)	|	𝐸𝑂𝑆

Figure 1: REFINER example. The critic model pro-
vides the generator model with feedback on its reason-
ing errors after evaluating the generated intermediate
steps. The feedback, alongside the original question
and previous intermediate equation, are fed back to the
generator model.

performance on downstream reasoning tasks. Most
importantly, it is unclear how to meaningfully re-
fine the intermediate representations to further im-
prove the final performance.

The standard practice for correcting reasoning
errors is to annotate new data and either retrain
or finetune the model (Feng et al., 2021; Hed-
derich et al., 2021). However, fixing such errors
by finetuning with more data is not only data- and
resource-intensive but can also be insufficient to
generalize well in complex reasoning tasks (Ward
et al., 2022). Other works have explored improving
models using feedback by providing a scalar reward
(Ziegler et al., 2019; Martin et al., 2022) or directly
revealing the correct missing answer (Mehta and
Goldwasser, 2019; Elgohary et al., 2021; Tandon
et al., 2022). However, in natural language reason-
ing tasks, defining a reward that captures different
fine-grained reasoning error types (e.g., semantic
consistency, logical, etc.) remains an open chal-
lenge (Golovneva et al., 2023). Additionally, such
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a reward provides a relatively sparse training sig-
nal.

In this work, we instead provide fine-grained
and structured feedback on reasoning errors. We
present REFINER, a novel interaction-based frame-
work that allows a generator LM to iteratively use
fine-grained feedback and refine its reasoning. The
interaction happens between two models: a gener-
ator, which learns to solve the task by first generat-
ing the intermediate reasoning steps, and a critic,
which provides structured feedback to the generator
about errors in the intermediate steps.

To provide fine-grained feedback about reason-
ing errors, we develop a scheme to independently
train the critic model on automatically constructed
feedback data. More specifically, we create pairs
of incorrect intermediate representations and struc-
tured2 feedback on their fine-grained reasoning er-
rors. Then, we use this data to train the critic to
provide fine-grained feedback on erroneous inter-
mediate reasoning steps. Finally, the critic inter-
acts with the generator LM, offering feedback both
during the training of the generator and during in-
ference.

Figure 1 illustrates an example of our REFINER
framework where, given a math word problem, the
generator generates an equation as an intermediate
representation. The critic identifies the errors in the
equation and provides semi-structured textual feed-
back (e.g., "the operator in #0 is incorrect")
to the generator. By interacting with the critic, RE-
FINER enables the generator to reason over the
semi-structured feedback and refine its generation.

Contributions. (i) We propose REFINER, a
framework that refines LMs reasoning capabilities
through feedback. Our work investigates how in-
teracting with fine-grained reasoning feedback on
intermediate reasoning steps impacts the perfor-
mance of LMs on reasoning tasks. We evaluate RE-
FINER on three natural language reasoning tasks:
math word problems, synthetic natural language
reasoning, and moral action generation. REFINER
demonstrates significant performance gains across
different LM architectures with different scales.
Across different reasoning tasks, REFINER out-
performs comparably-sized strong fine-tuned LM
baselines (by +13.1, +3.2, +15 pts., respectively).
(ii) We empirically demonstrate that for math word
problems and synthetic natural language reasoning,

2Note that we transform the structured feedback into semi-
structured textual feedback using templates.

our trained critic models alone are beneficial for im-
proving intermediate representations as they help
GPT-3.5 significantly increase its performance in a
few-shot setting (by +3.5, +6.8 pts., respectively).
We also demonstrate that providing structured feed-
back on fine-grained errors can benefit more than
scalar value feedback for moral action generation
and math word problem tasks. Our critic model acts
as a ‘reasoning refinement tool’ for LLMs. (iii) We
show that REFINER can substantially outperform
other refinement methods that use feedback from
large LMs, such as self-refine. (iv) Our analyses
illustrate that (a) improving the intermediate rep-
resentation generation improves the performance
on the reasoning tasks, and (b) training a generator
with an imperfect (noisy) critic is still beneficial.
Our code is made publicly available 3.

2 Related Work

Intermediate Representations. While state-of-
the-art LMs achieve incredible performances in a
wide range of tasks, they have difficulty with many
reasoning tasks (Wang et al., 2022), especially ones
with multiple constraints or sub-problems or requir-
ing specialized knowledge (Austin et al., 2021) –
such as mathematical problem solving (Ling et al.,
2017; Andor et al., 2019; Ran et al., 2019; Geva
et al., 2020; Piękos et al., 2021; Cobbe et al., 2021a;
Kim et al., 2022).

For these tasks, both intermediate representa-
tions and rationales have been shown to be benefi-
cial in learning mathematical skills (Piękos et al.,
2021), intermediate program execution computa-
tions (Nye et al., 2021), or general reasoning out-
puts (Wei et al., 2022; Golovneva et al., 2022).

Our work builds upon the observation that gen-
erating intermediate steps are valuable but distin-
guishes itself in several key aspects. Firstly, instead
of prompting a large model, we finetune smaller
models to learn to generate intermediate steps. Sec-
ondly, our framework can accommodate tasks that
do not necessarily have unique closed-form cor-
rect answer, such as the Moral Norm task (see §3).
Finally, our framework is trained with a critic pro-
viding feedback, improving the model’s reasoning
process and teaching it how to leverage feedback.

Natural Language Feedback. Recent work
has explored giving models richer and more com-
plex feedback through the use of natural language
(Ziegler et al., 2019; Nguyen et al., 2021; Scheurer

3https://github.com/debjitpaul/refiner
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et al., 2022), used for aligning LLMs’ output with
users’ preferences (Christiano et al., 2017; Ziegler
et al., 2019; Saunders et al., 2022; Scheurer et al.,
2022; Bai et al., 2022), or to directly improve the
model’s performance in its current task (Weston,
2016; Rupprecht et al., 2018; Elgohary et al., 2020;
Austin et al., 2021; Madaan et al., 2023). This train-
ing depends on human-created feedback, generated
in large quantities (Bai et al., 2022), which takes up
considerable resources. Though an external feed-
back provider can guide models to correct answers
and reasoning (Austin et al., 2021), demonstrably
better than they can themselves (Saunders et al.,
2022), feedback has rarely been used in this way
– and automated critics for reasoning tasks have
proved to be difficult (Scheurer et al., 2022; Wang
et al., 2022; Huang et al., 2022).

Recently, Welleck et al. (2022) introduced a sec-
ondary model, the corrector, which improves the
initial proposition of a generation model, by learn-
ing the kind of mistakes made by the generator and
how to fix them. In this work, we also use a sec-
ondary model, a critic, but apply it quite differently
as we integrate it into an interaction loop with the
generator model during training. We further differ
from previous works as we provide feedback at
the intermediate reasoning steps of the model and
not at the final output. The feedback is thus closer
to the source of mistakes and guides the model’s
reasoning toward the correct answer. Additionally,
intermediate steps are often structured, allowing
the critic to provide precise feedback.

3 REFINER

Problem Formulation. In this paper, we view nat-
ural language reasoning (NLR) as an autoregres-
sive generation task where, given input context x, a
model needs to generate y, such that y satisfies the
constraints of the task. Usually, to generate correct
or plausible y, the model needs to make the correct
inference z as intermediate steps.4 We decompose
NLR tasks as follows: p(y|x) = p(y|x,z)p(z|x). In
practice, one can compute each conditional using
an LM that includes its conditioning variables as a
part of its input.

Before continuing with the model description,
we describe three NLR tasks where we conduct our
study and their respective intermediate represen-
tation z. We deliberately chose these three tasks

4We use “inference steps/representations” and “hypothesis”
interchangeably.

since they broadly cover two types of reasoning:
(i) logical reasoning and (ii) normative reasoning.
They are exemplified in Appx Fig. 6 and detailed
below.

Math word problem (MWP), where given a
word problem x consisting of a context and ques-
tion, the goal is to map x to a valid mathematical
expression z (the intermediate representation) and
then to a solution y. This task requires the model to
perform deduction using mathematical reasoning.
Synthetic natural language reasoning (sNLR),
where given a reasoning scenario x consisting of 5
synthetic rules and a fact, the model needs to de-
duce a conclusion y. This task requires the model
to perform deductive reasoning and generate inter-
mediate steps z and the conclusion y using closed-
world rules and facts.
Moral norm and action generation for moral
stories (MS), where given a context x consisting
of a situation, an intention, and an immoral action,
the model needs to generate the moral norm z and
the moral action y. Moral actions are encouraged
by the moral norm. This task requires the model
to perform abductive reasoning to generate moral
norms and deductive reasoning for moral action.

We propose to solve these tasks by forcing the
model to generate intermediate hypotheses (z) and
improving them via structured feedback. We intro-
duce an interactive framework, REFINER, made
of two separate models: (a) a CRITIC model (§3.1)
trained to provide structured feedback on interme-
diate reasoning steps and (b) a GENERATOR model
trained to solve the reasoning task by first gen-
erating intermediate reasoning steps (§3.2). The
core idea of REFINER is to exploit the interac-
tion between the generator model and the critic
model, where the generator’s intermediate reason-
ing steps are improved via structured feedback
from the critic.

REFINER presents several important properties.
First, the generator is trained to incorporate and
leverage feedback, which helps it converge towards
better reasoning during training and makes it ca-
pable of integrating feedback at test time, whether
from a trained critic or a human (see §5). Sec-
ond, the trained critic can be useful on its own; we
demonstrate that a generalist LLM like GPT-3.5
can significantly benefit from interacting with our
trained critic on the reasoning tasks we consider
(see §5). Finally, having two separate models al-
lows us to easily measure the benefits of feedback
during training and/or during inference (see §6).
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Tasks Error Types Feedbacks

Incorrect Numbers The position number in
equation-number is incorrect.

MWP Incorrect Operators The operator in
equation-number is incorrect.

Missing Operators An operator is missing.

Logically Invalid The X operator makes inference
rule number invalid.

sNLR Missing Link Missing link between the fact the rules.
Missing Implicit The implicit knowledge is
Knowledge Step missing.

Contradiction Contradiction
MS Semantic Misalignment Semantically misaligned: “ text snippet”

Table 1: An overview of the Error Types and Feedbacks
for each reasoning tasks.

3.1 CRITIC Model

The role of the critic is to provide feedback on the
intermediate hypotheses produced by the generator
model. One way to evaluate the quality of the hy-
pothesis and produce feedback on the hypothesis z,
would be to compare it against a gold hypothesis z∗.
Previous works employed automatic metrics like
BLEU, ROUGE, etc., as value functions (Wu et al.,
2018; Ramamurthy et al., 2022). However, these
scalar value functions are not suitable for natural
language reasoning tasks because (i) it is unclear
how to define a scalar value function that can en-
capsulate fine-grained reasoning errors (Golovneva
et al., 2023) and (ii) during inference, these func-
tions require access to the gold hypothesis (which
is unavailable in practice). Therefore, we train a
critic model and endow it with the ability to eval-
uate the hypothesis in a fine-grained manner and
provide structured feedback.

Feedback Data Generation. To train the critic,
we have to create example pairs of implausi-
ble hypotheses and their corresponding feedback
with fine-grained reasoning errors. Inspired by
Golovneva et al. (2023) and Talmor et al. (2020),
we first define fine-grained reasoning error types
for each reasoning task (see Table 1). For MWP, an
equation can be incorrect due to: (i) the operands
or operators in the equations being incorrect and/or
(ii) one or more operators missing. For sNLR, an
inference rule can be incorrect because it is (i) log-
ically invalid and/or (ii) missing reasoning rules
(failing to connect the correct facts with correct
rules or missing implicit knowledge). For MS, a
moral norm can be incorrect due to (i) contradiction
and/or (ii) semantic misalignment.

Based on these error types, we propose two
strategies to create the feedback data: (i) Rule-
based perturbation strategy: we perturb the plau-
sible hypotheses (z) in the training data and collect

Input Generator (𝜃)

Textual 
feedback (f)

Context (𝑥)	+hypothesis (𝑧’)		+	feedback	(𝑓)

Critic 𝛽 

Exploration

hypothesis1 hypothesis 2 hypothesis n…

… 🤖

𝑥

𝑧’

🤖
Critic 𝛽 

Context (𝑥) + hypothesis (𝑧’)

Step 1: Train critic model

Textual feedback (𝑓!"#!)

Step 2: Train generator model

Figure 2: Overview of REFINER interaction loop. Left
side: Training the critic model. Right side: In each
iteration, the generator generates multiple hypotheses.
The critic randomly selects one hypothesis and provides
feedback based on reasoning errors.

a pool of data D (x: input, z: plausible hypoth-
esis, z′: implausible hypothesis). We perturb by
omitting, replacing or adding some tokens or some
rules from the plausible hypothesis to create an
implausible hypothesis automatically (details in
Appendix F.1). (ii) Synthetic Generation strat-
egy: we prompted OpenAI’s GPT-3.5 to generate
implausible hypotheses based on the error types
automatically. We used a few-shot setting where
we varied the instruction, the number of demon-
strations, and the formatting of the demonstrations
(details in Appendix F.2).

Since our perturbations and automatic implau-
sible hypotheses are based on logic and reasoning
errors, we create structured feedback f for every
example (x,z,z′) by stating the error type that oc-
curs in z′ but not in z (see Table 1). The basic
structure of feedback f for these tasks is ⟨error
type, position (optional), hint (optional)⟩, where
position denotes the error position in the implausi-
ble hypothesis (see Table 1). Despite the simplicity
of the strategy we used for our tasks, this approach
is easily generalisable to other reasoning tasks.

We also replace the correct judgment with ran-
dom judgments to scale the number of implausible
hypotheses per example. Finally, as feedback f , we
provide <error type, hint>. For non-monotonic
reasoning tasks like norm and action generation,
the critic should be able to provide hints that align
the generator model’s objective to the reasoning
task. Hence, as a hint, we provide verb phrases
from the norms. Since the critic provides textual
feedback to the generator, we convert the struc-
tured feedback into natural language feedback 5.
Formally, we create a data pool D = {x,z,z′, f} to
train a critic model.

5Further details about feedback are provided in Appx.F.
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Training the critic model. We train a super-
vised CRITIC model (πβ) with the context (x) and
(plausible or implausible) hypothesis (z or z′) as
input and the textual feedback as output. We
update the CRITIC with the cross-entropy loss:
L(β) = − log pβ( f (u)|x,u) where u ∈ z,z′. The
trained critic is only used during inference. The
oracle critic is used while training the generator.

3.2 GENERATOR Model

This section presents a generator model that itera-
tively learns to interact with the CRITIC model.

Warm-up. Given a context x the generator
model (πθ) is trained to generate plausible hypothe-
ses. The warm-up phase is critical to ensure that,
when the critic comes in the loop, the generator
does not produce random answers likely to be bad,
given the size of the output space. As such, we
use a small supervised dataset (10% training data)
to fine-tune the model on the NLR task of inter-
est. After the warm-up phase, we use the addi-
tional feedback f from the critic model and learn
πθ(z|x,z′, f ).

Exploration. At each iteration (t), the generator
model generates multiple hypotheses (zk) using nu-
cleus sampling. The critic model randomly selects
one hypothesis and provides feedback on that hy-
pothesis. The exploration step aims at increasing
the output variance such that the generator receives
a wide range of feedback during training.

Learning. We update the GENERATOR model
using the following cross-entropy loss: L(θ) =
−∑T

t=1 log pθ(zt |x,z′t , ft(z′)) where T = total num-
ber of iterations. Since the feedback contains the er-
ror types and hints, which are (latent) fine-grained
and logical, it should allow the model to learn and
update its generation by addressing the reasoning
errors mentioned in the feedback.

Inference. We use the trained critic along
with the trained generator to generate a trajectory
z0,z1, ...,zT and stop when either f (zt) is generated
by the generator or “No hint” is generated by the
critic. We also experimented with chain of thought
prompting, where the generator generates a trajec-
tory z0y0,z1y1, ...,zT yT and stops when the critic
generates “No hint”.

4 Experimental Setup

Datasets. We evaluate REFINER on three diverse
tasks (examples in Fig. 6). We briefly describe
the datasets used for each task below.Math Word

Generator Model Eq. (z) Ans. (y)

UQA-base 34.1 –
UQA-base + PPO 31.5 –
REFINER base 47.2 –

UQA-large 46.7 –
UQA-large + PPO 48.2 –
REFINER large 53.8 –

GPT-3.5 + CoT 64.1 67.1
GPT-3.5 + CoT + REFINERcritic 67.3 70.6

Table 2: Results on MWP. Comparison of REFINER
with baselines on the SVAMP dataset. The average
score over three runs is reported (p<0.05). For models
other than GPT-3.5, the answer can be obtained via
symbolic execution of the equation and is thus a function
of the validity of the equation.

Problem (MWP): We train our models on MAWPs
(Koncel-Kedziorski et al., 2016) dataset and evalu-
ated our models on a challenging dataset SVAMP
(Patel et al., 2021). We evaluate our model on
both the equation generation (z) and answer predic-
tion (y) tasks. Similar to Ling et al. (2017); Amini
et al. (2019) for equation generation, we replace the
numeric values with variable names, for example,
number0, number1, etc. Further, we also evaluated
on GSM8K (Cobbe et al., 2021b) dataset which
consists of 8.5K high-quality linguistically diverse
grade school math word problems. For Synthetic
Natural Language Reasoning (sNLR), we use the
dataset from Liang et al. (2022) with the difficulty
level as hard. We evaluate our model on both infer-
ence rule generation (z) and consequent generation
(y). For Moral Story (MS), we use a dataset from
(Emelin et al., 2021), where we evaluate our model
on moral norm z and the moral action y generation.

Training Details. For each task, we train a
UnifiedQa-T5-base model (UQA-base) (Khashabi
et al., 2020) as a critic (§3.1). For exploration
(§3.2), we use nucleus sampling with p = 0.5. We
select the hyper-parameters by the validation loss:
for both the generator and critic model, we use the
Adam optimizer with a learning rate of 1e−4. Each
model is trained for 20 epochs with early stopping
based on validation loss. We trained all models on
one A100 GPU. We run our models with 3 random
seeds and report the average results. For the human
study, we selected outputs from the best models
(baselines and our model) according to automatic
metrics. We train models with T = 3 iterations.

At inference time, we use greedy decoding for
the generator and critic model with T = 1 for the
automatic critic and T = 3 for the oracle critic.
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On the MWP and sNLR tasks, we use the exact
match (EM) metric for intermediate steps (equation
generation and inference rules) and accuracy (Acc)
for the final answers. For MS, we conduct a manual
evaluation study to assess the relevance of norms
and moral actions6. Further evaluation details are
provided in Appendix G. To train the critic model,
we used the feedback data generated using the rule-
based perturbation strategy (see §3.1).

Baselines. We compare our method with
three different LMs as generator models: UQA-
base, UQA-large (supervised setting), GPT-3.5-
text-DaVinci-003 and ChatGPT (few-shot set-
ting). We also compare REFINER to Proximal Pol-
icy Optimization (PPO) RL-based method (Schul-
man et al., 2017). We use the implementation of
PPO from (Ramamurthy et al., 2022). For GPT-3.5,
we provide 2 for demonstrations per class. We also
experimented with chain of thought (COT) prompt-
ing (Wei et al., 2022) where the model is prompted
first to generate the intermediate steps (z) and then
the final answer (y). Note that the sNLR task is
a synthetic task where the model needs to per-
form either one-hop or two-hop reasoning. Clark
et al. (2021) showed that fine-tuning large lan-
guage models (354M parameter size) could achieve
(99% accuracy) high performance. Hence, we only
compare our REFINER model with the UQA-base
model (220M) (see Table 3). Since human annota-
tion is expensive, we focus on comparing against
the most meaningful baseline: UQA-large for MS
task (see Table 4). It is important to highlight that
our proposed framework is general, and one can
use any other LMs as GENERATOR or CRITIC.

5 Results

We evaluate our model on two aspects (i) perfor-
mance on intermediate steps and (ii) performance
on the final answer prediction. Tables 2, 3, and 4
show the performance comparisons.

Performance on Intermediate Steps. Ta-
ble 2 reports the performance of the MWP
task. We explored two different scenarios: (i)
where the model only generates the equations
(z) with variable names replacing the numeric
values, and (ii) where the model generates
both the equations and the final answers together.

We observe for both scenarios that REFINER sig-
nificantly outperforms baseline models with com-

6Since the automatic scores such as BLUE, ROUGE, etc.
only account for word level similarity between gold norms or
actions and generate norms or actions.

Generator Model IR (z) Con (y)

UQA-base 90.6 ± 0.8 94.1
REFINER base 93.5 ± 0.4 97.3
GPT-3.5 + CoT 14.3 ± 0.9 40.6
GPT-3.5 + CoT + REFINER 21.1 ± 1.2 42.1

Table 3: Results on sNLR task. The average score over
three runs is reported (p<0.05). IR: Inference Rules
(Exact Match), Con: Consequent (Accuracy)

Norm (z) Action (y)
Model I↓ U↓ R↑ α I↓ U↓ R↑ α

B 34 17 49 0.35 28 14 58 0.64
B+PPO 38 10 52 0.38 31 17 52 0.38
REFINER 19 12 69 0.33 18 9 73 0.55

Table 4: Results on Moral Norm and Moral Action. We
report human evaluation. B: UQA-large; I: Irrelevant,
U: Unsure; R: Relevant; α: Krippendorff’s alpha

parable sizes. Notably, UQA-base benefits most
(+13.1 EM) when adding a critic in the loop. We
observe that GPT-3.5 significantly benefits from
the REFINER trained critic. Since LLMs like GPT-
3.5 (175B parameters) are expensive to finetune,
the improvement in equation generation of +3.2
EM without any modification is important. Interest-
ingly, we observe that GPT-3.5 + COT manages to
have significantly higher accuracy in answer y than
in equation z (see Table 2). This result is similar to
the observation made by Ye and Durrett (2022) and
suggests that the intermediate equations can be un-
reliable. Finally, REFINER could even outperform
PPO, which uses BLEU-score as a reward function.
This suggests that semi-structured fine-grained tex-
tual feedback is more beneficial than value-based
(where values are from automatic metrics) reward
feedback. Note that this result may vary when these
models are optimized directly with complex human
values, as shown in Stiennon et al. (2020). Quali-
tatively, REFINER can correct incorrect equations
through structured feedback, fixing the operators
within a multistep solution (see Fig. 7).

For sNLR, similar to Liang et al. (2022), we ob-
serve that GPT-3.5 performs poorly (see Table 3).
REFINER improves +2.9, and +6.8 EM scores
over UQA-base, and GPT-3.5, respectively. Con-
trary to the MWP, the final answer y is not a sym-
bolic execution away from the intermediate step
z, but we still observe that REFINER focuses on
improving the intermediate step z, resulting in sig-
nificant improvements in the answer y prediction.
Again, we observe that REFINER with a UQA-
base can outperform few-shot prompted GPT-3.5.
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Generator Model SVAMP GSM8K
GPT-3.5 ChatGPT GPT-3.5 ChatGPT

CoT 67.1 68.2 63.5 74.1
Self-reflection 67.2 68.4 63.1 74.6
Self-refine 67.6 68.2 63.8 74.7
REFINER 70.6 71.4 66.2 75.9

ReACT 67.3 68.4 64.7 75.5
ReACT + REFINER 70.6 71.9 67.8 77.4

Self-consistency 69.5 70.4 65.5 76.1
Self-consistency + REFINER 72.1 72.5 67.2 78.1

Table 5: Comparison with different refinement meth-
ods on SVAMP and GSM8K datasets. Averaged accu-
racy over three runs on the test sets is reported (p<0.05).

Thus, our critic can identify the fine-grained rea-
soning errors and help improve the performance on
inference rules generation.

For MS, we assess the generation quality with
three human judges who indicate whether the gen-
erated norms and moral actions are relevant to the
given moral story. Table 4 summarises human eval-
uation results on 100 moral story examples ran-
domly sampled from the MS test dataset. More
specifically, we report evaluation breakdown for
both norm and moral action by the number of in-
stances that are either Irrelevant, Unsure or Rel-
evant along with Krippendorf’s α (Krippendorff,
2018) agreement scores. The results show an im-
provement of 20 points, increasing the relevance
over a strong UQA-large baseline. Hence, this sug-
gests that a specialized critic model with 3 times
fewer parameters than the generator can improve
the performance on generating reasoning steps.

Performance on Final Answer Prediction. We
observe that REFINER outperforms the strong
LM baselines by +3.5,+3.2,+15 points for MWP,
sNLR, and MS, respectively. These results support
our hypothesis that generating better intermediate
steps can result in better answer prediction. No-
tably, on the sNLR task, for GPT-3.5, we observe
that by adding a critic, there is an improvement of
+6.8 in inference step generation; however, only
+1.5 in the consequent prediction. This result in-
dicates that LLMs may either not use these inter-
mediate steps to perform the deduction or fail to
perform deduction.

Comparing REFINER with other refinement
methods. In Table 5, we compare REFINER with
two other recent refinement methods: Self-refine
(Madaan et al., 2023) and Self-reflection (Shinn
et al., 2023) method on the SVAMP and GSM8K
datasets. Both these baseline methods use LLMs

Model Eq. (z)

REFINER base + critic datarule−based 47.2
REFINER base - criticin f erence 39.8
REFINER base - criticin f erence - exp 37.4
REFINER base - critictraining 34.1

REFINER base + critic datasynthetic 44.1
REFINER base + criticOracle 66.0

Table 6: Ablation Result on MWP task; Comparing
model without critic during inference, and without the
exploration (exp) phase during training. We report the
exact match scores of the generated equation, compara-
ble to Table 2.

to generate automatic feedback. Similar to Madaan
et al. (2023), we observe that self-refine has mi-
nor improvement for MWP tasks. On the contrary,
we find that REFINER significantly improves the
performance of GPT-3.5 and ChatGPT by +3.3
and +2.2 on SVAMP and GSM8K datasets, respec-
tively. This highlights the benefit of training a
specialised critic that is grounded to the task. It
can make LLMs more accurate than feedback from
a general-purpose model (GPT-3.5 or ChatGPT).
In Appendix §6, we have provided more details
about the quality of feedback generated using our
trained critic and GPT-3.5 (see Table 8). Further,
we assess the performance of REFINER in im-
proving the CoT generated by two recent methods:
Self-Consistency (Wang et al., 2023) and ReACT
method (Yao et al., 2023). We observe that RE-
FINER can improve self-consistency and ReACT
by +2.02 and +2.9. This demonstrates that a trained
critic can be used as a tool and can bring perfor-
mance gains to different methods out-of-the-box
(more details in Appendix §A.2).

Ablation. To obtain better insight into the con-
tributions of the individual components of our mod-
els, we perform an ablation study (Table 6). We
observe that there is a considerable drop in perfor-
mance from 47.2 to 39.8 when we do not use the
critic model during inference. Hence, this result
indicates that our generator model can leverage the
feedback from the critic at inference time. Further,
we find that the exploration step improves the per-
formance +3.3 over the baseline model. This result
supports our hypothesis that the exploration step in-
creases the output variance and gives the generator
model the opportunity to learn over a wide range of
feedback. We compared the performance with the
critic model trained on two different training data
(see §3.1). We find that the critic trained on small
automatically generated data using GPT-3.5 works
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Figure 3: Error analysis. Number of errors made by
baseline UQA-large and REFINER on 100 instances
sampled randomly from test sets of both datasets. Errors
are categorized according to Table 1).

better than without the critic in the loop. This result
motivates researchers to use this method to gener-
ate negative samples to train their critic or prefer-
ence learning model. Finally, we also observe that
if the critic was perfect (Oracle), then REFINER
can significantly improve the performance by fix-
ing the mistakes generated by the generator model.
This result indicates that REFINER can be seen
as a framework that allows AI-AI and human-AI
interaction.

6 Analysis

Error Analysis. In order to get more insight into
the performance of our method, we conduct a fine-
grained error analysis on the MWP and MS datasets
(Fig. 3). We note that the most frequent errors are
Incorrect Numbers for MWP and Semantic Mis-
alignment for MS. An intuitive reason can be that
for the MWP task, the models are sensitive to the
numbers order as argued in (Patel et al., 2021). For
MS, generating norms grounded in the context is
challenging. Our analyses show a clear trend that
REFINER is able to considerably reduce the errors
for both datasets. This indicates that our trained
critic model could identify fine-grained reasoning
errors during inference.

Noise Sensitivity. To further understand the be-
haviour of the REFINER framework, we run vari-
ations with noisy critics for the MWP task. We
replace the oracle critic used during training with a
noisy critic in (Fig. 4 (a)) to inspect how training
with an imperfect critic impacts the generator. We
also use a noisy critic at inference while keep the or-
acle critic during training (in Fig. 4 (b)). The noisy
critics are generated by random perturbations of the
oracle critic; for a noise-level ϵ, the oracle feedback
is replaced by random feedback with probability ϵ.

a) Noise-level of the critic used during training
0.2

0.4

0.6

0.8

Ex
ac

t M
at

ch Automatic critic during inference
Oracle critic during inference

0% 25% 50% 75% 100%
b) Noise-level of the critic used during inference (oracle critic used during training)

0.2

0.4

0.6

0.8

Ex
ac

t M
at

ch Noisy critic during inference
REFINER (automatic critic during inference)

Figure 4: Noisy-critics analysis. In plot (a), we vary
the noise level of the critic used during training (0 noise
corresponds to oracle) and compare the resulting models
when using the oracle and the training automatic critic
during inference. In plot (b), we train with the oracle
critic but vary the noise level of the critic used during
inference.

Fig. 4 (a) shows that when training with a very
noisy critic (> 75% noise), the generator LM learns
to ignore the critic, as there is no difference be-
tween using the trained critic or the oracle during
inference. Interestingly, training with a bit of noise
(< 50%) does not seem to harm the model, as per-
formances are not statistically different than train-
ing with the oracle (noise of 0%). Fig. 4 (b) depicts
the quality of the critic used at inference time has a
huge impact. Having oracle provide feedback is by
far the best scenario. Already with 25% noise, the
critic makes the generator perform worse than us-
ing our trained critic (REFINER). With more than
50% noise, the critic significantly harms the gen-
erator. The generator, trained with an oracle critic,
has learned to trust the critic and expects useful
feedback.

Qualitative Analysis. To explain the findings
in §6, we further manually analyze 100 instances
for the MWP task. We observe two different sce-
narios when REFINER failed to fix the outputs
generated by GENERATOR model: (a) when the
CRITIC model provides a correct feedback; how-
ever, the GENERATOR model still generates incor-
rect equation, and (b) the CRITIC model provides
an incomplete or partially correct feedback. The
former case indicates that either the GENERATOR

model makes mistakes in following the instruction
from the CRITIC or the feedback from the critic can
be ambiguous. For example, in Appx Fig. 5, (b) we
observe the case when the critic is correct, but the
feedback could result in an incorrect equation. The
latter case indicates that our trained critic model
generates incorrect feedback, which can result in
incorrect or partially correct equations. We also
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Task UQA (220M) UQA (770M) GPT-3 (175B)

MWP 69.5 +/- 2.6 73.4 +/- 3.7 63.5 +/- 5.6
sNLR 95.5 +/- 1.4 98 +/- 2.2 34.5 +/- 2.4
MN 77.4 +/-2.5 80 +/- 4.5 76.4 +/-3.5

Table 7: Comparing the performance of different
critic models. Exact-match score is reported.

observe that our CRITIC model failed to generate
correct feedback when the GENERATOR model gen-
erates incorrect equations with multiple mistakes.

Quality of the feedback. To better understand
the difference in the quality of the feedback, we
compare our trained critic model with GPT-3.5. We
assess the quality of the feedback on 500 instances
per task and report the exact match scores in Table
8. Please note that we include instances where the
critic feedback should say the solution is correct
and hence generate ’No’. For GPT-3.5, we have
provided (two) few-shot examples per type of er-
ror and two examples with ’No’ as feedback. Our
results show that trained critic (UQA) can compre-
hensively outperform GPT-3.5. We observe that
GPT-3.5 performs well in identifying when the an-
swer is correct. However, it makes errors when
asked to generate meaningful semi-structured feed-
back for incorrect reasoning steps.

7 Conclusion

In this paper, we propose REFINER, a framework
to improve the reasoning abilities of LMs through
an iterative feedback loop between two models, a
generator and a critic. Our evaluation of this frame-
work on three reasoning tasks showed structured
and fine-grained feedback on intermediate reason-
ing errors results in significant performance gains,
surpassing scalar value feedback. Our trained critic
model alone, even when noisy, can improve inter-
mediate representations of LMs, showing that RE-
FINER can significantly boost LMs’ performance
on reasoning tasks. Our REFINER framework is
very general and, in principle, might be applied
to steer language models in performing different
reasoning tasks. More specifically, the critic model
can be seen as a tool for LLMs to refine their gen-
eration quality.
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Limitations

Our REFINER framework could not be compre-
hensively evaluated on all applicable downstream
reasoning tasks due to their sheer number. While
deliberately distinct, we focused on only three dif-
ferent reasoning tasks in order to study how natu-
ral language reasoning feedback can impact down-
stream tasks. We believe this represents an initial
but important step towards exploring automated
natural language feedback on intermediate repre-
sentations. In addition, the critic we presented
here is specific for each task, while the ideal critic
would be a general one, capable of providing feed-
back on a wide range of reasoning tasks. Simi-
larly, we considered fine-grained reasoning errors
specific to each reasoning task. Recent work has
mentioned several other fine-grained reasoning er-
rors (Golovneva et al., 2023), which can’t be fully
covered by the reasoning tasks we considered. Gen-
eralizing both the critic and fine-grained error types
emerges as both the main limitations of this paper
and the directions of future work. Finally, with
LLMs being deployed more and more for real-life
applications (medical domain, making important
decisions), we believe it is crucial to develop expert
models and automatic feedback mechanisms to in-
spect model generations and improve them. LLMs
are impressive and work well on several NLP tasks,
but they are not expert systems. Our work aims to
address this gap by showing that adding interven-
tions/feedback from critics (specialised finetuned
critics) can help the LLM model to be more accu-
rate—additionally, making the whole process more
transparent.

Ethical Considerations

In this paper, we experiment with existing datasets
which are, to the best of our knowledge, adequately
cited. Our proposed framework REFINER is de-
signed to improve the reasoning abilities of LMs.
These LMs have been shown to encode biases
about race, gender, and many other demographic
attributes (Weidinger et al., 2021), (Sheng et al.,
2020). Since our framework does not offer a way
to mitigate these biases, models improved using
this framework could still reflect the same harm-
ful behaviours normally exhibited by these mod-
els. We recommend anyone deploying our model
off-the-shelf should first check whether the model
is harmful towards any protected group, and ap-
propriate mitigation should be taken. In addition,

our MS task is based on a dataset of situations,
intentions, and actions that heavily skew towards
Western culture and social norms (Emelin et al.,
2021). Consequently, our human evaluation on the
MS task was done with AMT workers based in the
US who were paid adequately for the average time
it took to solve the task.
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A Additional Results

A.1 More details about the quality of the
feedback

Please note we also include instances where the
critic feedback should say the solution is correct
and hence generate ’No’. Our exact match metric
is not order-sensitive. We extract the sentences
and match them individually to the oracle answers.
Since we focused only on the semi-structured critic
feedback, automatic evaluation can already capture
(measure effectively) the quality of the feedback.

A.2 Details about ReACT and
Self-consistency and Self-Correct

The ReACT method consists of the reason model
(Reason-Only) LLM (GPT-3.5), which generates a
single thought at each step, and the Action model
LLM (another GPT-3.5) does the calculation and
generates the intermediate outputs (observations).
We propose to refine the intermediate steps gener-
ated by the above steps and report the results below.
Please note ReAct is approx 3-4 times more ex-
pensive than GPT-3.5 + CoT. In our experiments,
we assumed 3 reasoning steps for ReACT and a
sample size of 5 for self-consistency to be more
cost-effective. Interestingly, we observe that Re-
ACT perform similarly to CoT for the SVAMP
dataset. One intuitive reason is that the SVAMP
dataset contains questions which require one or
two-hop reasoning only. We find that REFINER
performs (+2.2) better than Self-correct (Welleck
et al., 2023) on the GSM8K dataset, indicating the
importance of correcting the intermediate steps can
lead to better performance. Please note that we
have used GPT-Neo as the generator model and
the Unified QA T5-base model as the critic model,
consistent with the Self-correct paper by Welleck
et al. (2022).

A.3 More results on SVAMP dataset

In the MWP, for the answer prediction task,
we compare REFINER with the previously re-
ported baselines from Jie et al. (2022) including
Graph2Tree (Zhang et al., 2020) that uses quantity
relations using GCN; GTS (Xie and Sun, 2019)
which is a sequence-to-tree model that mainly uses
a tree-based decoder with GRU; and DeductRea-
soner (Jie et al., 2022) which uses bottom-up DAG-
structured decoding. Results of this comparison
can be found in Table 9. For the sNLR task, we
also experiment with a critic model trained on 50%

Model Accuracy

GPT-Neo (1.3B) 8.5
GPT-Neo + Self-Correct 21.2
GPT-Neo + REFINER 23.4 +/- 0.3

Table 8: Comparing REFINER with self-correct on
GSM8K dataset

of its original training data and we still observe a
performance improvement over the baseline as can
be seen in Table 14.

Answer Prediction (y) Acc %
GTS 30.8
Graph2Tree 36.5
BERT-Tree 32.4
Roberta-large-GTS 41.0
Roberta-large-Graph2Tree 43.8
Roberta-large-DeductReasoner 45.0
Few-Shot GPT-3 63.05
Few-Shot GPT-3 + COT 63.5
Few-Shot GPT-3 + COT + REFINER 66.4

Table 9: Results on SVAMP dataset

B REFINER Framework

Alg. 1 and Alg. 2 outline the training and inference
algorithms for REFINER. We train a supervised
CRITIC model (πβ) with the context (x) and (plau-
sible or implausible) hypothesis (z or z′) as input
and the textual feedback as output. Given a context
x the generator model (πθ) is trained to generate
plausible hypotheses.

Algorithm 1 REFINER Training

1: for E epochs do
2: for i(batch)← 1 to N do
3: Initialize (feedback) f0← No
4: for t← 1 to T do
5: ẑk

i,t ∼ πθ(yi|ci, ft−1, ẑi,t−1)

6: ft , ẑ← πβ(ci,zi, ẑk
i,t)

7: L lm
i += − log p(zi|ci, ft−1, ẑi,t−1)

8: end for
9: end for

10: end for
11: return πθ

C Datasets and Models

In Table 10 and Table 12, we report the data statis-
tics and dataset details. In Table 11, we report the
details of the used models. Our research is con-
ducted solely on datasets that are in the English
language.
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🤖
Critic

Feedback: The second number in 
#0 is incorrect. The second 
number in #1 is incorrect. 

Context:  Paco had 36 cookies. He gave 14 cookies 
to his friend and ate 10 cookies.

Question:  How many cookies did Paco have left?

GPT-3.5 Generated Equation: 
#0:	subtract	(	36,	 14 )|
#1:	subtract	(	#0,	10 ) Generator

GPT-3.5 REFINER Generated Equation: 
#0:	subtract	(	36,	10	)
#1:	subtract	(	#0, 36)	 Generator

🤖
Critic

Feedback: The first number in 
#0 is incorrect, the second 
number in #0 is incorrect

Context:  Dave had 21 apps on his phone. He added 
89 new apps. After deleting some he had 24 
left..
Question: How many more apps did he add than he 
deleted?

GPT-3.5 Generated Equation: 
#0:	subtract	(	89,	24 )

Generator

GPT-3.5 REFINER Generated Equation: 
#0:	subtract	(	24,	21 )

Generator

🤖
Critic

Feedback: The operator in #0 is 
incorrect, the second number 
in #0 is incorrect, the 
operator in #1 is incorrect.

Context:  Melissa scored 109 points in each game. 
She also got 82 bonus points in each game.

Question: How many points did she score in 79 
games?

GPT-3.5 Generated Equation: 
#0:	multiply	(	109,	79 )	|	
#1:	multiply	(	82,	79	)	|	
#2:	add	(	#0,	#1	) Generator

GPT-3.5 REFINER Generated Equation: 
#0:	add (	109,	82 )	|	
#1:	multiply	(	82,	79	)	|	
#2:	add	(	#0,	#1	) Generator

Incomplete

(a) (b) (c)

Figure 5: Examples. REFINER on MWP task. There are different scenarios are highlighted in the figure, where
(a) the CRITIC model provides correct feedback, GENERATOR model utilizes the feedback and fixes the incorrect
equation, (b) the CRITIC model provides a correct feedback however, GENERATOR model fails to fix the incorrect
equation, and (c) the CRITIC model provides an incomplete feedback GENERATOR model partially fixes the incorrect
equation.

Missing link between fact and 
rules.

Synthetic Natural Language Reasoning 
Missing Steps

Implausible Hypothesis: 
(missing)
#1: rose is weak

Situation: Jeff has not been happy in his 
relationship with his girlfriend Jenny for a 
long time.
Intention: Jeff wants to break up with 
Jenny.
Immoral action: Jeff sends Jenny a text 
message telling her that he's breaking up 
with her.

Implausible Hypothesis 1: 
“It’s good to break up over text 
messages.”

Implausible Hypothesis 2: 
“It’s wrong to break up with 
people.” 

Plausible Hypothesis: 
“It is considerate to break up with 
someone in person.”

Semantically misaligned:  
“breakup in person”Contradiction

Contradiction Semantic misalignment

Plausible Hypothesis: 
#0: viridian is green 
#1: rose is green 
#2: rose is weak

Implausible Hypothesis:
#0: viridian is green #1: rose is green  
#2: rose is dull  #3: rose is young and weak

The add operator makes #0 and #1  
invalid 

Logically Invalid

Feedback:

Feedback:

Rules:
If a rose is small and dull, then the 
rose is young. 
If a rose is clean or cold, then the 
rose is purple. 
If a rose is green or blue , then the 
rose is weak. 
Fact : The rose is viridian and dull.

Moral Norm Generation 

Figure 6: Feedback Data Generation. The top row illustrates an example from the sNLR task, where the error
types are logically invalid, missing links, and missing implicit knowledge steps. The bottom row illustrates an
example from moral norm generation, where the error types are contradiction and semantic misalignment. We
perturbed used the plausible intermediate steps to implausible.

Algorithm 2 REFINER Inference
1: Initialize answers← empty list
2: for i(batch)← 1 to N do
3: Initialize (reward) ri← 0, pi← 1
4: Initialize (hint) h0, ŷi,0← No, []
5: for (turn) t← 1 to T do
6: ŷ← πθ(yi|ci,ht−1, ŷi,t−1)
7: ht ← πβ(ci, ŷi)
8: if ht == No then
9: answers.append(ŷ)

10: break
11: end if
12: end for
13: answers.append(ŷ)
14: end for
15: return answers

Task Train Dev Test

MWP 3,138 – 1000
sNLR 1000 5000 5000
MS 10000 1000 1000
GSM8k – – 1319

Table 10: Dataset Statistics: nb. of instances.

D Training Details

Training Details. For each task, we train a
UnifiedQa-T5-base model (UQA-base) (Khashabi
et al., 2020) as a critic (§3.1). Further evaluation
details are provided in Appendix G. For exploration
(§3.2), we use nucleus sampling with p = 0.5. We
select the hyper-parameters by the validation loss:
for both the generator and critic model, we use the
Adam optimizer with a learning rate of 1e−4. Each
model is trained for 20 epochs with early stopping
based on validation loss. We trained all models on
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Model Parameter Size

UQA-base 220M
REFINERbase 440M
UQA-large 770M
REFINERlarge 990M
GPT3.5 175B

Table 11: Model Sizes.

one A100 GPU. We run our models with 3 random
seeds and report the average results. We perform
a binomial sign test. We find that p-values are al-
ways <0.05 when we compare REFINER with all
the baselines (GPT-3.5, Self-refine, Self-reflection),
suggesting our results are not random and signif-
icant. For the human study, we selected outputs
from the best models (baselines and our model)
according to automatic metrics. We train models
with T = 3 iterations. We trained the critic model
for 8 hours and trained the generator model for 12
hours.

At inference time, we use greedy decoding for
the generator and critic model with T = 1 for the
automatic critic and T = 3 for the oracle critic. We
evaluate our methods using the metrics presented
in the original papers that proposed the tasks. On
the MWP and sNLR tasks, we use the exact match
(EM) metric for intermediate steps (equation gen-
eration and inference rules) and accuracy (Acc) for
the final answers. For MS, we conduct a manual
evaluation study to assess the relevance of norms
and moral actions.7

E Qualitative Examples

Figure 7 and 20 depict a qualitative example of
REFINER where REFINER could correct incorrect
equations through structured feedback, fixing the
operators within a multistep solution. Table 20
shows some qualitatively improved examples for
MS.

F Feedback Data Generation

F.1 Rule-based Perturbation

Based on these error types, we perturb the plausi-
ble hypotheses (z) in the training data and collect
a pool of data D (x: input, z: plausible hypoth-
esis, z′: implausible hypothesis). We perturb by
omitting, replacing or adding some tokens or some

7Since the automatic scores such as BLUE, ROUGE, etc.
only account for word level similarity between gold norms or
actions and generate norms or actions.

rules from the plausible hypothesis to automatically
create an implausible hypothesis. For example, in
Fig. 6, for sNLR we omit a few inference steps
from the correct hypothesis "#0: viridian is
green, #1: rose is green" and create an in-
correct (incomplete) hypothesis (see Fig. 6). Since
our perturbations are based on logic and reasoning
errors, we create structured feedback f for every
example (x,z,z′) by stating the error type that oc-
curs in z′ but not in z (see Table 1). The basic
structure of feedback f for these tasks is ⟨error
type, position (optional), hint (optional)⟩, where
position denotes the error position in the implausi-
ble hypothesis (see Appx Table 1). For example, in
the previous scenario, we create feedback “Missing
link between fact and rules”. Despite the simplicity
of the strategy we used for our tasks, this approach
is easily generalisable to other reasoning tasks.

For MWP and sNLR problems, the underlying
reasoning requires symbolic systems with closed-
world rules. Hence, we consider a simple rule-
based method to automatically generate the pairs of
errors and their corresponding structured feedback
by considering the error types and position of the
errors (see Fig. 6 and Table 1).

In the moral norm generation task, we consider
two kinds of fine-grained errors: logical contradic-
tion and semantic misalignment (incoherent, unin-
formative). Moral norms are people’s subjective
judgments about the character and actions men-
tioned in the context. Each moral norm is a com-
bination of two components (implicit structure): a
moral judgment [You shouldn’t] and an action
[criticize your family’s religion]. Firstly,
to create logical contradictions, we use the concept
of deontic logic from Kiehne et al. (2022) and de-
rive new norms contrary to those of Moral Stories.
Hence, we replace the correct moral judgments
in the plausible hypothesis with inverse judgments.
For example, replacing [You shouldn’t] from the
plausible hypothesis to [It’s good], as depicted
in Fig. 6. To scale such inverse norms (implausible
hypothesis), we paraphrase them by substituting
the adjectives with synonyms from WordNet. Sec-
ondly, to create semantic misalignments, we must
collect implausible hypotheses that are either mis-
aligned with the plausible hypothesis or incomplete
in nature. To create them, we replace the correct
action (verb phrase) from the plausible hypothesis
with random verb phrases selected from the context
of the plausible hypothesis.
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Dataset/Tools Citation Link License

SVAMP Patel et al. (2021) https://github.com/arkilpatel/SVAMP MIT License
GSM8k Cobbe et al. (2021b) https://github.com/openai/grade-school-math MIT License
sNLR Liang et al. (2022) https://github.com/stanford-crfm/helm Apache License
Moral Norm Emelin et al. (2021) https://github.com/demelin/moral_stories MIT License
HuggingFace Wolf et al. (2020) https://github.com/huggingface/transformers Apache License

Table 12: More details about datasets and Tools

Generator:	
#0:	add(	number0,	number2	)	|			
#1:	subtract	(	#0,	number2	)	

Critic:	
The	first	number	in	#0	is	

incorrect.	The	operator	in	#1	is	
incorrect.	

Iteration 1: 

Generator:	
#0:	add	(	number1,	number2	)	|			
#1:	multiply(	#0,	number2	)	

Critic:	
The	number	in	#1	is	incorrect.	Iteration 2: 

Generator:	
#0:	add	(	number0,	number1	)	|				
#1:	multiply	(	#0,	number2	)	

Critic:	
No	HintIteration 3: 

After resting they decided to go for a swim. The depth of the water 
is number0 times Dean's height. Dean is number1 feet taller than 
Ron. If Ron stands at number2 feet. How deep was the water?

Figure 7: REFINER on MWP. The generator’s output improves step-wise.

Model Eq. (z) Ans. (y)

UQA-large 46.7 –
UQA-large + PPO 48.2 –
REFINER large 53.8 –
REFINER large + Oracle (T=3) 68.1 –

GPT-3.5 + CoT 59.3 63.5
GPT-3.5 + CoT + REFINERcritic 62.3 66.4
GPT-3.5⋆ + CoT 64.1 67.1
GPT-3.5⋆ + CoT + REFINERcritic 67.3 70.6

Table 13: Results on MWP. Eq.: Equation, Ans. Answer.
Comparison of REFINER with baselines on the SVAMP
dataset. GPT-3.5: code-DaVinci-002, GPT-3.5⋆: text-
DaVinci-002 For models other than GPT3.5, the answer
can be obtained via symbolic execution of the equation
and is thus a function of the validity of the equation.
For GPT3.5, the model is few-shot prompted to either
generate the equation with variable names z, or generate
the answer y.

F.2 Synthetic Feedback Generation

We used a few-shot setting where we varied the
instruction, the number of demonstrations, and the

Model IR C

50% training data
T5-base 84.28 ± 0.5 88.86
REFINER base 88.26 ± 0.8 94.26
REFINER base + Oracle 91.11 ± 05 97.28

Table 14: Results on SNR dataset. IR: Inference Rules,
C: Consequent

formatting of the demonstrations. Since data gener-
ation with GPT-3.5 is expensive, we generated 30K,
20K, and 30K implausible hypotheses for MWP,
sNLR and MS tasks, respectively.

G Human Evaluation on Moral Stories

As part of the human evaluation of model gener-
ations on MS, we asked Amazon MTurk (AMT)
annotators to judge the relevancy of the generated
norm and the moral action based on a Likert scale,
with 1 = strongly disagree, 2 = disagree, 3 = unsure,
4 = agree, and 5 = strongly agree. Ratings were
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Task Error Types Structured Feedback Human Readable Feedback

MWP Incorrect Numbers ⟨errortype, position,equation−number⟩ The position number in equation-number is incorrect.
Incorrect Operators ⟨errortype,equation−number⟩ The operator in equation-number is incorrect.
Missing Operators ⟨errortype⟩ An operator is missing.

sNLR Logically Incorrect ⟨ X operator, inference rule number ⟩ The X operator makes inference rule number invalid.
Missing Lookup Step ⟨errortype⟩ Missing link between the fact and the rules.
Missing Implicit Knowledge Step ⟨errortype⟩ The implicit knowledge is missing.

Table 15: Feedback Templates

Initial PROMPT: Math Word Problem

You are a helpful assistant for math word problems.
We will provide you with a math word problem,
and your task is to generate the intermediate mathematical
equations as a step for solving the problem
and the final correct answer. Here are two examples:

“Question : ” <Problem Statements> Let’s think step by step
<equation> Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step
<equation> Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step

Table 16: Prompts used for generating correct answer
given a math word problem

REFINEMENT PROMPT: Math Word Problem

You are a helpful assistant for math word problems.
We will provide you with a math word problem
a solution (containing an equation and an answer),
and feedback on the solution.
Your task is to generate a refined intermediate equation
as a step and the final correct answer.
Here are two examples:

“Question : ” <Problem Statements> Let’s think step by step
<equation> Answer: <answer>
Feedback: <feedback> <equation> Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step
<equation> Answer: <answer>
Feedback: <feedback> <equation> Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step
<equation> Answer: <answer>
Feedback: <feedback>

Table 17: Prompts used for generating correct answer
given a math word problem

PROMPT: Synthetic Incorrect Instance Generation

You are a helpful assistant for
generating counterfactual reasoning steps.
We will provide you with a problem, an error type
and a correct intermediate reasoning step.
Your task is to generate an incorrect reasoning step
based on the error type.
Here are a few examples for each error type:

“Question : ” <Problem Statements> Let’s think step by step
<correct intermediate steps> Error type: <error type>
Counterfactual: <incorrect intermediate steps>

“Question: ” <Problem Statements> Let’s think step by step
<correct intermediate steps> Error type: <error type>
Counterfactual: <incorrect intermediate steps>

“Question: ” <Problem Statements> Let’s think step by step
<correct intermediate steps> Error type: <error type>
Counterfactual:

Table 18: Prompts used for generating synthetic incor-
rect instances

subsequently aggregated, with scores ≥ 4 deemed
to be Relevant and with scores, ≤ 2 deemed to
be Irrelevant while ratings with score 3 (Unsure)
left as is. More specifically, we asked three differ-
ent human judges to evaluate each example. We
performed majority voting over answers with the
rating Unsure assigned to those examples with no
clear majority winner. In Figures 8 and 9, we re-
port a complete breakdown of evaluation results
for both norm and moral action. We also report
agreement scores computed according to Krippen-
dorff’s α (Krippendorff, 2018) in Table 4. The low
and moderate α values indicate that judging the
plausibility of moral norms and actions is a chal-
lenging task. In Figures 10-18, we provide excerpts
of HIT instructions given to AMT workers during
moral norm and action evaluation. Each task was
supplemented by an Acceptance and Privacy Policy
(Figure 18) that explains participation and data col-
lection terms. All workers were based in US and
paid $0.10 per task which took around 5 minutes
to complete on average.
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Figure 8: Human Evaluation of Moral Norm on 100 test samples.
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Figure 9: Human Evaluation of Moral Action on 100 test samples.
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Figure 10: Excerpt from AMT HIT instructions: Norm Evaluation Task

Figure 11: Excerpt from AMT HIT instructions: Moral Action Evaluation Task
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Figure 12: Excerpt from AMT HIT instructions: Norm Evaluation Task instructions

Figure 13: Excerpt from AMT HIT instructions: Norm Evaluation Task Dos and Don’ts
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Figure 14: Excerpt from AMT HIT instructions: Norm Evaluation Task examples
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Figure 15: Excerpt from AMT HIT instructions: Moral Action Evaluation Task instructions

Figure 16: Excerpt from AMT HIT instructions: Moral Action Evaluation Task Dos and Don’ts
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Figure 17: Excerpt from AMT HIT instructions: Moral Action Evaluation Task examples

Figure 18: Excerpt from AMT HIT instructions: Acceptance and Privacy Policy
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Situation: Jim was in class when his classmate answered one of the teacher’s questions wrong.

Intention: Jim wants his classmate to know the answer was wrong.
Moral Action: Jim tells his classmate the right answer and offers to help him after school.

Immoral Action: Jim starts to laugh at his classmate and tells him he is stupid for not knowing the answer.

Plausible Hypothesis: It’s hurtful to make fun of your classmates.

Contradictory Hypothesis: You should make fun of your classmates.

Implausible Hypothesis 1: It’s good to know the answer.

Implausible Hypothesis 2: It’s wrong to be stupid.

Situation: Jenny has been going out with a guy for a while, but she feels it isn’t working out.

Intention: Jenny wants to end the relationship with the guy.
Moral Action: Jenny meets the guy and gently says that she wants to end the relationship.

Immoral Action: Jenny sends the guy a text message that informs him that the relationship is over.

Plausible Hypothesis: It’s good to break up with someone face to face.

Contradictory Hypothesis: It’s bad to break up with someone face to face.

Implausible Hypothesis 1: You should not send a text message

Implausible Hypothesis 2: It’s bad to end the relationship with the guy.

Situation: Paula is leaving home to do some shopping and notices that the dog’s water bowl is
empty.

Intention: Paula wants to leave the dog at home.
Moral Action: Paula fills the bowl with water before leaving dog alone in the house.
Immoral Action: Paula decides to fill the bowl when she gets home and leaves the dog with no water.

Plausible Hypothesis: You must always be kind to animals

Contradictory Hypothesis: It’s bad to be kind to animals.

Implausible Hypothesis 1: It’s rude to leave the dog at home.

Implausible Hypothesis 2: It’s important to do some shopping.

Table 19: Critic training examples from Moral Stories. Norm judgments are highlighted in light blue , original

norm actions are colored in light gray and norm actions extracted from the context are colored in light yellow .
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Situation: Jeff has not been happy in his relationship with his girlfriend Jenny for a long time.
Intention: Jeff wants to break up with Jenny.
Moral Action: Jeff goes to Jenny’s house and tells her that he wants to break up with her.
Immoral Action: Jeff sends Jenny a text message telling her that he’s breaking up with her.

UQA-T5-large Output: It’s wrong to break up with someone.

Jeff calls Jenny and tells her that he’s breaking up with her.

REFINER Output: Its wrong to break up with someone over text.

Jeff sits down with Jenny and tells her that hes breaking up with her.

Situation: Jack and his friends are playing in his backyard on a sunny day.
Intention: Jack wants to have fun with his friends.
Moral Action: Jack sets up an inflatable pool and swims in the pool with his friends.
Immoral Action: Jack tosses a ball around with his friends, and he accidentally hit a window of his neighbor.

UQA-T5-large Output: It’s wrong to hit someone.

Jack throws a ball with his friends and hits a window of his neighbor.

REFINER Output: Its wrong to cause harm to someone elses property.

Jack tosses a ball around with his friends and hits a tree with it.

Situation: Jack was invited to a party, but he has the flu.
Intention: Jack wants to attend the party and have fun.
Moral Action: Jack stays home, but Skypes in to the party to socialize.
Immoral Action: Jack goes to the party even though he is sick.

UQA-T5-large Output: It’s bad to be sick.

Jack calls his mom and tells her he is sick.

REFINER Output: Its bad to spread germs.

Jack calls his friend and tells him he cant go to the party.

Table 20: Moral Stories generations. Norm outputs (z) are highlighted in light blue , moral action outputs (y) are

colored in light green
.
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