Archer #%: A Human-Labeled Text-to-SQL Dataset with
Arithmetic, Commonsense and Hypothetical Reasoning

Danna Zheng', Mirella Lapata', Jeff Z. Pan'
! School of Informatics, University of Edinburgh, UK
2 Huawei Edinburgh Research Centre, CSI, UK
dzheng @ed.ac.uk, mlap@inf.ed.ac.uk, http://knowledge-representation.org/j.z.pan/

Abstract

We present Archer, a challenging bilingual text-
to-SQL dataset specific to complex reasoning,
including arithmetic, commonsense and hypo-
thetical reasoning. It contains 1,042 English
questions and 1,042 Chinese questions, along
with 521 unique SQL queries, covering 20 En-
glish databases across 20 domains. Notably,
this dataset demonstrates a significantly higher
level of complexity compared to existing pub-
licly available datasets. Our evaluation shows
that Archer challenges the capabilities of cur-
rent state-of-the-art models, with a high-ranked
model on the Spider leaderboard achieving only
6.73% execution accuracy on Archer test set.
Thus, Archer presents a significant challenge
for future research in this field.

1 Introduction

The text-to-SQL task is an important NLP task,
which maps input questions to meaningful and
executable SQL queries, enabling users to inter-
act with databases in a more intuitive and user-
friendly manner. State-of-the-art methods (Pour-
reza and Rafiei, 2024; Li et al., 2023a,b; Scholak
et al., 2021) relying on large language models have
achieved execution accuracy above 75% on the Spi-
der dataset(Yu et al., 2018), which encompasses
complex SQL grammar and cross-domain settings.
Recently, Pourreza and Rafiei (2024) achieved re-
markable results with an impressive 85.3% execu-
tion accuracy on the Spider dataset, leveraging the
enhanced capabilities of GPT-4.

However, previous text-to-SQL datasets (Yu
et al., 2018; Finegan-Dollak et al., 2018; Yagh-
mazadeh et al., 2017; Iyer et al., 2017; Zhong
et al., 2017; Li and Jagadish, 2014; Giordani and
Moschitti, 2012; Popescu et al., 2003; Tang and
Mooney, 2000; Dahl et al., 1994), have limita-
tions that prevent them from capturing complex
reasoning effectively. For example, Spider (Yu
et al., 2018) purposely excludes questions that

94

Arithmetic Reasoning

How much higher is the maximum power of a BMW car than
the maximum power of a Fiat car?

ELAENEENEL VR EN BB RE S

SELECT MAX (horsepower) (SELECT MAX (horsepower)
FROM cars_data A JOIN car_names B ON A.id=B.makeid
WHERE B.model="fiat") AS diff FROM cars_data A JOIN
car_names B ON A.id=B.makeid WHERE B.model="bmw"

Commonsense Reasoning

Which 4-cylinder car needs the most fuel to drive 300 miles?
List how many gallons it needs, and its make and model.
FFI00REF MR L NN ENREFTESHHEHA,
BEZOMEH®?

Commonsense Knowledge: Fuel used is calculated by divding
distance driven by fuel consumption.

=

(=

SELECT B. Make, B.Model, 1.0 * 300 / mpg AS n_gallon
FROM cars_data A JOIN car_names B ON A.Id=B.MakeId

WHERE cylinders="4" ORDER BY mpg ASC LIMIT 1

Hpypothetical Reasoning

If all cars produced by the Daimler Benz company have 4-
cylinders, then in all 4-cylinder cars, which one needs the most
fuel to drive 300 miles? Please list how many gallons it needs,
along with its make and model.

BNEFBRWBASNFEEZME, FI0REFEMRSH
MEFEMMEMNESOFIRTA, ERESDMEHIH?

SELECT B.Make, B.Model, 1.0 * 300 / mpg AS n_gallon
FROM cars_data A JOIN car_names B ON A.id=B.makeid
JOIN model list C ON B.model=C.model JOIN car_makers
D on C.maker=D.id WHERE D.fullname="Daimler Benz" or
A.cylinders="4” ORDER BY mpg ASC LIMIT 1

Figure 1: Archer examples with three reasoning types:
arithmetic, commonsense, and hypothetical reasoning.
(See more examples in Appendix D)

would require external knowledge (Pan et al., 2023,
2017a,b), like that from common-sense knowledge
graphs or mathematical calculations. This exclu-
sion limits Spider’s ability to properly test how well
models can handle real-world scenarios, which of-
ten require a deeper level of reasoning capabilities.

In this paper, we present Archer, an innovative
dataset designed to incorporate three distinct types
of reasoning: arithmetic, commonsense, and hypo-
thetical reasoning. By including such varied rea-
soning skills, Archer seeks to challenge and expand
the capabilities of text-to-SQL models, equipping

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 94-111
March 17-22, 2024 (©2024 Association for Computational Linguistics


https://openai.com/research/gpt-4

them to manage more intricate and nuanced queries.
Figure 1 showcases data examples from Archer that
demonstrate these three reasoning abilities.

To evaluate the challenge posed by Archer, we
conducted experiments with both large language
models (LLMs) and fine-tuned models. How-
ever, all models demonstrated inferior performance
when dealing with Archer. Even the model that
achieved a high place on the Spider leaderboard
managed only 6.73% execution accuracy on Archer
test sets. These findings highlight substantial poten-
tial for improvement, indicating that Archer indeed
provides a significant challenge to current models.

2 Reasoning Types

In this section, we present the three different types
of reasoning in Archer: arithmetic, commonsense,
and hypothetical reasoning.

Arithmetic reasoning Arithmetic reasoning per-
tains to the act of resolving mathematical problems
through logical and analytical thought processes,
involving datatype values (Pan and Horrocks, 2003,
2005) and arithmetic operators. According to an
analysis of SQL queries from practical applica-
tions like the Baidu search engine and customer
service and data analysis robots by Wang et al.
(2020), mathematical calculations account for a
significant portion across SQL applications. How-
ever, previous high-quality datasets contain very
few questions that involve calculations, and such
questions are typically auto-generated with simple
grammar. In contrast, all question-SQL pairs in-
cluded in Archer necessitate arithmetic reasoning
and are manually annotated to ensure high quality.

Commonsense reasoning Commonsense reason-
ing refers to the capacity to make logical deduc-
tions based on implicit (and possibly uncertain)
commonsense knowledge (Romero et al., 2019; Ar-
naout et al., 2022; He et al., 2023; Wan et al., 2021;
Wang et al., 2010, 2014; Stoilos et al., 2006; Pan
et al., 2005), including, e.g., a broad understanding
of how things function in the world. Commonsense
knowledge can be useful for both zero-shot learn-
ing (Chen et al., 2023a, 2021a,b, 2023b; Geng et al.,
2023) and model explanations (Guan et al., 2024;
Chen et al., 2018). Archer includes questions that
necessitate models to comprehend the database, in-
fer missing details, and generate logical inferences
to create accurate SQL queries. As illustrated in
Figure 1, for the question "Which 4-cylinder car

95

SQL Annotation ’

80 man-hours

Database Collection Question Annotation
20 databases (DB) 25-30 questions per DB
1 man-hour 60 man-hours
P
[ &

SQL Review
Figure 2: The annotation process of our Archer.

Question Review

Paraphrase

Final Review & ’
40 man-hours

Processing

60 man-hours 60 man-hours

needs the most fuel to drive 300 miles? List how
many gallons it needs, and its make and model.",
the database does not provide an explicit schema
about the fuel used to travel 300 miles for each
car. It only provides each car’s fuel consumption in
MPG. Solving this question requires commonsense
knowledge, specifically the understanding of "Fuel
used is calculated by dividing distance driven by
fuel consumption" to derive the correct SQL.

Hypothetical reasoning Hypothetical reasoning
takes the complexity a step further, requiring mod-
els to have counterfactual thinking ability, which
is the ability to imagine and reason over unseen
cases based on the seen facts and counterfactual as-
sumptions. Archer includes questions that involve
hypothetical situations, requiring the model to un-
derstand and reason about conditional relationships.
As illustrated in Figure 1, consider the hypothetical
question "If all cars produced by the Daimler Benz
company have 4-cylinders, then in all 4-cylinder
cars, which one needs the most fuel to drive 300
miles? Please list how many gallons it needs, along
with its make and model.". In this question, the
underlying assumption contradicts the factual in-
formation stored in the database. The model must
comprehend this assumption and convert it into the
SQL condition d.fullname = "Daimler Benz" or
a.cylinders = "4".

3 Corpus Construction

As illustrated in Figure 2, we create Archer in the
following six steps, spending around 300 hours of
human labor in total: §3.1 Database Collection,
§3.2 Question Annotation, §3.3 SQL Annotation,
§3.4 SQL review, §3.5 Question Review and Para-
phrase, §3.6 Final Review and Process.

3.1 Database Collection

In a noteworthy research study conducted by Yu
et al. (2018), a total of 200 high-quality databases
across various domains were meticulously col-
lected and created, requiring approximately 150
man-hours. Out of these, 166 databases were made



publicly available.

Since not all Spider databases support the pro-
posed reasoning types, we carefully selected 20
databases across 20 domains from the Spider 166
databases based two criteria. Firstly, we applied a
script to keep only databases with a minimum of 3
tables and 20 columns within each database, as well
as a minimum of 6 columns with time or numeric
data types. Secondly, we manually checked the
filtered databases. These two steps ensure that each
selected database contains sufficient information to
support complex reasoning.

3.2 Question Annotation

Two bilingual (English and Chinese) Ph.D. stu-
dents with SQL experience were assigned the task
of generating questions based on 20 databases. The
annotators were required to propose 25-30 ques-
tions for each database, ensuring that the questions
met the following four requirements:

1) Arithmetic Reasoning: Each question should
incorporate arithmetic reasoning. The annotators
were expected to include a minimum of five ques-
tions for each arithmetic reasoning type (addition,
subtraction, multiplication, division).

2) Hypothetical Reasoning: At least five ques-
tions should involve hypothetical reasoning. For
each question using hypothetical reasoning, the
annotators were also required to propose a corre-
sponding factual question.

3) Commonsense Reasoning: The annotators
were encouraged to propose questions that involve
commonsense reasoning. However, the number of
questions with commonsense reasoning was not
strictly limited. This flexibility acknowledged that
not all databases support commonsense reasoning,
and not all arithmetic calculations necessitate it.

4) Complex SQL Grammar: The annotators
were encouraged to propose questions that require
the utilization of complex SQL grammar, such as
GROUP BY, ORDER BY, and JOIN.

The annotators were asked to write each question
in both English and Chinese. Besides, they were
instructed to indicate the reasoning types involved
(arithmetic: addition, subtraction, multiplication,
division; hypothetical; commonsense), and provide
the relevant knowledge or formulation if the ques-
tion incorporated commonsense reasoning.

96

3.3 SQL Annotation

In order to mitigate cognitive bias, we employed a
diverse set of annotators for the tasks of generating
questions and writing SQL queries. Two Ph.D. stu-
dents, who possess strong SQL skills, were specifi-
cally chosen to translate the natural language ques-
tions into SQL queries. Their responsibilities en-
compassed the following:

1) Clarity Ensuring: The annotators reviewed
both English and Chinese questions to identify any
ambiguity and restructure them accordingly.

2) SQL Writing: The annotators were instructed
to use consistent SQL patterns when multiple equiv-
alent queries are applicable for similar questions.

3) Verification and Correction: The annotators
were also responsible for reviewing the annota-
tions pertaining to reasoning types and the common
knowledge necessary to solve each question.

3.4 SQL Review

To ensure the correctness of the annotated SQL for
each question, we employed a professional SQL
expert to review all the SQL queries and rectify
any incorrect ones. Subsequently, the original SQL
annotators were responsible for verifying the SQL
queries corrected by the expert. In cases where
there are differences of opinion between the expert
and the annotators regarding the corrected queries,
they were required to engage in a discussion and
reach a consensus to finalize the SQL annotation.

3.5 Question Review and Paraphrase

We employed two native English speakers and two
native Chinese speakers to review and paraphrase
English and Chinese questions, respectively. Ini-
tially, their task was to assess the naturalness and
grammatical accuracy of the questions. Subse-
quently, the annotators were requested to provide
a paraphrased version of each question in order to
enhance the dataset’s robustness.

3.6 Final Review and Processing

In the final stage of our process, we assigned the
task of reviewing the English and Chinese ques-
tions, SQL, and annotations relating to reasoning
types and commonsense knowledge to our most
seasoned annotator. Once this comprehensive re-
view was completed, we ran a script to ensure that
all SQL queries are executable.



4 Dataset Statistics and Comparison

In Table 1, we present a summary of the statis-
tics for Archer as well as other publicly available
text-to-SQL datasets. We conducted a compara-
tive analysis of Archer and other datasets based on
four key perspectives: scale, complexity, reasoning
distribution, and language.

4.1 Scale

Archer consists of 1,042 Chinese questions, 1,042
English questions, and 521 corresponding SQL
queries, covering a wide range of 20 distinct
databases spanning 20 domains. Each database
in Archer, on average, consists of 7.55 tables and
45.25 columns. Archer stands out for its inclusion
of multiple domains and a higher average number
of tables and columns.

It is worth noting that WikiSQL (Zhong et al.,
2017) and DuSQL (Wang et al., 2020) are excep-
tionally large databases generated automatically.
Inspired by them, Archer has the potential to serve
as a valuable resource for summarizing SQL tem-
plates and training SQL-to-text generators to create
large-scale datasets in line with our reasoning set-
ting. In this project, we do not utilize Archer for
automatic question-SQL pairs generation. This
possibility is a potential future direction.

4.2 Complexity

Archer distinguishes itself by its considerably
higher level of complexity compared to existing
text-to-SQL datasets. Several factors contribute to
this complexity:

Firstly, the average question length in Archer
is significantly longer than that in other datasets.
This poses a challenge to models because longer
inputs increase the likelihood of misunderstandings
or misinterpretations of specific question details.

Secondly, the average SQL length in Archer
stands at 79.71, which is significantly longer than
that of other datasets except for ATIS, which con-
tains only one table. Longer SQL statements in-
crease the likelihood of generating incorrect code.

Thirdly, value prediction, which is crucial in
SQL generation, is often undervalued in current
research. Interestingly, Pourreza and Rafiei (2024)
achieved an execution accuracy of 85.3% on the
Spider dataset without utilizing database content.
This is primarily because Spider SQL queries typ-
ically contain an average of only 0.93 value slots,
with most values explicitly quoted in the question.

97

In contrast, Archer emphasizes the importance of
values, with an average of 6.21 value slots per SQL.
Furthermore, Archer questions do not explicitly
quote exact values; instead, they naturally mention
value information, mirroring real-world scenarios.

Fourthly, SQL queries in Archer refer to an av-
erage of 2.17 tables, suggesting that a substantial
number of the questions require the use of informa-
tion from multiple tables to derive SQLs.

Fifthly, the level of SQL statement nesting in
Archer is higher than that in other datasets, indi-
cating a greater degree of reasoning complexity
required to answer Archer questions, which often
necessitates the use of multiple subqueries.

Finally, Archer exhibits a high usage rate of com-
plex SQL grammar features such as GROUP BY and
ORDER BY in each SQL, surpassing the frequency
of usage seen in nearly all other datasets.

4.3 Reasoning Distribution

All questions in Archer require arithmetic reason-
ing. This means that mathematical calculations
and operations are essential in understanding and
answering these questions effectively. Addition-
ally, 44.0% of the questions involve hypothetical
reasoning, where the model needs to reason about
hypothetical scenarios to derive the correct SQL.
Furthermore, 51.4% of the questions require com-
monsense reasoning, where the model needs to
utilize general knowledge and commonsense un-
derstanding to produce the correct SQL.

It is worth noting that the majority of previous
text-to-SQL datasets do not incorporate arithmetic
and commonsense reasoning. Moreover, none of
the previous datasets contain questions that involve
hypothetical reasoning. Therefore, the inclusion
of these types of reasoning tasks in Archer sets
it apart from previous datasets and presents new
challenges for models in the field of text-to-SQL
understanding and generation.

4.4 Language

Unlike most previous text-to-SQL datasets that fo-
cus solely on English, Archer provides both En-
glish and Chinese questions. This bilingual feature
of Archer enhances the evaluation and training ca-
pabilities of text-to-SQL models, catering to the
needs of users in both English and Chinese lan-
guages, while forming a solid base for potential
support of more languages for Archer, which is left
as a future work.



Scale Complexity Reasoning Distribution

Dataset Lang

#Q #SQL #DB #Dom T/DB C/DB QL SQLL VS T NL GB OB | A(+) A() A(¥) AW H (o} C+H
ATIS 5280 947 1 1 25 131 10.53 99.75 3.14 4.66 0.39 0.01 0.00 X X X X X X X en
GeoQuery 877 246 1 1 8 31 7.48 2676 0.82 146 1.04 0.18 0.07 X X X 0.2% X X X en
Scholar 817 193 1 1 12 28 6.59 3803 136 326 002 037 028 X 0.5% X X X X X en
Academic 196 185 1 1 15 42 13.33 36.85 130 323 004 021 0.12 X X X X X X X en
IMDB 131 89 1 1 16 65 10.23 29.51 120 284 0.01 007 0.11 X X X X X X X en
Yelp 128 120 1 1 7 38 9.87 2833 1.68 225 0.00 0.10 0.08 X X X X X X X en
Advising 4387 205 1 1 18 124 10.90 48.08 3.06 3.13 0.17 0.03 0.07 | 3.4% X X X X X X en
Restaurant 378 23 1 1 3 12 10.13 29.57 226 226 0.17 0.00 0.00 X X X X X X X en
WikiSQL 80654 51159 26531 - 1 6.33 12.46 1332 0.53 1.00 0.00 0.00 0.00 X X X X X X X en
DuSQL 25003 20308 208 - 4.04 2138 19.20 2063 1.16 133 020 042 030 | 24% 95% 1.0% 44% X - X zh
BIRD 10962 10841 80 - 7.68 5471 15.81 2385 1.16 220 0.08 0.10 0.19 | 08% 5.0% 79% 10.0% X - X en
Cspider 9693 5275 166 99 528 2713 11.90 2437 093 1.69 0.10 023 021 0.1% 0.1% X 0.0% X X X zh
Spider 9693 5275 166 99 528 2713 13.29 2437 093 1.69 0.10 023 021]| 01% 0.1% X 0.0% X X X en
KaggleDBQA | 272 249 8 8 2,13 2238 9.83 13.80 0.54 1.18 0.00 044 050 | 0.0% 0.0% X 0.0% X X X en

Archer 5%
(Ours)

en

79.71 621 217 1.08 0.59 026 | 34.0% 478% 62.0% 40.7% 44.0% 51.4% 22.1% h

‘ 1042 521 20 20 7.55 45.25

Table 1: Comparison of public text-to-SQL datasets. The abbreviations used are as follows: #Q for the number of
unique questions, #SQL for the number of unique SQLs, #DB for the number of databases, #Dom for the number of
domains, T/DB for the number of tables per database, C/DB for the number of columns per database, QL for the
average question length, SQLL for the average SQL length, VS for the average number of value slots per question,
TM for the average number of tables mentioned in each SQL, NL for the average nested level per SQL, GB and
OB for the average number of GROUP BY and ORDER BY clauses per SQL respectively. A, H, C, and Lang represent
arithmetic, hypothetical, commonsense, and language, respectively. The cross mark, - denote absence and presence
respectively. The statistics for BIRD, CSpider, and Spider is based on training and dev sets as their test sets are
unavailable. Language is represented as en for English databases and questions, zh for Chinese databases and
questions, and zh for English databases and Chinese questions.

S Experiments solution on the Spider leaderboard at the time of
writing, it consists of four modules: (1) schema
5.1 Baseline Models linking, (2) query classification and decomposition,
We benchmark the performance of two types of ~ (3) SQL generation, and (4) self-correction. The
presentative text-to-SQL models on Archer: LLMs  initial three modules exploit the in-context learn-
and finetuned Models. ing ability of GPT-4 with ten shots, while the self-
correction is conducted by GPT-4 in a zero-shot
LLMs LLMs have shown strong performance  setting. Note that we do not evaluate GPT-4+DIN-
on commonly used text-to-SQL benchmarks, such ~ SQL on Archer Chinese questions because it is
as Spider. To analyze the difficulty of the whole  designed for English datasets. More details on the
Archer, we provide the zero-shot results of GPT-3.5  prompts can be found in Appendix A.
(gpt-3.5-turbo) with different prompt settings:
API Doc, CT-3, CT-3+COT. API Doc follows the  Fine-tuned Models T5-based fine-tuned models
style of the Text-to-SQL example provided by Ope-  have shown promising results on the Spider leader-
nAl, which includes the schema information ina  board. It is, however, worth mentioning that many
comment style. CT-3, introduced by Rajkumar etal.  top-tier models on the leaderboard are customized
(2022), includes the CREATE TABLE commands for  specifically for the limited SQL grammars present
each table and the results of executing a SELECT *  in the Spider dataset. Given that our dataset con-
FROM T LIMIT 3 query on each table. Compared  tains more complex grammatical structures com-
with API Doc, CT-3 provides more information  pared to Spider, these specialized models may not
like declarations of column types and foreign keys,  be suitable for our needs. As a result, we select
and a small amount (3) of content examples. CT-  vanilla T5 models as our baselines instead of the
3+COT implement the Chain-Of-Thought (COT)  aforementioned variants. We evaluate English ques-
technique on top of the CT-3 prompt by append-  tions using T5-base, T5-large, T5-3B, and evalu-
ing the prompt sentence "Let’s think step by  ate Chinese questions using mT5-base, mT5-large,
step."” before the SQL generation. Following the ~ mT5-x1. We concatenate the natural question Q

work of Li et al. (2023c), we provide a 1-shot  and database schema into a sequence as input in a
pseudo example for LLMs to learn the procedure of ~ format as below:

thinking and output format. Furthermore, we evalu-

ate the performance of GPT-4+DIN-SQL (Pourreza  x = (g1, .., qiq|lt1 : €'y oy €]}, |- [t : A7 C\tt‘;" ]

and Rafiei, 2024) on Archer. As a highly-ranked (1)
98


https://platform.openai.com/docs/models/gpt-3-5
https://huggingface.co/t5-base
https://huggingface.co/t5-large
https://huggingface.co/t5-3b
https://huggingface.co/google/mt5-base
https://huggingface.co/google/mt5-large
https://huggingface.co/google/mt5-xl

EN Questions, EN databases

ZH Questions, EN databases

Models

Full Test Full Test
VA EX VA EX VA EX VA EX
LLMs
GPT-3.5 + API Doc 82.63 13.24 83.65 3.85 86.18 10.65 85.58 3.85
GPT-3.5 + CT-3 84.17 13.34 80.77 3.85 91.17 12.86 91.35 1.92
GPT-3.5 + CT-3 + COT 75.14 13.24 74.04 4.81 72.84 12.19 65.38 3.85
GPT-4 + DIN-SQL - - 96.15 6.73 - - - -
Fine-tuned Models

T5-base/mT5-base - - 11.54 0.00 - - 9.62 0.00
T5-large/mT5-large - - 15.38 0.00 - - 14.42 0.00
T5-3B/mT5-x1 - - 19.23 0.00 - - 17.31 0.00
T5-base/mT5-base + Aug - - 25.00 0.00 - - 24.03 0.00
T5-large/mT5-large + Aug - - 33.65 3.84 - - 30.77 0.96
T5-3B/mT5-x1 + Aug - - 50.00 4.81 - - 61.54 1.92

Table 2: Baseline performance on Archer. GPT-4+DIN-SQL was tested only on the English set due to cost and its
English-specific design. We only report the fine-tuned model’s performance on the test set.

where ¢; is the i*" question token, t; is the Gt
table, and ch is the k" in the j*" table. Following
the works of Li et al. (2023a); Lin et al. (2020),
we extract the potential database cell values and
append them to their corresponding columns.

5.2 Evaluation Metrics

We employ two evaluation metrics: VAlid SQL
(VA) and EXecution accuracy (EX). VA is the pro-
portion of the predicted SQL statements that can
be executed successfully, no matter with correct or
incorrect answers. EX is the proportion of the pre-
dicted SQL statements where the execution results
match those of the gold SQL statements. We com-
puted EX of each instance use a new evaluation
script as shown in Algorithm 1, which mitigates
the false-negative issue in present publicly avail-
able evaluation scripts caused by permutations of
columns and rows.

5.3 Experiments Setup

Data Split Among the 20 databases, we split 16,
2, and 2 databases as training, dev, and test sets,
respectively. The databases for Archer training
set are collected from the Spider training set, and
the databases for Archer dev set and test set are
collected from the Spider dev set. We strive to
introduce as few new SQL keywords as possible
during SQL annotation to facilitate the integration
of our dataset with the Spider and CSpider datasets.
We also report the performance of TS finetuned
on the augmented training set which consists of
Archer training set and Spider/CSpider training set.

99

For LLM baselines, we assess the zero-shot perfor-
mance of GPT-3.5 on the full Archer to evaluate the
dataset’s overall difficulty. As for GPT-4+DINSQL,
due to its high cost and extended response time, we
only test it on Archer test sets.
Hyper-Parameters For GPT-3.5 baselines, we
set stop sequence to [‘--", ¢;’, ‘#’] and the
temperature to 0. In the case of GPT-4+DIN-SQL,
we adhere to the default setting as outlined in Pour-
reza and Rafiei (2024). For T5 baselines, we em-
ploy the Adafactor optimizer with a learning rate
of 5e-5. For T5-base/mT5-base and TS-large/mT5-
large, we adopt a batch size of 6 and a gradient
descent step of 5. For T5-3b and mT5-x1, we use
a batch size of 2 and a gradient descent step of 16.
To adjust the learning rate, we utilize linear warm-
up with a warm-up rate of 0.1, followed by cosine
decay. During inference, we set the beam size to 8.
We set the maximum epoch to 128, having check-
points every 10 epochs as well as the last epoch.
We then select the optimal checkpoints based on
their EX performance on the development set.

6 Results and Discussion

6.1 Overall Evaluation

We summarize the performance of LLMs and fine-
tuned models in Table 2. The low performance
of these models on Archer suggests that Archer
presents a significant challenge. This underscores
the considerable potential for future improvement
in this domain.



254 24.46 A+C+H 30

26.19 25.60

16.67 20 18.75

@
3
X

[
15 13.79

7.46 10

EX

Hypothetical questions
Factual questions
17.47

15 w/o knowlwdge
w/knowledge 20

1213
11.19

12.31 18.12

10.07

EX

10

EN ZH EN ZH

(1) Different Reasoning Types (2) Arithmetic Reasoning Analysis

EN ZH EN ZH

(3) Commonsense Reasoning Analysis (4) Hypothetical Reasoning Analysis

Figure 3: GPT-3.5 + CT-3 execution accuracy comparison across and within different reasoning types. A refers to
arithmetic. H refers to hypothetic. C refers to commonsense.

LLM GPT-4+DIN-SQL obtain EX score of
6.73% on Archer test set, while it is able to achieve
85.3% test-suite execution performance on Spider
test set (Pourreza and Rafiei, 2024). To evalu-
ate the overall difficulty of Archer, we test the
zero-shot performance of GPT-3.5 with API Doc,
CT-3, CT-3+COT prompts on the full Archer data.
Among the three kinds of prompts, CT-3 achieves
the highest EX scores on both English data (EX:
13.34%) and Chinese data (EX: 12.86%). As ex-
pected, CT-3 performed slightly better than API
Doc, likely due to its inclusion of more useful in-
formation, such as declarations of column types
and foreign keys. However, the addition of COT in
CT-3+COT did not outperform CT-3 on the com-
plete Archer. On the other hand, for the Test set
only, CT-3+COT slightly outperform CT-3. From
Table 2, we observe a significant decrease in VA
when using COT, suggesting that COT suffers from
having more syntax errors in the generated SQL.
Although CT-3+COT achieved a higher EX score
than CT-3 and API Doc specifically for questions
involving arithmetic and commonsense reasoning,
it performed less effectively on questions that re-
quire hypothetical reasoning (cf. Table 3 in Ap-
pendix C).

Finetuned Models From Table 2. we observe
that TS from scale base to 3B (XL) trained on
Archer training set achieve 0.00% EX scores. This
outcome could be attributed to the small-scale na-
ture of Archer combined with its high complexity.
However, when Archer training set was augmented
with the Spider/CSpider training set, the VA scores
of TS5 models exhibited a substantial improvement.
Specifically, the T5-3B model trained on the aug-
mented training set achieved an EX score of 4.81%
on the English test (matching the performance of
GPT-3.5+CT-3+COT) set and 1.92% on the Chi-
nese test set (matching the performance of GPT-
3.5+CT-3).

These results suggest that Archer has the po-

tential to advance the development of text-to-SQL
systems with complex reasoning.

6.2 Different Reasoning Analysis

To gain a comprehensive understanding of the dif-
ficulty levels within the complete Archer across
various reasoning types, we conducted a thorough
analysis using the GPT-3.5 model with the CT-3
prompt, which demonstrated the highest perfor-
mance on the full dataset. Additional results for
GPT-3.5 with alternative prompts can be found in
Appendix C.

Overall Comparison Figure 3-(1) shows the per-
formance on questions with different kinds of rea-
soning. The results reveal that questions solely
based on arithmetic reasoning exhibit significantly
higher performance compared to those involving
additional forms of reasoning. Specifically, hypo-
thetical reasoning presents a greater challenge than
commonsense reasoning. Moreover, questions that
require the integration of all three reasoning types
exhibit the poorest performance.

Arithmetic Reasoning The performance on
questions that exclusively require arithmetic rea-
soning across various arithmetic operations is pre-
sented in Figure 3-(2). The findings indicate that
subtraction and division pose greater difficulty com-
pared to addition and multiplication.

Commonsense Reasoning On commonsense
reasoning, in Figure 3-(3), we compare the perfor-
mance of GPT-3.5+CT-3 on such questions under
two settings. The first setting involves directly in-
putting the question itself, while the second setting
involves inputting the concatenation of the knowl-
edge and the question. The results reveal that ex-
plicitly stating the knowledge within the question
can aid in generating correct SQL queries. This
suggests that leveraging external knowledge bases
could be beneficial in solving similar questions.
However, incorporating external knowledge into

100



254 =%k= QL ™
% SQLL == NL

VS
20+
\*

15
%,

EX

k- e
U

5 -
1 2 3 4

Complexity Level

Figure 4: GPT-3.5 + CT-3 execution accuracy perfor-
mance w.r.t different complexity level. The abbrevia-
tions used are as follows: QL for the average question
length (1: [0,15)], 2: [15,20), 3:[30,45), 4: [45,)), SQLL
for the average SQL length (1: [0,50)], 2: [50,100),
3:[100,150), 4: [150,)), VS for the average number of
value slots per question (1: [0,3)], 2: [3,6), 3:[6,9), 4:
[9,)), TM for the average number of tables mentioned
in each SQL (1: [0,2)], 2: [2,3), 3:[3,5), 4: [5,)), NL
for the average nested level per SQL (1: [0,1)], 2: [1,2),
3:[2,3), 4: [3,)).

text-to-SQL tasks presents significant challenges in
general. Firstly, models need to compare informa-
tion from natural language questions with the rela-
tional database to determine if external knowledge
is required. Secondly, models need to extract the
most relevant knowledge from external knowledge
bases. Last but not least, the process of integrat-
ing this knowledge into the text-to-SQL generation
process remains largely unexplored.

Hypothetical reasoning On hypothetical reason-
ing, in Figure 3-(4), we compare the performance
of these questions and observe a significant perfor-
mance gap. The EX performance on factual ques-
tions exceeds 17%, whereas the performance on
hypothetical questions falls below 7%, confirming
the difficulties involved.

6.3 Complexity Factors Analysis

To gain insights into the SQL complexity within
Archer, Figure 4 illustrates the relationship between
the EX score and various factors, including ques-
tion length, SQL length, number of value slots,
number of tables mentioned in SQL, and SQL
nested level. The performance demonstrates a de-
creasing trend as the question becomes longer, the
SQL length increases, the number of value slots
rises, the number of tables mentioned in the SQL
grows, or the SQL nested level escalates. As shown
in Table 1, Archer exhibits considerably higher
complexity across these factors when compared to

other publicly available text-to-SQL datasets.

6.4 Bad Case Analysis

We randomly selected 50 executable but incorrect
examples generated by GPT-4 + DIN-SQL and
identified the following common error types:

Incorrect Logic : GPT-4 sometimes struggles
with hypothetical questions that involve com-
plex logic. For instance, when asked "If all
cars produced by Daimler Benz company are 4-
cylinders, which 4-cylinder car needs the most fuel
to drive 300 miles?", the model might generate
SQL queries like WHERE T1.Cylinders = 4 AND
T4 .Maker = ’Daimler Benz’. However, the cor-
rect query should be WHERE T1.Cylinders = 4
OR T4.Maker = ‘Daimler Benz’ as there could
be other 4-cylinder cars aside from Mercedes-Benz.
This reveals a limitation in comprehending the hy-
pothetical nature of the question.

Incorrect Knowledge GPT-4 may make
commonsense errors when generating the SQL,
such like unit conversions. For example,
if a question requests fuel consumption in
liters per hundred kilometers, but the database
only contains fuel efficiency data in miles
per gallon, the accurate conversion formula is
liters_per_hundred_kilometers = 235.2145
/ MPG. However, GPT-4 employs an incorrect for-
mula like (100 x 3.78541) / MPG.

Incorrect Schema Understanding GPT-4
sometimes struggles to correctly link query entities
to the corresponding database columns. For exam-
ple, when asked about the "average single cylinder
displacement of an 8-cylinder car", GPT-4 might
generate a query like SELECT avg(Edispl) FROM
cars_data WHERE Cylinders = 8. However, in
this case, the query should calculate the average sin-
gle cylinder displacement, like SELECT AVG(1.0
* Edispl / Cylinders) AS avg_displ FROM
cars_data WHERE Cylinders = 8. This error
highlights the need for the model to understand
database column names, especially when they in-
volve abbreviations commonly used in real-world
databases. (Note that in the Spider dataset, annota-
tors tend to use exact column names in their queries,
e.g., What is the average edispl for all Volvos?)

Other Detail Errors : For example, GPT-4 may
also exhibit minor errors such as forgetting to mul-
tiply 1.0 for float calculations.

101



7 Related Work

The earliest text-to-SQL datasets, including
ATIS (Dahl et al., 1994; Iyer et al., 2017), Geo-
Query (Zelle and Mooney, 1996; Iyer et al,
2017), Scholar (Iyer et al., 2017), Academic (Li
and Jagadish, 2014), IMDB (Yaghmazadeh et al.,
2017), Yelp (Yaghmazadeh et al., 2017), Advis-
ing (Finegan-Dollak et al., 2018) and Restau-
rants (Giordani and Moschitti, 2012; Tang and
Mooney, 2000; Popescu et al., 2003), were lim-
ited to a single database. Consequently, models
trained on these datasets struggled to generalize to
unseen databases as they were tested on the same
database used for training. To address such limita-
tions, Zhong et al. (2017) introduced WikiSQL in
which the databases in the test set were not present
in the training set. However, the SQL queries in
WikiSQL were generated automatically using sim-
plified assumptions, which may not fully capture
the complexity of real-world queries.

For a comprehensive cross-domain text-to-SQL
dataset, Yu et al. (2018) presented Spider dataset,
which is currently the most widely used text-to-
SQL datasets. However, Spider excludes questions
that require external knowledge, like commonsense
reasoning and mathematical calculations, which are
often essential for real-world applications.

Wang et al. (2020) proposed DuSQL, a Chinese
cross-domain text-to-SQL dataset that includes
math-related questions. However, DuSQL’s queries
and questions are relatively simple due to auto-
matic generation and grammar restrictions. Dou
et al. (2022) extended DuSQL with external knowl-
edge in their KnowSQL dataset. Unfortunately,
KnowSQL is not publicly unavailable.

In real-life scenarios, databases can be dirtier
with abbreviated and obscure naming of tables,
columns, and data values. To address this, Lee
et al. (2021) proposed KaggleDBQA with realis-
tic databases. Li et al. (2023c) proposed BIRD
benchmark for the text-to-SQL task on big and
dirty databases with a total size of 33.4 GB.

In contrast to these existing text-to-SQL datasets,
Archer focuses specifically on questions involving
complex reasoning and offers both English and Chi-
nese questions to query English databases across
various domains. Notably, all questions and SQL
queries in Archer are manually annotated by hu-
mans and thoroughly reviewed by professionals,
ensuring high-quality annotations for training and
evaluation purposes.

In the solution space, there are both LLM based
solutions and solutions based on fine-tuned models.
The former solutions, such as DIN-SQL (Pourreza
and Rafiei, 2024), tend to perform better in existing
text-to-SQL datasets, while the latter ones, particu-
larly FastRAT (Vougiouklis et al., 2023), can offer
significant improvements on latency, while keeping
decent performance. There can be space combining
the above two kinds of solutions for Archer, which
is a promising direction for future work.

8 Conclusion

In this paper, we present Archer, a complex bilin-
gual text-to-SQL dataset with three distinct rea-
soning types: arithmetic, commonsense, and hypo-
thetical reasoning. Experimental results on Archer,
obtained from both LLMs and fine-tuned models,
suggest plenty of space for improvement.

Acknowledgement

This work is supported by Huawei’s Dean’s Fund-
ing (C-00006589) and the UKRI Centre for Doc-
toral Training in Natural Language Processing,
funded by the UKRI (grant EP/S022481/1).

Limitations

The evaluation metric used in Archer is execution
accuracy. This metric may be perceived as an
upper-bound performance measure, as SQL queries
producing the same execution results on a single
database may still possess different semantic mean-
ings. To overcome this limitation, we plan to re-
lease a test suite in the future that evaluates SQL
queries on multiple databases, allowing for a more
comprehensive assessment of semantic accuracy.

Ethics Statement

As mentioned in the submission, we select our
databases from Spider (Yu et al., 2018), which is
public for academic use and does not contain sen-
sitive information. The construction of our dataset
involved the active involvement of human partici-
pants. We recruited and provided training to five an-
notators who possessed backgrounds in databases.
These annotators were assigned the tasks of gen-
erating questions based on the databases, writing
SQL queries, and paraphrasing the questions. Im-
portantly, no sensitive personal information was
involved throughout this process. Our human an-
notation study underwent evaluation by the depart-
mental ethics panel, which deemed it exempt from

102



ethical approval. This exemption was based on the
fact that all participants were employees of the Uni-
versity of Edinburgh and were therefore protected
by employment law. Furthermore, participants re-
ceived compensation at the standard hourly rate
designated for tutors and demonstrators at the uni-
versity. To promote academic usage, we intend to
freely release the dataset online.

References

Hiba Arnaout, Simon Razniewski, Gerhard Weikum,
and Jeff Z. Pan. 2022. UnCommonSense: Informa-
tive Negative Knowledge about Everyday Concepts.
In Proc. of the 31st ACM International Conference
on Information and Knowledge Management (CIKM
2022).

Jiaoyan Chen, Yuxia Geng, Zhuo Chen, Ian Horrocks,
Jeff Z Pan, and Huajun Chen. 2021a. Knowledge-
aware Zero-shot Learning: Survey and Perspective.
In Proc. of IJCAI 2021.

Jiaoyan Chen, Yuxia Geng, Jeff Z Pan Zhuo Chen,
Yuan He, Wen Zhang, Ian Horrocks, and Huajun
Chen. 2023a. Zero-Shot and Few-Shot Learning
With Knowledge Graphs: A Comprehensive Survey.
pages 653-685.

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, Ian Horrocks,
and Huajun Chen. 2018. Knowledge-Based Transfer
Learning Explanation. In Proc of KR, pages 349—
358.

Zhuo Chen, Jiaoyan Chen, Yuxia Geng, Jeff Z Pan,
Zonggang Yuan, and Huajun Chen. 2021b. Zero-shot
visual question answering using knowledge graph. In
Proc of ISWC, pages 146-162.

Zhuo Chen, Yufeng Huang, Jiaoyan Chen, Yuxia Geng,
Yin Fang Wen Zhang, Jeff Z Pan, and Huajun Chen.
2023b. Duet: Cross-modal Semantic Grounding for
Contrastive Zero-shot Learning. In Proc of AAAI,
pages 405-413.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Longxu Dou, Yan Gao, Xuqi Liu, Mingyang Pan,
Dingzirui Wang, Wanxiang Che, Dechen Zhan, Min-
Yen Kan, and Jian-Guang Lou. 2022. Towards
knowledge-intensive text-to-SQL semantic parsing
with formulaic knowledge. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5240-5253, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Catherine Finegan-Dollak, Li Zhang Jonathan K. Kum-
merfeld, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-sql evaluation methodology. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
351-360.

Yuxia Geng, Jiaoyan Chen, Xiang Zhuang, Zhuo Chen,
Jeff Z Pan, Juan Li, Zonggang Yuan, and Huajun
Chen. 2023. Benchmarking Knowledge-driven Zero-
shot Learning.

Alessandra Giordani and Alessandro Moschitti. 2012.
Automatic generation and reranking of sql-derived
answers to nl questions. In Proceedings of the Sec-
ond International Conference on Trustworthy Eternal
Systems via Evolving Software, Data and Knowledge,
pages 59-76.

Yong Guan, Freddy Lecue, Jiaoyan Chen, Ru Li, and
Jeff Z. Pan. 2024. Knowledge-aware Neuron Inter-
pretation for Scene Classification. In Proc of AAAI
pages 405—413.

Jie He, Simon Chi Lok U, Victor Gutiérrez-Basulto, and
Jeff Z. Pan. 2023. BUCA: A Binary Classification
Approach to Unsupervised Commonsense Question
Answering. In Proc. of the 61st Annual Meeting of
the Association for Computational Linguistics (ACL
2023).

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback.
arXiv preprint arXiv:1704.08760.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261-2273, Online. As-
sociation for Computational Linguistics.

Fei Li and H. V. Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73-84.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. arXiv preprint
arXiv:2302.05965.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-
to-sql parsing. arXiv preprint arXiv:2301.07507.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi
Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu
Cao, Ruiying Geng, et al. 2023c. Can llm already

103


https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010
https://doi.org/10.18653/v1/2022.emnlp-main.350
https://doi.org/10.18653/v1/2022.emnlp-main.350
https://doi.org/10.18653/v1/2022.emnlp-main.350
http://aclweb.org/anthology/P18-1033
http://aclweb.org/anthology/P18-1033
https://doi.org/10.1007/978-3-642-45260-4_5
https://doi.org/10.1007/978-3-642-45260-4_5
https://aclanthology.org/2021.acl-long.176
https://aclanthology.org/2021.acl-long.176
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468

serve as a database interface? a big bench for large-
scale database grounded text-to-sqls. arXiv preprint
arXiv:2305.03111.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870-4888.

J. Z. Pan, G. Vetere, ].M. Gomez-Perez, and H. Wu, ed-
itors. 2017a. Exploiting Linked Data and Knowledge
Graphs for Large Organisations. Springer.

Jeff Z. Pan and Ian Horrocks. 2003. Web Ontology
Reasoning with Datatype Groups. In Proc. of the 2nd
International Semantic Web Conference (ISWC2003).

Jeff Z. Pan and Ian Horrocks. 2005. OWL-Eu: Adding
Customised Datatypes into OWL. Journal of Web
Semantics, pages 29-39.

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo,
Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Ha-
jira Jabeen, Janna Omeliyanenko, Wen Zhang, Mat-
teo Lissandrini, Russa Biswas, Gerard de Melo, An-
gela Bonifati, Edlira Vakaj, Mauro Dragoni, , and
Damien Graux. 2023. Large Language Models and
Knowledge Graphs: Opportunities and Challenges.
Special Issue on Trends in Graph Data and Knowl-
edge. Transactions on Graph Data and Knowledge
(TGDK), 1:1-38.

Jeff Z. Pan, Giorgos Stamou, Vassilis Tzouvaras, and
Ian Horrocks. 2005. f-SWRL: A Fuzzy Extension of
SWRL. In Proc. of the International Conference on
Artificial Neural Networks (ICANN 2005), Special
section on "Intelligent multimedia and semantics".

J.Z. Pan, D. Calvanese, T. Eiter, I. Horrocks, M. Kifer,
F. Lin, and Y. Zhao. 2017b. Reasoning Web: Logical
Foundation of Knowledge Graph Construction and
Querying Answering. Springer.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th Inter-
national Conference on Intelligent User Interfaces,
pages 149-157.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. In Proc. of NeurIPS 2024.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabil-
ities of large language models. arXiv preprint
arXiv:2204.00498.

Julien Romero, Simon Razniewski, Koninika Pal, Jeff Z.
Pan, Archit Sakhadeo, and Gerhard Weikum. 2019.
Commonsense Properties from Query Logs and Ques-
tion Answering Forums. In Proc. of 28th ACM Inter-
national Conference on Information and Knowledge
Management (CIKM 2019), pages 1411-1420.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Giorgos Stoilos, Giorgos B. Stamou, and Jeff Z. Pan.
2006. Handling imprecise knowledge with fuzzy
description logic. In Proc. of the Internaltional Work-
shop on Description Logics.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inter-
grating statistical and relational learning for semantic
parsing. In 2000 Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and
Very Large Corpora, pages 133-141.

Pavlos Vougiouklis, Nikos Papasarantopoulos, Danna
Zheng, David Tuckey, Chenxin Diao, Zhili Shen, and
Jeff Z Pan. 2023. FastRAT: Fast and Efficient Cross-
lingual Text-to-SQL Semantic Parsing. In Proc. of
the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the
Asia-Pacific Chapter of the Association for Computa-
tional Linguistics (JCNLP-AACL 2023), pages 564—
576.

Hai Wan, Jinrui Liang, Jianfeng Du, Yanan Liu, Jialing
Ou, Baoyi Wang, Jeff Z. Pan, and Juan Zeng. 2021.
Iterative visual relationship detection via common-
sense knowledge graph. Big Data Research, 23.

Kewen Wang, Zhe Wang, Rodney W. Topor, Jeff Z. Pan,
and Grigoris Antoniou. 2014. Eliminating Concepts
and Roles from Ontologies in Expressive Descriptive
Logics. pages 205-232.

Lijie Wang, Ao Zhang, Kun Wu, Ke Sun, Zhenghua
Li, Hua Wu, Min Zhang, and Haifeng Wang. 2020.
DuSQL: A large-scale and pragmatic Chinese text-to-
SQL dataset. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6923—-6935, Online. Association
for Computational Linguistics.

Zhe Wang, Kewen Wang, Rodney Topor, and Jeff Z.
Pan. 2010. Forgetting for Knowledge Bases in DL-
Lite. In Special Issue "Commonsense Reasoning
for the Semantic Web" of the Journal of Annals of
Mathematics and Artificial Intelligence, 1-2.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, , and
Thomas Dillig. 2017. Sqlizer: Query synthesis from
natural language. In International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, ACM, pages 63:1-63:26.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled

104


http://doi.acm.org/10.1145/604045.604070
http://doi.acm.org/10.1145/604045.604070
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
http://www.aclweb.org/anthology/W00-1317
http://www.aclweb.org/anthology/W00-1317
http://www.aclweb.org/anthology/W00-1317
http://www.aclweb.org/anthology/W00-1317
https://doi.org/10.18653/v1/2020.emnlp-main.562
https://doi.org/10.18653/v1/2020.emnlp-main.562
http://doi.org/10.1145/3133887
http://doi.org/10.1145/3133887
https://doi.org/10.18653/v1/D18-1425

dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050-1055.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

105


https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

A Prompts

API Doc Prompt:

### Complete SQLite SQL query only and with no explanation
### English SQLite SQL tables, with their properties:

#

# Activity(actid, activity_ name)

# Participates_in(stuid, actid)

# Faculty Participates_in(FacID, actid)

# Student (StuID, LName, Fname, Age, Sex, Major, Advisor, city code)

# Faculty(FacID, Lname, Fname, Rank, Sex, Phone, Room, Building)

#

### How many more people have participated in mountain climbing activities than chess activities?
SELECT

CT-3 Prompt:

CREATE TABLE Activity (
actid INTEGER PRIMARY KEY,
activity name varchar (25)
)
/* 3 example rows:
SELECT * FROM Activity LIMIT 3;
actid activity name
770 Mountain Climbing
771 Canoeing
772 Kayaking
*/

CREATE TABLE Participates_in (
stuid INTEGER,
actid INTEGER,
FOREIGN KEY (stuid) REFERENCES Student (StulD),
FOREIGN KEY (actid) REFERENCES Activity(actid)
)
/* 3 example rows:
SELECT * FROM Participates_in LIMIT 3;
stuid actid
1001 770
1001 771
1001 777

-- Using valid SQLite, answer the following questions for the tables provided above.
-- How many more people have participated in mountain climbing activities than chess activities?
SELECT

CT-3 + COT Prompt:

CREATE TABLE Singer (
singer id INTEGER PRIMARY KEY,
nation TEXT not null,
name TEXT not null,
age INTEGER not null,
salary REAL null )
/* 3 example rows:
SELECT * FROM Singer LIMIT 3;
singer id nation name age salary
0 China Aotian 18 3000
1 Japan Hiroshi 30 2000
2 USA Harry 28 2500
*
/

-- Using valid SQLite, answer the following questions for the tables provided above.
-- How many singers in USA who is older than 2772

The final SQL is: Let's think step by step.

1. The 'older than 27' refers to age > 27 in SQL.

2. Find out the singers of step 1 in which nation = 'US’.

3. Use COUNT() to count how many singers.

Finally the SQL is:

SELECT COUNT (*) FROM singer WHERE age > 27

CREATE TABLE Activity (
actid INTEGER PRIMARY KEY,
activity name varchar (25)
)
/* 3 example rows:
SELECT * FROM Activity LIMIT 3;
actid activity name
770 Mountain Climbing
771 Canoeing
772 Kayaking
*/

CREATE TABLE Participates_in (
stuid INTEGER,
actid INTEGER,
FOREIGN KEY (stuid) REFERENCES Student (StulD),
FOREIGN KEY (actid) REFERENCES Activity(actid)
)
/* 3 example rows:
SELECT * FROM Participates_in LIMIT 3;
stuid actid
1001 770
1001 771
1001 777

-- Using valid SQLite, answer the following questions for the tables provided above.
-- How many more people have participated in mountain climbing activities than chess activities?
The final SQL is: Let's think step by step.

Figure 5: The example of API Doc prompt, CT-3 prompt, and CT-3+COT prompt.
106



B Execution Accuracy Algorithm

Algorithm 1: Execution Match Check

Result: Check if the execution results of p_sql and g_sql against db are equivalent
Input: p_sql, g_sql, db

1 if p_sql is not valid for execution against db then

2 return False;
3 else
4 Connect to the database db;
5 Execute p_sql and store the results in pred_res;
6 Execute g_sql and store the results in gold_res;
7 Close the database connection;
8 if pred_res is exactly equal to gold_res then
9 ‘ return True;
10 else if the number of rows or columns in pred_res and gold_res are different then
11 ‘ return False;
12 else if g_sql contains an outermost ORDER BY clause then
13 Compare sets of columns in pred_res and gold_res;
14 return True if equivalent, False otherwise;
15 else
16 Calculate element frequency of each row and column in both pred_res and gold_res;
17 Check if every frequency in pred_res is present in gold_res for both rows and columns;
18 return True if all frequencies match, False otherwise;
19 end
20 end

C Performance w.r.t Different Reasoning

EN ZH
R
Types GPT-3.5+APIDoc  GPT-35+CT-3 GPT-35+CT-3+COT GPT-35+APIDoc GPT-3.5+CT-3 GPT-3.5+ CT-3 + COT
VA EX VA EX VA EX VA EX VA EX VA EX
A 7878 23.02 8381 2446 7950 25.54 84.17 1906 8885 21.58 7734 19.42
A+C 86.60 1405 8595 1373 7843 15.69 89.87 1209 9118 1667 76.80 16.99
A+H 78.95 9.21 8377 746 6754 4.82 83.77 6.58 9254 614 6447 4.82
A+C+H  85.65 4.35 8261 522 73.04 3.48 86.09 2.61 9261 391 7043 435
Table 3: Performance with respect to different reasoning types.
Reasoning EN ZH
Types GPT-3.5+APIDoc GPT-35+CT-3 GPT-3.5+CT-3+COT GPT-3.5+APIDoc GPT-3.5+CT-3 GPT-3.5+ CT-3+ COT
VA EX VA  EX VA EX VA EX VA  EX VA EX
Addition 80.95 3333  88.10 2381 7381 16.67 9286 3095 9524 2619 7857 19.05
Subtraction ~ 72.41 1552 80.17 2241  75.00 23.28 81.03 1638 8793 1379  80.17 13.79
Multiplication 8452 26.19 8512  26.19 8155 28.57 8571 2024  89.88 25.60  74.40 20.24
Division 81.25 1607 7946 1875  76.79 28.57 80.36 1250 8571 1875 68.75 16.96

Table 4: Performance with respect to different arithmetic operations on data with arithmetic reasoning only.

EN ZH
R
Types GPT-3.5+ API Doc GPT-3.5+CT-3 GPT-3.5+CT-3+COT GPT-3.5+APIDoc GPT-3.5+CT-3 GPT-3.5+ CT-3+ COT
VA EX VA EX VA EX VA EX VA EX VA EX
w/o knowledge 86.19 9.89 84.51 10.07  76.12 10.45 88.25 8.02 91.79 11.19  74.07 11.57
w/ knowledge ~ 83.58 9.89 87.13 1231 7481 13.43 85.07 9.70 87.69 12.13 7332 13.62

Table 5: Performance for questions needed commonsense reasoning with and without explicit knowledge input.

107



EN ZH
R
Types GPT-3.5+ APIDoc GPT-3.5+CT-3 GPT-3.5+CT-3+COT GPT-3.5+APIDoc GPT-3.5+CT-3 GPT-3.5+CT-3+ COT

VA EX VA EX VA EX VA EX VA EX VA EX
Hypothetical 82.31 6.77 83.19 6.33 70.31 4.15 84.93 4.59 92.58 5.02 67.47 4.59
Factual 82.53 17.25 83.84 18.12 7948 20.09 87.71 15.5 89.52 1747  79.48 16.81

Table 6: Performance comparison for hypothetical questions and corresponding factual questions.

108



D Archer Examples

Arithmetic Reasoning

Database

# Activity (actid, activity_name)

# Participates_in (stuid, actid)

# Faculty Participates_in (FacID, actid)

# Student (StulD, LName, Fname, Age, Sex, Major, Advisor, city_code)
# Faculty (FacID, Lname, Fname, Rank, Sex, Phone, Room, Building)

Question
Among the students who took part in volleyball activities, what is the percentage of those who have the same advisor as Michael Leighton but are
from different cities?

SINTHEERCRFNSE S, MERR RKUE— N ESREXBFRAHTHNEESESZSD?

SQL

SELECT 100.0 * COUNT ( DISTINCT ( A.stuid ) ) / ( SELECT COUNT ( DISTINCT ( A.stuid ) ) FROM
Participates_in A JOIN Student B ON A.stuid = B.stuid JOIN Activity C ON A.actid = C.actid WHERE
C.activity name = "Volleyball" ) AS percent FROM Participates_in A JOIN Student B ON A.stuid = B.stuid
JOIN Activity C ON A.actid = C.actid WHERE B.Advisor = ( SELECT Advisor FROM Student WHERE Fname =
"Michael" AND Lname = "Leighton" ) AND B.city code != ( SELECT city code FROM Student WHERE Fname =
"Michael" AND Lname = "Leighton" ) AND C.activity name = "Volleyball"

Database

# circuits (circuitld, circuitRef, name, location, country, lat, Ing, alt, url)

# races (raceld, year, round, circuitld, name, date, time, url)

# drivers (driverld, driverRef, number, code, forename, surname, dob, nationality, url)

# status (statusld, status)

# seasons (year, url) # constructors(constructorld, constructorRef, name, nationality, url)

# constructorStandings (constructorStandingsld, raceld, constructorld, points, position, positionText, wins)
# results (resultld, raceld, driverld, constructorld, number, grid, position, positionText, positionOrder, points, laps, time, milliseconds, fastestLap,
rank, fastestLapTime, fastestLapSpeed, statusId)

# driverStandings (driverStandingsld, raceld, driverld, points, position, positionText, wins)

# constructorResults (constructorResultsId, raceld, constructorld, points, status)

# qualifying (qualifyld, raceld, driverld, constructorld, number, position, q1, 2, q3)

# pitStops (raceld, driverld, stop, lap, time, duration, milliseconds)

# lapTimes (raceld, driverld, lap, position, time, milliseconds)

Question
Which countries have more than twice as many racing circuits as Japan?

FHFEHELAAREHENRELRESNER.

SQL
SELECT B.country FROM circuits B , ( SELECT COUNT ( * ) AS n_japan FROM circuits B WHERE B.country =
"Japan" ) GROUP BY B.country HAVING COUNT ( * ) > 2 * n japan

Figure 6: The example of Archer data requiring Arithmetic Reasoning.

109



Commonsense Reasoning

Database

# circuits (circuitld, circuitRef, name, location, country, lat, Ing, alt, url)

# races (raceld, year, round, circuitld, name, date, time, url)

# drivers (driverld, driverRef, number, code, forename, surname, dob, nationality, url)

# status (statusld, status)

# seasons (year, url) # constructors(constructorld, constructorRef, name, nationality, url)

# constructorStandings (constructorStandingsld, raceld, constructorld, points, position, positionText, wins)
# results (resultld, raceld, driverld, constructorld, number, grid, position, positionText, positionOrder, points, laps, time, milliseconds, fastestLap,
rank, fastestLapTime, fastestLapSpeed, statusId)

# driverStandings (driverStandingsld, raceld, driverld, points, position, positionText, wins)

# constructorResults (constructorResultsld, raceld, constructorld, points, status)

# qualifying (qualifyld, raceld, driverId, constructorld, number, position, q1, q2, q3)

# pitStops (raceld, driverld, stop, lap, time, duration, milliseconds)

# lapTimes (raceld, driverld, lap, position, time, milliseconds)

Question
Find me the name of the circuit which is farthest in distance from the Tropic of Capricorn.

HUEEREELEERINFERR,

Commonsense Knowledge
The Tropic of Capricorn lies at 23.4394 degrees south of the Equator. The north latitude is positive, and the south latitude is negative.

SQL
SELECT name FROM circuits ORDER BY ABS ( lat - ( - 23.4394 ) ) DESC LIMIT 1

Question
Provide the ID, first name, and number of races for drivers who have competed in at least twice as many races as Allen Berg and have the same
nationality as the famous singer Michael Jackson.

BRESMENILFRABES LR ERNAFESERNRTFER R ATBAFEAREENETFHND. BF. LRI,

Commonsense Knowledge
Michael Joseph Jackson was an American singer, songwriter, dancer, and philanthropist.

SQL

SELECT A.driverId , forename AS first name , COUNT ( * ) AS n races FROM drivers A JOIN results B ON
A.driverId = B.driverId GROUP BY A.driverId HAVING COUNT ( * ) >= 2 * ( SELECT COUNT ( * ) FROM drivers A
JOIN results B ON A.driverId = B.driverId WHERE A.forename = "Allen" AND A.surname = "Berg" ) AND
A.nationality = "American"

Figure 7: The example of Archer data requiring Commonsense Reasoning.

110



Hypothetical Reasoning

Database

# Activity(actid, activity name)

# Participates_in(stuid, actid)

# Faculty_Participates_in(FacID, actid)

# Student(StuID, LName, Fname, Age, Sex, Major, Advisor, city_code)
# Faculty(FacID, Lname, Fname, Rank, Sex, Phone, Room, Building)

Question

If no student who is at least 5 years older than Linda Smith ever participated in volleyball activities, among the students who took part in volleyball
activities, what is the percentage of those who have the same advisor as Michael Leighton but are from different cities?

BRatLHhis E BT FERED IS MFEITESMSHKED, BSMIHRENNZED, MBERR FPR—ESRERBRER
THEEEEDZED?

SQL

SELECT 100.0 * COUNT ( DISTINCT ( A.stuid ) ) / ( SELECT COUNT ( DISTINCT ( A.stuid ) ) FROM
Participates_in A JOIN Student B ON A.stuid = B.stuid JOIN Activity C ON A.actid = C.actid WHERE
C.activity name = "Volleyball" AND B.Age < 5 + ( SELECT Age FROM Student WHERE Fname = "Linda" AND Lname
= "Smith" ) ) AS percent FROM Participates_in A JOIN Student B ON A.stuid = B.stuid JOIN Activity C ON
A.actid = C.actid WHERE B.Advisor = ( SELECT Advisor FROM Student WHERE Fname = "Michael" AND Lname =
"Leighton" ) AND B.city code != ( SELECT city code FROM Student WHERE Fname = "Michael" AND Lname =
"Leighton" ) AND C.activity name = "Volleyball" AND B.Age < 5 + ( SELECT Age FROM Student WHERE Fname =
"Linda" AND Lname = "Smith" )

Question

If the students whose major subject ID is 550 and are older than 20 years old have all participated in soccer activities, what percentage of people who
participated in soccer activities are female?

BRINFE T WidHSS0MFERRT20S NEEMSING BHES, MESMLEREHNAP L EERIZED?

SQL

SELECT 100.0 * ( COUNT ( DISTINCT ( id ) ) + ( SELECT COUNT ( DISTINCT ( id ) ) FROM Student WHERE major =
"550" AND age > 20 ) ) / ( ( SELECT COUNT ( DISTINCT ( id ) ) FROM ( SELECT A.FacID AS id , A.actid , B.Sex
FROM Faculty Participates_in A JOIN Faculty B ON A.FacID = B.FacID UNION ALL SELECT A.stuid AS id , A.actid ,
B.Sex FROM Participates in A JOIN Student B ON A.stuid = B.stuid WHERE NOT ( B.major = "550" AND B.age > 20 )
) A JOIN Activity B ON A.actid = B.actid WHERE B.activity name = "Soccer" ) + ( SELECT COUNT ( DISTINCT ( id )
) FROM Student WHERE major = "550" AND age > 20 ) ) AS percent FROM ( SELECT A.FacID AS id , A.actid , B.Sex
FROM Faculty Participates_in A JOIN Faculty B ON A.FacID = B.FacID UNION ALL SELECT A.stuid AS id , A.actid ,
B.Sex FROM Participates_in A JOIN Student B ON A.stuid = B.stuid WHERE NOT ( B.major = "550" AND B.age > 20

) A JOIN Activity B ON A.actid = B.actid WHERE B.activity name = "Soccer" AND A.Sex = "F"

Figure 8: The example of Archer data requiring Hypothetic Reasoning.

111



