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Abstract

Learning multilingual sentence embeddings is
a fundamental task in natural language pro-
cessing. Recent trends in learning both mono-
lingual and multilingual sentence embeddings
are mainly based on contrastive learning (CL)
among an anchor, one positive, and multiple
negative instances. In this work, we argue that
leveraging multiple positives should be con-
sidered for multilingual sentence embeddings
because (1) positives in a diverse set of lan-
guages can benefit cross-lingual learning, and
(2) transitive similarity across multiple posi-
tives can provide reliable structural information
for learning. In order to investigate the impact
of multiple positives in CL, we propose a novel
approach, named MPCL, to effectively utilize
multiple positive instances to improve the learn-
ing of multilingual sentence embeddings. Ex-
perimental results on various backbone models
and downstream tasks demonstrate that MPCL
leads to better retrieval, semantic similarity, and
classification performance compared to con-
ventional CL. We also observe that in unseen
languages, sentence embedding models trained
on multiple positives show better cross-lingual
transfer performance than models trained on a
single positive instance.

1 Introduction

Multilingual sentence embedding transforms sen-
tences in different languages into a shared embed-
ding space (Feng et al., 2020; Wang et al., 2022b),
where sentences with similar meanings are posi-
tioned close to each other. This is a fundamental
and important task in Natural Language Processing
(NLP), with various applications including multi-
lingual retrieval (Yang et al., 2020), cross-lingual
classifications (Hirota et al., 2020), and multilin-
gual inference (Conneau et al., 2018).

As contrastive learning (CL) exhibits great
strength on learning sentence representation, CL-
based methods have become the common practice
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Figure 1: Different shapes denote examples in differ-
ent languages. Solid and dotted arrows denote positive
and negative pairs, respectively. (a) vs. (b): Multilin-
gual positives by translation exhibit transitive similarity,
while monolingual positives do not. (c) vs. (d): Pair-
wise semantic similarity scores of sampled sentences
for mono and multilingual, highlighting the similarity
transitive similarity. Example sentences are sourced
from the XNLI dataset, refer to A.1 for details.

for learning monolingual (Gao et al., 2021; Su
et al., 2022; Ni et al., 2022) as well as multilin-
gual sentence embeddings (Feng et al., 2020; Wang
et al., 2022b). Typically, conventional CL is per-
formed with an anchor, a positive and multiple
negative examples. The learning objective of CL is
to pull the anchor and the positive closer and push
the anchor and the negatives apart (van den Oord
et al., 2018).

Our work aims at improving CL for multilin-
gual sentence embedding with multiple positives.
While existing approaches in multilingual sentence
embedding only takes the naive CL with a single
positive example, we argue that leveraging multiple

976

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 976-991
March 17-22, 2024 (©2024 Association for Computational Linguistics



positives should be considered especially for multi-
lingual sentence embeddings. In contrast to mono-
lingual CL, richer and more complex relationships
exist among multiple positives in multilingual CL:
(1) positives in a diverse set of languages, which
can benefit cross-lingual learning; (2) transitive
similarity across multiple positives by transla-
tion, which provides reliable structural information
for learning.

To show such properties, we calculate similar-
ity scores among multiple positives to emphasize
the unique effect of multiple positives especially in
multilingual scenarios. In the monolingual setting
shown in Figure 1(a) and 1(c), although multiple
positive examples all share high similarity with the
anchor, the transitive similarity does not always
exist among positives, e.g., (S1, S2) and (S1, S3)
have similar meanings but (S2, S3) do not. By con-
trast, in multilingual settings shown in Figure 1(b)
and 1(d) where translations are used as positives,
multiple positives can provide cross-lingual infor-
mation from diverse languages. Moreover, multilin-
gual translation guarantees transitivity of similarity
across positive examples, leading to effective CL
with multiple positives.

Motivated by the aforementioned discussion,
in this paper, we investigate the impact of CL
with multiple positives especially for multilingual
sentence embeddings and propose MPCL (Multi-
lingual Positives in Contrastive Learning), a novel
approach for sentence embedding to effectively
leverage multiple positives to improve the qual-
ity of multilingual sentence embeddings. Specifi-
cally, we construct multiple positive instances by
collecting multilingual translations for the anchor
sentence. Besides, we propose to utilize a multi-
positive loss function to effectively learn from
the multiple positives, in which the conventional
contrastive correlation and structural information
among multilingual translations are learned simul-
taneously. To the best of our knowledge, we are
the first to explore the impact of multiple positives
on multilingual sentence embeddings.

Extensive experiments on various models and
downstream tasks are conducted to evaluate the
proposed approach. Experimental results confirm
that leveraging multiple positives leads to better
semantic similarity, retrieval, and classification per-
formance on LaBSE (Feng et al., 2020), with an
improvement of 4.1 on the BUCC task, 2.7 on the
STS17 task, and 1.5 on the MTOP domain classifi-

cation task, respectively. The improvement holds
for a diverse set of backbone models, including
the continual training on well-trained sentence em-
bedding models such as mSimCSE (Wang et al.,
2022b), as well as training from scratch on pre-
trained language models such as mBERT (Devlin
et al., 2019a) and XLM-RoBERTa (Conneau et al.,
2020). A variant of MPCL outperforms the state-
of-the-art model, mSimCSE, in various evaluation
tasks. We also observe better cross-lingual transfer
performance on unseen languages with our pro-
posed MPCL compared to conventional CL with a
single positive instance. Moreover, to investigate
the effectiveness of MPCL, we evaluate variants
of MPCL by incorporating different languages and
adjusting the number of languages included in our
training dataset.

2 Multiple Positives in Contrastive
Learning for Multilingual Sentence
Embeddings

This section begins with a formal definition of
learning sentence embeddings with CL, followed
by the construction of training data with multiple
positives and the utilization of multiple positives
for sentence embeddings.

Contrastive learning for sentence embeddings
Given a sentence x; ~ X, sentence embedding
learning aims to learn a parameterized network
fo. The network can be applied to x; to obtain
a dense vector, i.e., h; = fp(x;) € RY which
can represent the semantic meaning of sentence x;.
The idea of contrastive learning is to construct a
positive example x;” for z; and pull them close,
while keeping x; far from other negative examples.
A commonly used training objective (van den Oord
et al., 2018; Gao et al., 2021; Wu et al., 2022) is to
minimize the following contrastive loss:

ey

sim(h;,h) /7
lgs) = —log ;

esim(hi,h;) /T ’
where hi” = fy(z), sim(-, ) is a similarity met-
ric, N 1is the size of a mini-batch, and 7 is the
temperature parameter. After training, these se-
mantically meaningful embeddings can be used to
represent sentences for various downstream tasks
such as sentence retrieval, sentence-level classifica-
tion, and semantic textual similarity.

Multiple Positives in Contrastive Learning
The conventional approach cannot fully capture
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Translation

x1(en) Well, it’s been very interesting.
x1(fr) Eh bien, ca a été trés intéressant.
x%(de) Nun, es war sehr interessant.

x;(fr) Vous avez accés aux faits.
x7(de) Sie haben Zugang zu den Fakten.
x2(en) You have access to the facts.

xy(de) Aber das braucht zu viel Planung.
xx(en) But that takes too much planning.
x%(fr) Mais demande trop de planification.
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Figure 2: Illustration of MPCL. Left: we reorganize multilingual data with a translation dataset to construct a
training dataset with multiple positives. Sentences in the same font are translations from different languages. Right:
we perform contrastive loss with multiple positive instances to update the model.

the semantic richness and diverse expressions in
different languages. To address this limitation, in
this work, we propose to leverage multiple posi-
tives in contrastive learning to improve the learn-
ing of multilingual sentence embeddings. Unlike
the conventional single-positive CL loss in Equa-
tion 1, for anchor sentence z;, we construct a
multiple positives set from multilingual transla-
tion X" = {z},...,2X} , where K is the num-
ber of positives from different languages. Inspired
by previous methods that deal with multiple posi-
tives (Frosst et al., 2019; Khosla et al., 2020), the
training objective of CL with multiple positives in
multilingual sentence embedding is shown as:

; . hk
ZII::I esim(hg hi) /7
N
J=1AjF#i

i

1

= —log

6sim(h¢,hj)/7’ )

where hf stands for the representation of positive
sentence ¥ from positive set X7, and N is the
size of a mini-batch. Equation 2 allows us to cap-
ture the linguistic diversity and complex relation-
ships among sentences across different languages.

Dataset Construction in MPCL Figure 2 illus-
trates the dataset construction in MPCL. In order to
utilize the transitivity among positives, we collect
translations as multiple positives X" from a mul-
tilingual translation dataset for x;. We reorganize
the multilingual training instances by assembling
translations into one group. Sentences within the
same group share the same meaning and exhibit
transitive similarity, allowing us to have one anchor
sentence x; and a positive set X, to perform the
MPCL loss in Equation 2.

3 Experiments

3.1 Details of Training Dataset

The multilingual translation dataset used in our ex-
periment is the XNLI (Conneau et al., 2018) dataset.
Considering the intersection of different evaluation
tasks, six languages, English (en), German (de),
French (fr), Spanish (es), Russian (ru), and Chi-
nese (zh), are selected in our dataset so that we
can evaluate the effects on both seen and unseen
languages simultaneously with minimal influence
from other languages. Other combinations of lan-
guages will be discussed in Section 3.7. Sentences
in languages other than English are derived from
translations given in XNLI. This allows us to assem-
ble multilingual translations into the same group.
Specifically, when dealing with a given sentence,
we exclusively choose the sentence itself, omitting
its corresponding entailment, neutral, and contra-
dictory counterparts provided in XNLI.

Finally, our dataset comprises 400k data groups.
In this dataset, for each anchor sentence, we can ac-
cess multiple positives at the same time. Note that
each language has the same probability of serving
as the anchor sentence. We perform a wide range
of experiments with various models on this dataset
to verify the effects of multiple positives.

3.2 Baselines

Several strong baselines are chosen for comparison.
The first selections are two state-of-the-art multi-
lingual sentence embedding models trained on one
single positive instance, LaBSE (Feng et al., 2020)
and mSimCSE (Wang et al., 2022b). We specif-
ically choose mSimC S E,;, a variant of mSim-
CSE that includes 15 languages during training and
utilizes hard-negative examples.
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In addition, we select some general models
such as Sentence-T5 (Ni et al., 2022), LASER,
and LASER2 (Artetxe and Schwenk, 2019) to
compare performance on different tasks. Be-
sides, bert-base-multilingual-uncased' (De-
vlin et al., 2019b) and x1m-roberta-large? (Con-
neau et al., 2020) are included as alternative Pre-
trained Language Models (PLMs).

3.3 Training Details

We continuously train various backbone models in-
cluding LM base models and sentence embedding
base models. The training of all our models is con-
ducted on one NVIDIA A100 80G. The batch size
is set to 128, the maximum sequence length is set to
64, and the learning rate is le-5. Particularly for the
LM base models mBERT and XLM-RoBERTa, the
conventional contrastive loss in Equation 1 is ini-
tially used for warm-up, during which the learning
rate is set to 2e-5 for 2000 steps.

The temperature parameter 7 is set to 0.05. We
use the [cls] token as sentence embedding. Co-
sine similarity is used as the similarity metric,
which allows us to compute the similarity distribu-
tion by contrasting the anchor sentence with multi-
ple positives and negatives. Accounting for the mar-
gin among multiple positives and negative exam-
ples, we specifically use min-max scaling to rescale
the similarity scores within a range of [—1/7,1/7].
Under our specified training details, the BERT-base
size models require approximately 30G of memory,
while the BERT-large size models require about
60G of memory.

We evaluate the models on development sets ev-
ery 125 steps to find the best checkpoints. Specif-
ically, STS22 and STS17 are used as the develop-
ment set for each other. We also use Tatoeba and
BUCKC as each other’s development sets for bi-text
mining tasks. For classification tasks, we directly
use the validation set provided by MTOP domain
classification as the development set. All of our
results are obtained from an average of five random
seeds.

3.4 Evaluation Tasks

We evaluate models on three fundamental
multi/cross-lingual tasks: bitext mining, seman-
tic similarity and classification. We run semantic

"https://huggingface.co/
bert-base-multilingual-uncased
2https://huggingface.co/xlm—roberta—large

similarity and classification with MTEB? (Muen-
nighoff et al., 2022), and bitext-mining with
XTREME* (Hu et al., 2020) benchmark.

Bitext Mining is a retrieval task where a sen-
tence and a paragraph (or longer sentence) will be
given. The tested model is supposed to find the best
match for the sentence in the paragraph by calcu-
lating cosine similarity for each pair of embedded
sentences. We evaluate our trained models using
14 and 36 Tatoeba (Artetxe and Schwenk, 2019)
and BUCC (Zweigenbaum et al., 2017) datasets
through the XTREME benchmark. We report the
F1 score for BUCC and the accuracy for Tatoeba.

Semantic Similarity requires the models to cal-
culate the similarity (scores) of two given sentences.
Higher scores generally mean higher similarity. We
choose the cross-lingual STS17 (Cer et al., 2017)
and STS22 (Chen et al., 2022) and report Spear-
man correlation scores based on cosine similarity
metrics. Note that in STS22, all of our averaged
results do not contain French-Polish (fr-pl) because
we find this pair in the MTEB benchmark appears
to be unstable, and even totally different models
can have exactly the same correlation score on the
MTEB leaderboard.

Classification tasks require the model to deter-
mine the label of given sentences based on their
sentence embeddings. An additional classifier layer
will be trained on the given training set, and the
performance of the model will be tested on the test
set. We choose the MTOP Domain Classification
task (Li et al., 2021a) through the MTEB bench-
mark and report the accuracy metric.

3.5 Main Experimental Results

In this section, we present the main experimental re-
sults. In particular, + Multiple refers to models that
are trained through our proposed framework with
five positive instances. To facilitate a fair compari-
son with conventional CL with one single positive,
we modify our dataset to follow a parallel struc-
ture, where only source-target pairs from different
languages are included. For example, in our main
experiments, we have six multilingual sentences
in one group so this group will be converted into
three random language pairs in the parallel dataset.
+ Single refers to the models that are trained on

3https://huggingface.co/spaces/mteb/
leaderboard
4https://github.com/google—research/xtreme
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Model BUCC Tatoeba(14avg.) Tatoeba(36avg.) STS17 STS22 MTOP Avgf*
LM Base Models

mBERT (Devlin et al., 2019b) 56.7 - - - - - -
+ Single 84.140.09 70.540.34 64.4.10.45 57.0+0.26 5341063 62.310.21 65.3
+ Multiple (Ours) 8531036 (11.2) 7161020 (L) 65.1.054 (10.7) 57.81031 (10.8) 5584056 (124) 6271020 (10.4) 664

XLM-R (Conneau et al., 2020) 66.0 57.6 53.4 - - - -
+ Single 94.540.17 91.3+0.08 89.610.19 7111063 59.840.44 83.040.19 81.6
+ Multiple (Ours) 9571036 (11.2)  92.040.11 (10.8)  90.4.013 (10.8) 7324020 (12.1) 6141041 (11.6) 8451039 (11.5) 829

XLM-R w/ hard negative - - - - - - -
+ Single (mSimCSE,;;) (Wang et al., 2022b) 95.2 932 91.4 76.7 63.2 84.1 84.0
+ Multiple (Ours)’ 954,097 (10.2)  93.5.0.13(10.3)  91.8.007 (10.4) 7891047 (12.2) 64.0.0.16 (10.8) 86.8.030 (12.7) 85.1

Sentence Embedding Base Models

INFOXLM (Chi et al., 2021) - 77.8 67.3

LASER (Artetxe and Schwenk, 2019) 92.9 95.3 84.4 - - -

LASER?2 (Artetxe and Schwenk, 2019) - - - 69.2 41.6 73.5

Sentence-T5-large (Ni et al., 2022) - - - 44 .4 47.0 61.5 -

mSimCSE,;; (Wang et al., 2022b) 95.2 932 91.4 76.7 63.2 84.1 84.0
+ Multiple (Ours) 96.0+0.23 (10.8)  93.540.10 (10.3) 9144014 78.510.23 (11.8) 6431028 (11.1) 85.91027 (11.8)  84.9

LaBSE (Feng et al., 2020) 93.5 95.3 95.0 74.2 60.9 84.6 83.9

+ Multiple (Ours) 97.610.19 (14.1)

96.0..0.05 (10.7)

9544007 (104)  76.910.22 (12.7)  61.510.29 (10.6) 86.140.26 (11.5)  85.6

Table 1: Overall results of different models on various downstream tasks. We report the average scores and their
corresponding standard deviation from five random seeds for each task. We adopt the baseline’s results from Hu
et al. (2020) and Muennighoff et al. (2022). +Single stands for models we continually train on parallelized dataset
with one single positive while +Multiple stands for models we train on our proposed method with multiple positives.
t: This variant is trained with all 15 languages in XNLI and combined with hard negatives. T*: This column refers
to the average score of all six tasks, showing statistically significant results with p-value < 0.005 when comparing

each +Multiple to its corresponding base model.

this modified dataset. Note that the data in this
modified dataset are the same as those in the orig-
inal dataset, with the only difference being their
structure, and the model has an equal chance of
seeing each sentence once in both datasets. Unless
otherwise specified, both + Multiple and + Single
refer to the models trained without hard negatives.

More specifically, we aim to address two ques-
tions based on the overall results of various down-
stream tasks shown in Table 1. Q1: Does the uti-
lization of multiple positives yield more substantial
benefits to the model compared to conventional
CL with a single positive? Q2: Does the effec-
tiveness of leveraging multiple positives still hold
for stronger sentence embedding models? Refer
to Appendix A.2 for detailed results of different
models.

3.5.1 Multiple Positives Yield Better

Performance than Single Positive

We first train general LMs with a warm-up under
our proposed methods and compare their perfor-
mance with LMs trained on conventional CL.
From the upper part of Table 1, it is evident that
continuous training with both single and multiple
positives on pretrained language models enhances
the performance of the models. However, from the
average score of the downstream tasks, we can ob-
serve that models trained using our proposed frame-
work with multiple positives demonstrate stronger
performance than conventional CL-based methods

with single positives. Specifically, we discover an
average improvement of 1.1 for mBERT and 1.3
for XLM-R across different downstream tasks com-
pared to models trained on single positive instance.
The most significant improvement is seen in STS22
for mBERT, and in STS17 for XLM-R.

In order to fairly compare MPCL with state-of-
the-art models, we train a variant with the same
language coverage and apply hard negatives (Kalan-
tidis et al., 2020). We include all 15 languages in
XNLI and utilize sentences with contradictory la-
bels as hard negatives. This comparison is referred
to as XLM-R w/ hard negative shown in Table 1.
Our XLM-R trained with multiple positives sur-
passes mSimCSE,!l, which is trained with single
positives in all tasks we report. Note that during
the training of this variant, an anchor sentence can
access five positives from different languages and
the hard negative instance is also randomly selected
from all languages. This variant indicates that our
proposed MPCL can be incorporated with other ex-
isting orthogonal methods, such as hard negatives,
and contributes to better performance.

These observations suggest that for general mul-
tilingual language models, leveraging multiple pos-
itives can offer a richer and more useful source of
information for training, thus yielding more sub-
stantial benefits to the model. Note that with the
exception of the BUCC task, all the other evalua-
tion tasks include languages that are excluded from
our dataset.
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3.5.2 Multiple Positives Can Further Improve
Sentence Embedding Models

Next, we continually train sentence embedding
models, including LaBSE and mSimCSE to val-
idate the effectiveness of multiple positives for
pretrained sentence embedding models. For
mSimCSE,;;, their results of BUCC and Tatoeba
are adopted from Wang et al. (2022b) while we
use its released checkpoint > to evaluate its per-
formance on STS17, STS22, and MTOP Domain
Classification. LaBSE’s results are adopted from
the MTEB leaderboard.

Upon examining the lower part of Table 1, we
can observe that the highest scores for each task
are obtained by models continually trained on our
framework. At the same time, it is evident that
the improvements in the BUCC, STS, and MTOP
Domain Classification tasks are more prominent
compared to the Tatoeba dataset. A possible rea-
son for this observation is that we only include
five languages, excluding English in our dataset,
in contrast to the comprehensive evaluation of 36
languages in the Tatoeba dataset. These findings
imply that the utilization of multiple positives can
even significantly enhance the performance of well-
trained sentence embedding models, indicating the
robustness of our proposed method.

3.6 Transferring to Unseen Languages

Despite the presence of unseen languages in all of
our downstream evaluation tasks, models trained
using multiple positives consistently demonstrate
improvements across almost all overall results.
This motivates us to delve deeper into the transfer-
ability of multiple positives. We show the results of
all language pairs from STS17, STS22 and MTOP
Domain Classification in Figure 3.

The value of 0 on horizontal axis stands for the
scores of the origianl LaBSE and mSimCSE,;.
For example, in Figure 3, the first pair English-
German (en-de) indicates that parallel training with
a single positive leads to a slight decrease in per-
formance for both LaBSE and mSimCSE, while
training with multiple positives leads to an improve-
ment. Note that our training dataset only contains
en, de, fr, es, ru and zh so all the other language
pairs are considered unseen. Language pairs such
as English-Turkish (en-tr), where only one of the
two languages is observed in the training set are
also considered as exclusive.

5https ://github.com/yaushian/mSimCSE

In Figure 3, we can observe that models trained
with multiple positives generally exhibit better
transfer ability to unseen languages. For example,
when looking at the unseen language pair pl-en in
STS22, we observe a drop in accuracy with single
positive training, while multiple positive training
still shows a significant improvement in LaBSE.
This trend can also be observed in mSimCSE’s vari-
ance, indicating that the transfer ability of multiple
positives surpasses that of single positive training.
Average results of unseen languages in STS tasks
can be found in Appendix A.2, Table 7.

3.7 The Choice of Languages in Training Set

In our main experiments, we choose six differ-
ent languages to satisfy various downstream tasks.
However, the composition of the dataset, including
the number and selection of positives, still remains
unexplored. In this section, we alter the compo-
sition of training datasets and specifically choose
XLM-R to assess different downstream tasks.

3.7.1 Training with Only Unseen Language

We first construct another training dataset using
multiple positives extracted from XNLI which
comprises only four languages: Bulgarian (bg),
Greek (el), Vietnamese (vi) and Swabhili (sw) that
do not overlap with any language that will be tested
in STS17 and STS22 so that all results exhibit
models’ fully transfer abilities. Besides, we add
two more languages: Hindi (hi) and Thai (¢h) to
see whether cross-lingual signals from more non-
overlap languages can help improve the transfer
ability. Figure 4 shows the results.

As reported in Wang et al. (2022b), we also ob-
serve that CL-based methods exhibit remarkable
transfer abilities on totally unseen languages. From
Figure 4, we can observe a slight drop when incor-
porating two additional languages into the dataset.
This finding aligns with the observation presented
by Conneau et al. (2020), where they highlight a
trade-off between the number of languages and
transfer performance. However, the strong trans-
fer ability of multiple positives remains evident as
training on completely non-overlapping languages
can still yield competitive results compared to our
original training dataset. Besides, we also observe
an obvious trend in Figure 4 where all average re-
sults from multiple positives consistently surpass
those from single positives. We believe that by
bringing anchor sentences and all the remaining
positives closer together, models can effectively
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The vertical axis shows changes in performance after further training. Bars above the horizontal axis indicate
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average scores of all language pairs included in STS17
and STS22. Error bars refer to standard deviation.

capture the nuances of different languages and
achieve better language representation.

3.7.2 Training with Only Seen Language

We also explore the effect of training with only
languages that will be tested in the STS17 and
STS22 tasks. We remove the ru and zh from our
dataset, which will not be evaluated in STS17 to
see whether ru and zh provide more useful cross-
lingual signals. Besides, we add two more addi-
tional languages, Arabic (ar), and Turkish (¢r) so
that all the languages in this dataset (en, de, fr, es,
ar, tr) will be tested in the STS17 and STS22 tasks.
The results are shown in Table 2.

We focus specifically on the language pairs that
we removed or added such as English-Arabic (en-

ar) and English-Turkish (en-tr) to examine the im-
pact of different dataset compositions. Upon re-
moving ru and zh from the original dataset, we
observe a slight decrease in the overall accuracy of
STS17. This suggests that ru and zA in fact con-
tribute valuable cross-lingual signals to the model
in STS17. However, in STS22, although the perfor-
mance of ru drops due to its removal, the accuracy
of zh acquires an interesting improvement. One
possible reason for this may be that although we
include z/ in our dataset, we do not have the exact
same zh-zh pairs that are tested in STS22. Thus,
the model is able to learn information from other
cross-lingual signals.

In an attempt to replace ru and zh with ar and tr,
we observe significant improvements in the ar and
tr related pairs in both STS17 and STS22, but this
change leads to a decline in the overall accuracy
compared to our original results. Dhamecha et al.
(2021) have noted that languages with high relat-
edness can mutually benefit each other. Therefore,
adding languages like ar which has low linguis-
tic relatedness with other languages may have an
impact on the performance of other languages.

3.8 Case study

In this section, we randomly choose two examples
from XNLI test set to demonstrate the effect of mul-
tiple positives on cross-lingual similarity. With the
six languages included in our experiment, we can
obtain fifteen cross-lingual pairs. The similarities
are calculated for all fifteen language pairs. The re-
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Model en-ar en-tr STS17 avg. ru tr zh zh-en STS22 avg.
XLM-R
+Single 6794049 6841071  Tlltoes 5721064 59.11030 6441043 65.61025 6741065 59.81044
+Multiple 71.04024 7254040 7324020 5711048 6031020 6434023 64.81027 68.61022 6141041
+Single, -ru, zh ~ 67.61018 70.31088  70.61064  55.61046 57.5+028 63.1r060 65.31017 6731042  59.610.46
+Multiple, -ru, zh 70.310.49 70.81023 71.84048 5621007 5841067 62.7r060 6571028 68.1i032 6021031
+Single, +ar; tr T.24061 7211058 7131044 5871033 5831032 6571026 64.81051 67.01037  60.31036

Table 2: Results of different composition of dataset on STS17 and STS22 task. -ru, zh means we only have four
languages in the dataset while +ar, tr means that we replace ru and zi with ar and #r.

sults are shown in Figure 5. The sub-figure caption
is the example sentence in English. Non-English-
centric pairs are highlighted with red color. As we
calculate similarity scores based on translations,
the gold label similarity score for all cross-lingual
pairs should be 1.0. As shown in the figure, it can
be observed that for most English-centric pairs, sin-
gle positive and multiple positive models achieve a
comparable level of similarity. However, for non-
English-centric pairs, multiple positive model ex-
hibits an obvious higher similarity. This indicates
that our approach of utilizing translations as multi-
ple positives improves the cross-lingual represen-
tation learning, especially for non-English-centric
language pairs.

4 Related Work

4.1 Contrastive Learning

Conventional contrastive learning performs with an
anchor, one positive instance and multiple negative
instances by pulling the distance between positive
instances closer and between negative instances
farther. The idea of contrastive loss can be traced
back to Chopra et al. (2005). Later, the wide usage
of contrastive loss in the field of computer vision
takes it to a higher level and has been proven to be
an effective way of learning representations (Wu
et al., 2018; He et al., 2019; Chen et al., 2020).
In the field of NLP, contrastive learning has been
applied into a variety of tasks such as machine
translation (Pan et al., 2021), text classification (Du
et al., 2021), summarization (Duan et al., 2019).
Recently, it has also been shown that CL plays a
significant role in cross-modal representation learn-
ing (Li et al., 2021b; Radford et al., 2021) which
indicates that even pulling positive instances from
different modalities can be beneficial.

Contrastive learning with multiple positives has
been studied in previous researches in computer vi-
sion (Khosla et al., 2020), with fine-grained strate-
gies such as soft-nearest neighbor (Frosst et al.,

2019) and ranking (Dwibedi et al., 2021; Hoffmann
et al., 2022). In this paper, as the focus is verifying
the impact of the usage of multiple translated pos-
itives for sentence embedding, we simply assign
equal importance to all positives.

en-es

es-ru es-de

(a) “We had a great talk.”

en-es

(b) “I don’t know whether he stayed in Au-
gusta after that.”

Figure 5: Cross-lingual similarity scores calculated by
XLM-R + Multiple or XLM-R + Single for two ran-
domly chosen examples. The example sentences are
shown in the sub-figure caption. Non-English-centric
language pairs are highlighted with red color.
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4.2 Monolingual Sentence Embeddings

SimCSE (Gao et al., 2021) exploits the ability of
CL by using dropout as augmentation in unsuper-
vised settings. For supervised sentence embed-
dings, SimCSE makes use of the NLI dataset (Bow-
man et al., 2015) to establish positive and hard neg-
ative examples. The success of SImCSE attracts
researchers’ attention to CL when dealing with sen-
tence embeddings (Ni et al., 2022; Wang et al.,
2022a; Su et al., 2022; Xie et al., 2022) since CL-
based models provide more competitive results on
downstream tasks than classical models such as S-
BERT (Sentence-BERT) (Reimers and Gurevych,
2019). Su et al. (2022) further combine CL with
prompt-like instructions while Liu et al. (2023)
leverages ranking information into CL.

For now, few works exist considering multiple
positives for monolingual sentence embeddings.
Wu et al. (2022) initially expands a single posi-
tive instance into multiple positives for one anchor
sentence through multiple augmentations.

4.3 Multilingual Sentence Embeddings

Training a universal sentence embedding model
for all languages is a fundamental and important
task. As the ability of efficient similarity calcula-
tion across languages, multilingual sentence em-
beddings have been applied to low-resource cor-
pus filtering (Chaudhary et al., 2019), parallel cor-
pus mining (Kvapilikova et al., 2021), and synthe-
sized dataset filtering (Wu et al., 2023). Artetxe
and Schwenk (2019) utilize the BILSTM structure
with a shared vocabulary for all languages. Recent
studies prefer to adopt CL in multilingual settings
with source-target translation pairs where the tar-
get sentence would be considered as the particu-
lar positive for the source sentence. For example,
LaBSE (Feng et al., 2020) is a BERT-based mul-
tilingual sentence representation model trained on
massive amounts of monolingual data and transla-
tion pairs covering over 100 languages. Mao and
Nakagawa (2023) distill LaBSE for lightweight
mutil-lingual sentence embedding models. Wang
et al. (2022b) show that CL resembling SimCSE
can also be applied to multilingual settings by us-
ing multilingual data. Besides, sentence-level CL
is often combined with token-level information, for
example, token-level reconstruction (Mao et al.,
2022) and token-level alignment Li et al. (2023) to
improve cross-lingual sentence embeddings. Al-
though CL-based models have become common,

leveraging multiple positives for learning multilin-
gual sentence embeddings is still unexplored.

5 Conclusion

In this work, we propose MPCL, which improves
multilingual sentence embeddings by utilizing a
set of positive examples, specifically multilingual
translations, for each anchor sentence. Through
the incorporation of multiple positives, MPCL cap-
tures both linguistic diversity and transitive sim-
ilarities, thereby enriching the embedding space.
It updates pairwise similarity distributions into
group-wise similarity ones by contrasting the an-
chor with multiple positives and employs a novel
multi-positive loss function that simultaneously
learns contrastive correlations and structural infor-
mation among translations. By doing so, MPCL
can improve performance in semantic similarity,
retrieval, and classification tasks while exhibiting
better robustness during training. Moreover, it is
also observed in the experiments that MPCL shows
a better transfer ability on unseen languages.

Limitations

Although we explore the effect of using multi-
lingual translations as multiple positives, the ex-
periments are still limited by the number of lan-
guages. Study on more low-resource languages
could be taken into consideration. Besides, the
XNLI data we used are machine-translated, with
possible noises within. The composition of the
training languages and how the training languages
can affect the testing on other languages also re-
mains to be explored. Additionally, as we study
the impact of multiple multilingual positives for
sentence embedding in this paper, the positives are
assigned with equal importance. But there are vari-
ous fine-grained strategies to weight positives such
as ranking deserving exploited.

Ethics Statement

This paper attempts to improve existing sentence
embedding approaches. All the data we used are
open-sourced and contain no privacy-related ones.
Our approaches are based on previously released
codebases and checkpoints. We respect all work
related to this work and expand ours on their well-
established work. Our work does not introduce eth-
ical biases but aims to make new, positive contribu-
tions to the multilingual computational languages
community.
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A Appendix
A.1 Details of Figure 1

As shown in Figure 1, the similarity relationship
in monolingual and multilingual are different. We
calculate the similarity score of sentences by uti-
lizing the released sample code and checkpoint of
LaBSE °. Some monolingual examples we use can
be found in Table 3 and multilingual examples in
Table 4.

For monolingual examples, we randomly sample
100 sentences with entailments from the English
XNLI dataset 7. The premise is used as anchor and
the corresponding entailment sentence serves as
one of the positives. Other positives are generated
by ChatGPT ® and the prompt we used is “Give
me several sentences that share similar meaning
with the following one: ”. For multilingual ex-
amples, we use the same 100 sentences and their
corresponding translations from the XNLI dataset
and calculate their similarity scores. We report
the average similarity score of these sentences in
Figure 1 (c¢) and (d).

A.2 Detailed Results of Main Experiments

We show detailed results of different tasks of in this
section. BUCC’s results is shown in Table 5. Some
detailed results, especially languages involved in
our training dataset are shown in Table 6. STS
results can be found in Table 7. Full results of
MTOP Domain Classification are shown in Table 8.

Model fr ru zh de avg.
mBERT - - - - 567
+ Single 852 831 802 883 84.1
+ Multiple w/o hard negative 86.7 84.2 81.0 89.3 85.3
XLM-R - - - - 66.0
+ Single 942 95.1 931 952 945

+ Multiple w/o hard negative 94.9 96.0 952 96.4 95.7
+ Multiple w/ hard negative =~ 94.5 95.0 96.6 955 954

mSimCSE,, - - - - 95.2
+Single 949 964 96.8 963 96.1
+Multiple 95.1 965 962 964 96.0

LaBSE - - - - 93.5
+Single 96.4 976 970 982 973
+Multiple 969 97.8 97.6 98.1 976

Table 5: Full results of BUCC task.

6https ://huggingface.co/setu4993/LaBSE
7https ://huggingface.co/datasets/xnli
8https ://chat.openai.com/
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Anchor These organizations invest the time and effort to understand their processes and how those processes
Sentence | contribute to or hamper mission accomplishment.

These organizations invest lots of time to understand how some processes can contribute to or hamper.
In order to grasp the effects of those processes on the mission, time and effort are spent by these organizations.

ilos Stl;;\;ZS These associations dedicate to comprehending their procedure and assessing how they can either
facilitate or impede their mission.
Organizations spent much effort to understand the positive and negative impacts of their processes on the mission.
To seize the influence of the processes towards the mission, associations sacrifice much time and effort.

Anchor Thus, with respect to the litigation services Congress has funded, there is no alternative channel for

Sentence | expression of the advocacy Congress seeks to restrict.

This is the only channel of expression of the advocacy that Congress seeks to restrict.
Congress intends to curtail advocacy expression through this exclusive channel.

Positi . . . L . .
OSHVE | Phis channel serves as the exclusive point of restriction for advocacy expression according to Congress.

Instances e . . .
The funded litigation services represent the exclusive channel for the expression of the advocacy
Congress seeks to restrict.
With regard to Congress-funded litigation services, there are no alternative means for
expressing the advocacy they intend to limit.

Anchor , .
My walkman broke so I'm upset now I just have to turn the stereo up real loud.

Sentence
I ’'m upset that my walkman broke and now I have to turn the stereo up really loud.

- The broken walkman made me feel upset now and I'll turn loud the stereo.
Positive \ . . . ,
Instances I'm feeling upset because my walkman is no longer functional and I'll turn loud the stereo.

The broken walkman has left me feeling upset, and I have no other choice but to turn up the volume on the stereo.
I'm feeling down because my walkman is broken thus I'll turn loud the stereo.

Table 3: Some examples that we use to calculate the similarity among mono-lingual multiple positive instances.

Anchor These organizations invest the time and effort to understand their processes and how those processes
Sentence | contribute to or hamper mission accomplishment.

Diese Organisationen investieren die Zeit und den Aufwand , um ihre Prozesse zu verstehen und

wie diese Prozesse einen Beitrag zur Erfiilllung der Aufgaben leisten oder behindern.

Positive | Ces organisations investissent le temps et les efforts nécessaires pour comprendre leurs processus

Instances | et la maniere dont ces processus contribuent ou entravent la réalisation des missions.

Estas organizaciones invierten el tiempo y el esfuerzo para comprender sus procesos y c6mo esos

procesos contribuyen o dificultan el logro de la misién.

STVI OpraHu3alluu BKJIA/IbIBAIOT BPEeMA N YCUJIWA JJIS IIOHNMaHNs CBOUX IIPOIECCOB U TOTI'O, KaKUM ()6pa30M
9TH TPOIECCHI CIIOCOOCTBYIOT JOCTUKEHUIO IeJIell MUCCUU UJIU MPEHSTCTBYIOT UX JIOCTHZKEHUO.

IXEH GG ARS FISE TR T R E N HRE LU St R 0 06 B T B i IR T B

Anchor Thus, with respect to the litigation services Congress has funded, there is no alternative channel for
Sentence | expression of the advocacy Congress seeks to restrict.

So gibt es in Bezug auf den Prozess der Rechtsstreitigkeiten, den der Kongress finanziert hat,

keinen Alternativen Kanal fiir den Ausdruck des Advocacy-Kongresses zu beschréanken.

Positive | Por lo tanto, con respecto a los servicios judiciales que el congreso ha financiado, no existe ningun canal
Instances | alternativo para la expresion del Congreso de promocién que pretende restringir.

Ainsi, en ce qui concerne le congres des services contentieux, il n’y a pas de voie alternative

pour I’ expression du congres de plaidoyer.

Takum 06pa3oM , 4TO KACAETCs JIeATELHOCT KOHIPecca 110 CyJeGHBIM yCiIyraM , TO He CyIIeCTBYeT
KaKOro-mbo aJbTepHATHBHOIO KaHAJIa [T BHIPAyKEHNsI MHEHHUI B paMKaxX HH(MOPMAIHOHHO-IPOIAraHINCTCKOIO
KOHI'Decca .

B, RTIFRIRS KA REF @RI, S8 A HARE W DR E R 2B ARSI IE.

Anchor My walkman broke so I'm upset now I just have to turn the stereo up real loud.
Sentence

Mein Walkman ist kaputt , also bin ich sauer , jetzt muss ich nur noch die Stereoanlage ganz laut drehen .
Positive Mon Walkman S’ est cassé alors je suis en colere maintenant je dois juste tourner la stéréo tres fort
Instances Mi Walkman se rompié asi que estoy molesto ahora solo tengo que girar el estéreo muy alto.

Moit mreep cioMaJics, TaK 9TO si paccTpoeH. MHe NpocTo HYy?KHO BKJIIOYUTH CTEPEO HOIPOMYE.

FAIRE S TR T BT IR 24 T F R REIESL (= R

Table 4: Some examples that we use to calculate the similarity among multi-lingual multiple positive instances.
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Model de fr es ru zh avg, 14avg. 36avg.

mBERT - - - - - - -
+ Single 958 89.8 884 863 872 895 705 644

+ Multiple w/o hard negative 96.2 89.8 90.1 879 89.1 90.6 71.6 65.1
XLM-R - - - - - - 57.6 534
+ Single 98.6 950 976 93.6 956 96.1 91.3 89.6

+ Multiple w/o hard negative 99.0 952 97.8 94.1 965 96.5 92.0 90.4
+ Multiple w/ hard negative ~ 989 95.6 97.8 944 962 96.6 93.5 91.8

mSimCSE,;; (Reproduced) 98.8 947 972 942 96.5 96.3 93.2 91.2
+ Single 98.8 956 98.1 93.8 964 96.5 93.3 91.2
+ Multiple 99.0 952 982 947 960 96.6 93.5 914
LaBSE (Reproduced) 99.0 96.0 96.3 953 96.1 96.5 95.3 95.0
+ Single 99.2 960 984 950 96.1 969 95.7 95.1
+ Multiple 994 964 983 952 964 97.1 96.0 95.4

Table 6: Detailed results of Tatoeba dataset. Since in the paper of LaBSE (Feng et al., 2020) and mSimCSE (Wang
et al., 2022b), authors did not report the score for each language, we reproduce their scores on Tatoeba dataset
through XTREME benchmark to have a better comparison. avg;,, stands for the languages included in our training
dataset.

Model STS17;, STS17., STS17 avg. STS22;, STS22., STS22avg.
mBERT - - - - - -
+ Single 63.7 51.5 57.0 543 52.2 534
+ Multiple 63.8 52.8 57.8 56.8 54.5 55.8
XLM-R - - - - - -
+ Single 73.8 68.9 71.1 61.2 57.8 59.8
+ Multiple w/o hard negative 74.8 71.9 73.2 63.2 58.9 61.4
+ Multiple w/ hard negative 81.1 77.1 78.9 65.1 62.5 64.0
mSimCSE,;; (Reproduced) 78.6 75.0 76.7 64.3 61.5 63.2
+ Single 79.1 75.1 76.9 63.6 59.8 62.0
+ Multiple 81.0 76.3 78.5 65.4 62.7 64.3
LaBSE 75.3 73.2 74.2 61.0 60.7 60.9
+ Single 76.1 74.6 75.3 61.0 57.8 59.7
+ Multiple 78.0 76.1 76.9 62.6 59.9 61.5

Table 7: Detailed results of STS tasks. We evaluate mSimCSE,;; through MTEB by ourselves. Task;,, stands for
language pairs, that are inside our training set while Task,, stands for exclusive language pairs. More specifically, in
STS17, there are five included pairs and six excluded pairs while in STS22, there are ten and seven, respectively (ex-
cluding fr-pl).
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Model de en es fr hi th avg.

mBERT - - - - - - -
+ Single 746 780 751 693 59.8 169 623
+ Multiple 741 786 760 699 60.5 168 62.7
XLM-R - - - - - - -
+ Single 845 854 850 81.7 792 82.1 83.0

+ Multiple w/o hard negative 86.3 86.2 86.8 823 83.1 82.0 84.5
+ Multiple w/ hard negative ~ 88.0 88.5 88.8 86.2 859 83.8 86.8

mSimCSE,; (Reproduced) 852 87.0 854 826 830 812 84.1
+ Single 86.6 8777 874 838 833 821 852
+ Multiple 872 876 87.8 851 844 832 859
LaBSE 87.0 86.1 84.1 841 851 812 84.6
+ Single 87.2 88.0 86.2 845 857 820 85.6
+ Multiple 88.0 879 86.7 84.6 865 82.7 86.1

Table 8: Full results of MTOP domain classification. We report the accuracy metric on test set. Notice that 4i and th
are languages excluded from our training dataset.
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