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Abstract

The single shortest path algorithm is undefined
for weighted finite-state automata over non-
idempotent semirings because such semirings
do not guarantee the existence of a shortest
path. However, in non-idempotent semirings
admitting an order satisfying a monotonicity
condition (such as the plus-times or log semir-
ings), the shortest string is well-defined. We
describe an algorithm which finds the shortest
string for a weighted non-deterministic automa-
ton over such semirings using the backwards
shortest distance of an equivalent deterministic
automaton (DFA) as a heuristic for A* search
performed over a companion idempotent semir-
ing, This algorithm is proven to return the short-
est string. There may be exponentially more
states in the equivalent DFA, but the proposed
algorithm needs to visit only a small fraction
of them if determinization is performed “on the
fly”.

1 Introduction

Weighted finite-state automata provide a compact
representation of hypotheses in various speech
recognition and text processing applications (e.g.,
Mohri, 1997; Mohri et al., 2002; Roark and Sproat,
2007; Gorman and Sproat, 2021). Under a wide
range of assumptions, weighted finite-state lattices
allow for efficient polynomial-time decoding via
shortest-path algorithms (Mohri, 2002).

The shortest path—and the algorithms that com-
pute it—are well-defined when the weights of a
lattice are idempotent and exhibit the path property.
These properties are formalized below, but infor-
mally they hold that the distance between any two
states corresponds to a single path between those
states, so that the shortest-path algorithm—having
identified this path—does not need to consider the
weights of competing paths between those states.
However, when the weights of a lattice lack these
two properties, there is no guarantee that a shortest

path between any two states exists. This situa-
tion arises in many speech and language technolo-
gies. For instance, generative models for speech
recognition and machine translation—and in many
unsupervised settings—often use expectation max-
imization (EM; Dempster et al., 1977) or related
algorithms for learning; such models generally lack
these two key properties. Under many conditions,
efficient decoding of a lattice constructed using
EM is required; in this case, one can decode ap-
proximately by interpreting the lattice as if it were
idempotent and had the path property, or one can
train the model using the Viterbi approximation to
EM, and then decode using an ordinary shortest-
path algorithm.1

In non-idempotent semirings admitting an order
satisfying a monotonicity condition, the shortest
path is undefined but the closely related notion of
shortest string is well-defined. We show below that
it is still possible to efficiently determine the short-
est string for lattices defined over non-idempotent
monotonic negative semirings such as the plus-
times and log semirings, both used for expecta-
tion maximization. We propose a simple algorithm
for decoding the shortest string over such semir-
ings which combines shortest-path search with the
A* queue discipline (Hart et al., 1968) and “on the
fly” determinization (Mohri, 1997). After provid-
ing definitions and the algorithm, we describe an
implementation and evaluate it using word lattices
produced by a speech recognizer. The algorithm—
in contrast to a naïve algorithm—is shown to scale
well as a function of lattice size.

2 Definitions

Before we introduce the proposed decoding algo-
rithm we provide definitions of key notions.

1Both of these strategies are discussed by Brown et al.
(1993; see §4.3 and §6.2 respectively), though they do not
refer to these semiring properties by name.
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2.1 Semirings
Weighted automata algorithms operate with respect
to an algebraic system known as a semiring, char-
acterized by the combination of two monoids.

Definition 2.1. A monoid is a pair (K, •) where K
is a set and • is a binary operator over K with the
following properties:

1. closure: ∀a, b ∈ K : a • b ∈ K.

2. associativity: ∀a, b, c ∈ K : (a • b) • c =
a • (b • c).

3. identity: there exists an identity element e ∈
K such that ∀a ∈ K : e • a = a • e = a.

Definition 2.2. A monoid is commutative in the
case that ∀a, b ∈ K : a • b = b • a.

Definition 2.3. A semiring is a five-tuple
(K,⊕,⊗, 0̄, 1̄) where:

1. (K,⊕) is a commutative monoid with identity
element 0̄.

2. (K,⊗) is a monoid with identity element 1̄.

3. ∀a ∈ K : a⊗ 0̄ = 0̄⊗ a = 0̄.

4. ∀a, b, c ∈ K : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

Definition 2.4. A semiring is zero-sum-free if non-
0̄ elements cannot sum to 0̄; that is, ∀a, b ∈ K :
a⊕ b = 0̄ =⇒ a = b = 0̄.

Definition 2.5. A semiring is idempotent if ⊕ is
idempotent; that is, ∀a ∈ K : a⊕ a = a.

Definition 2.6. A semiring has the path property
if ∀a, b ∈ K : a⊕ b ∈ {a, b}.

Remark 2.1. If a semiring has the path property it
is also idempotent.

Definition 2.7. The natural order of an idempotent
semiring is a boolean operator ⪯ such that ∀a, b ∈
K : a ⪯ b if a⊕ b = a.

Remark 2.2. In a semiring with the path property,
the natural order is a total order. That is, ∀a, b ∈ K,
either a ⪯ b or b ⪯ a.

Definition 2.8. A semiring is monotonic if
∀a, b, c ∈ K, a ⪯ b implies:

1. a⊕ c ⪯ b⊕ c.

2. a⊗ c ⪯ b⊗ c.

3. c⊗ a ⪯ c⊗ b.

Definition 2.9. A semiring is negative if 1̄ ⪯ 0̄.

Remark 2.3. In a monotonic negative semiring,
∀a, b ∈ K : a ⪯ 0̄ and a⊕ b ⪯ b.

Some examples of monotonic negative semirings
are given in Table 1.

Definition 2.10. The companion semiring of a
monotonic negative semiring (K,⊕,⊗, 0̄, 1̄) with
total order ⪯ is the semiring (K, ⊕̂,⊗, 0̄, 1̄) where
⊕̂ is the minimum binary operator for ⪯:

a ⊕̂ b =

{
a if a ⪯ b

b otherwise.

Remark 2.4. The max-times and tropical semir-
ings are companion semirings to the plus-times and
log semirings, respectively.

Remark 2.5. By construction a companion semir-
ing has the path property and natural order ⪯.

2.2 Weighted finite-state acceptors
Without loss of generality, we consider single-
source ϵ-free weighted finite-state acceptors.2

Definition 2.11. A weighted finite-state acceptor
(WFSA) is defined by a five-tuple (Q, s,Σ, ω, δ)
and a semiring (K,⊕,⊗, 0̄, 1̄) where:

1. Q is a finite set of states.

2. s ∈ Q is the initial state.

3. Σ is the alphabet.

4. ω ⊆ Q×K is the final weight function.

5. δ ⊆ Q×Σ×K×Q is the transition relation.

Definition 2.12. An WFSA is acyclic if there ex-
ists a topological ordering, an ordering of the states
such that if there is a transition from state q to r
where q, r ∈ Q, then q is ordered before r. Other-
wise, the WFSA is cyclic.

2.3 Shortest distance
Definition 2.13. A state q ∈ Q is final if ω(q) ̸= 0̄.

Definition 2.14. Let F = {q | ω(q) ̸= 0̄} denote
the set of final states.

Definition 2.15. A path through an acceptor p is a
triple consisting of:

2The definitions provided here can easily be generalized to
automata with multiple initial states, a single final state, initial
or final weights, or ϵ-transitions (e.g., Roark and Sproat, 2007,
ch. 1; Mohri, 2009; Gorman and Sproat, 2021, ch. 1).

733



K ⊕ ⊗ 0̄ 1̄ ⪯
Plus-times R+ + × 0 1 ≥
Max-times R+ max × 0 1 ≥
Log R ∪ {−∞,+∞} ⊕log + +∞ 0 ≤
Tropical R ∪ {−∞,+∞} min + +∞ 0 ≤

Table 1: Common monotonic negative semirings and the associated natural orders; a⊕log b = −ln(e−a + e−b).

1. a state sequence q[p] = q1, q2, . . . , qn ∈ Qn,

2. a weight sequence k[p] = k1, k2, . . . , kn ∈
Kn, and

3. a string z[p] = z1, z2 . . . , zn ∈ Σn

such that ∀i ∈ [1, n] : (qi, zi, ki, qi+1) ∈ δ; that is,
each transition from qi to qi+1 must have label zi
and weight ki.

Definition 2.16. Let Pq→r be the set of all paths
from q to r where q, r ∈ Q.

Definition 2.17. The forward shortest distance
α ⊆ Q × K is a partial function from a state
q ∈ Q that gives the ⊕-sum of the ⊗-product of
the weights of all paths from the initial state s to q:

α(q) =
⊕

p∈Ps→q

⊗

ki∈k[p]
ki.

Definition 2.18. The backwards shortest distance
β ⊆ Q × K is a partial function from a state q ∈
Q that gives the ⊕-sum of the ⊗-product of the
weights of all paths from q to a final state, including
the final weight of that final state:

β(q) =
⊕

f∈F


 ⊕

p∈Pq→f

⊗

ki∈k[p]
ki ⊗ ω(f)


 .

Definition 2.19. A state is accessible if there exists
a path to it from the initial state s.

Definition 2.20. A state is coaccessible if there
exists a path from it to a final state f ∈ F .

Remark 2.6. For a state q, α(q) and β(q) are de-
fined if and only if q is accessible and coaccessible,
respectively.

Definition 2.21. The total shortest distance of an
automaton is β(s).

2.4 Shortest path

Definition 2.22. A path is complete if

1. (s, z1, k1, q1) ∈ δ.

2. qn ∈ F .

That is, a complete path must also begin with an
arc from the initial state s to q1 with label z1 and
weight k1, and halt in a final state.

Definition 2.23. The weight of a complete path is
given by the ⊗-product of its weight sequence and
its final weight:

k̄ =


 ⊗

ki∈k[p]
ki


⊗ ω(qn).

Definition 2.24. A shortest path through an au-
tomaton is a complete path whose weight is equal
to the total shortest distance β(s).

Remark 2.7. Automata over non-idempotent
semirings may lack a shortest path (Mohri, 2002,
322). Consider for example the NFA shown in
the left side of Figure 1. Let us assume that
k ⊕ k ⪯ k < k′. Then, the total shortest distance
is k ⊕ k but the shortest path is k. By definition, a
non-idempotent semiring does not guarantee that
these two weights will be equal. Then there is no
complete path whose weight is that of the total
shortest distance, and thus no shortest path exists.

Remark 2.8. It is not possible in general to effi-
ciently find the shortest path over non-monotonic
semirings. See Mohri (2002) for general condi-
tions under which the shortest path can be found in
polynomial time.

2.5 Determinization

Definition 2.25. A WFSA is deterministic if, for
each state q ∈ Q, there is at most one transition
with a given label z ∈ Σ from that state, and non-
deterministic otherwise.
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Definition 2.26. A zero-sum-free semiring is
weakly divisible if

∀a, b ∈ K ∃c ∈ K : a = (a⊕ b)⊗ c.

Definition 2.27. A weakly divisible semiring is
cancellative if c is unique and can thus be denoted
by c = (a⊕ b)−1a (Mohri, 2009, 238).

Remark 2.9. All semirings in Table 1 are zero-
sum-free, weakly divisible, and cancellative.

Remark 2.10. For every non-deterministic, acyclic
WFSA (or NFA) over a zero-sum-free, weakly di-
visible and cancellative semiring, there exists an
equivalent deterministic WFSA (or DFA). How-
ever, a DFA may be exponentially larger than an
equivalent NFA (Hopcroft et al., 2008, §2.3.6).

We now provide a brief presentation of the
determinization algorithm for WFSAs. Proofs
can be found in Mohri 1997. Given an WFSA
A = (Q, s,Σ, ω, δ) over a zero-sum-free, weakly
divisible and cancellative semiring (K,⊕,⊗, 0̄, 1̄),
its equivalent DFA can be defined and constructed
as the DFA Ad = (Qd, sd,Σ, ωd, δd) where Qd is
a finite set whose elements are subsets of Q×K,
recursively defined as follows:

1. sd = {(s, 1̄)} ∈ Qd.

2. κd ⊆ Qd × Σ × K is the weight transition
function, defined as

κd(q, z) =
⊕

(qi,ki)∈q
ki ⊗


 ⊕

(qi,z,kj ,rj)∈δ
kj


 .

3. νd ⊆ Qd×Σ×Qd is the next-state transition
function, defined as νd(q, z) =

⋃

(qi, ki) ∈ q
(qi, z, kj , rj) ∈ δ

{
(rj , κd(q, z)

−1lj)
}

where lj =
⊕

(qi,z,kj ,rj)∈δ ki ⊗ kj .

4. Qd = ν∗d(sd,Σ) defines the set of states as the
closure of the next-state transition function.

The transition relation is then defined as

δd = {(q, z, κd(q, z), νq(q, z))|(q, z) ∈ Qd × Σ}

and the final weight function ωd ⊆ Qd ×K as

ωd(q) =
⊕

(qi,ki)∈q
ki ⊗ ω(qi).

The intuition underlying this construction is that
a state q ∈ Qd encodes a set of states in Q that
can be reached from s by some common strings.
More precisely, let p′ be the unique path in Psd→q

labeled by some z′ ∈ Σ∗, then for any (qi, ki) ∈ q:

k[p′]⊗ ki =
⊕

p∈Ps→qi :z[p]=z′
k[p].

Termination is guaranteed for acyclic WFSAs
(Mohri, 1997).

Figure 1 gives an example of an NFA and an
equivalent DFA. States 0 and 1 in the DFA corre-
spond respectively to the subsets (0, 1̄) and (1, 1̄)
and κd(0, a) = k ⊗ k.

Remark 2.11. Given a NFA A with backwards
shortest distance β, the backwards shortest distance
βd over the equivalent DFA Ad can be computed
from β:

βd(q) =
⊕

(qi,ki)∈q
ki ⊗ β(qi)

for any q ∈ Qd (Mohri and Riley, 2002).

Since A is assumed to be acyclic, β can be com-
puted in O(|Q|) time (Mohri, 2002, §4.1), and once
β has been computed, βd(q) can also be computed
in linear time in |q| ≤ |Q| for any q ∈ Qd. This
computation can be performed lazily (“on the fly”)
as soon as the existence of q ∈ Qd is known, with-
out requiring Ad to be fully constructed.

2.6 Shortest string
Definition 2.28. Let Pz be the set of paths with
string z ∈ Σ∗, and let the weight of Pz be

σ(z) =
⊕

p∈Pz

k̄[p].

Definition 2.29. A shortest string z is one such
that ∀z′ ∈ Σ∗, σ(z) ⪯ σ(z′).

Lemma 2.1. In an idempotent semiring, a shortest
path’s string is also a shortest string.

Proof. Let p be a shortest path. By definition,
k̄[p] ⪯ k̄[p′] for all complete paths p′. It follows
that ∀z′ ∈ Σ∗

σ(z[p]) =
⊕

p∈Pz

k̄[p] ⪯ σ(z′[p′])

=
⊕

p′∈Pz

k̄[p′]

thus z[p] is the shortest string.
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Figure 1: State diagrams showing a weighted NFA (left) and an equivalent DFA (right).

Lemma 2.2. In a DFA over a monotonic semiring,
a shortest string is the string of a shortest path in
that DFA viewed as an WFSA over the correspond-
ing companion semiring.

Proof. Determinism implies that for all complete
path p′, k̄[p′] = σ(z[p′]). Let z be the shortest
string in the DFA and p the unique path admitting
the string z. Then

k̄[p] = σ(z) ⪯ σ(z[p′]) = k̄[p′]

for any complete path p′. Hence

k̄[p] =
⊕̂

p′∈Ps→F

k̄[p′].

Thus p is a shortest path in the DFA viewed over
the companion semiring.

2.7 A* search

A* search (Hart et al., 1968) is a common shortest-
first search strategy for computing the shortest path
in a WFSA over an idempotent semiring. It can be
thought of as a variant of Dijkstra’s (1959) algo-
rithm, in which exploration is guided by a shortest-
first priority queue discipline.

In Dijkstra’s algorithm, at every iteration the
algorithm explores the state q which minimizes
α(q), the shortest distance from the initial state s
to q, until all states have been visited. In A* search,
search priority is determined by a some function of
𭟋 ⊆ Q×K, known as the heuristic, which gives an
estimate of the weight of paths from some state to
a final state. At every iteration, A* instead explores
the state q which minimizes α(q)⊗𭟋(q).3

Definition 2.30. An A* heuristic is admissible if it
never overestimates the shortest distance to a state

3One can thus view Dijkstra’s algorithm as a special case
of A* search with the uninformative heuristic 𭟋 = 1̄.

(Hart et al., 1968, 103). That is, it is admissible if
∀q ∈ Q : 𭟋(q) ⪯ β(q).

Definition 2.31. An A* heuristic is consistent if it
never overestimates the cost of reaching a successor
state. That is, it is consistent if ∀q, r ∈ Q such that
𭟋(q) ⪯ k ⊗ 𭟋(r) if (q, z, k, r) ∈ δ, i.e., if there
is a transition from q to r with some label z and
weight k.

Remark 2.12. If 𭟋 is admissible and consistent,
A* search is guaranteed to find a shortest path (if
one exists) after visiting all states such that 𭟋[q] ⪯
β[s] (Hart et al., 1968, 104f.).

3 The algorithm

Consider an acyclic, ϵ-free WFSA over a mono-
tonic negative semiring (K,⊕,⊗, 0̄, 1̄) with total
order ⪯ for which we wish to find the shortest
string. The same WFSA can also be viewed as a
WFSA over the corresponding companion semir-
ing (K, ⊕̂,⊗, 0̄, 1̄), and we denote by β̂ the back-
ward shortest-distance over this companion semir-
ing. We prove two theorems, and then introduce an
algorithm for search.

Theorem 3.1. The backwards shortest distance of
an WFSA over a monotonic negative semiring is
an admissible heuristic for the A* search over its
companion semiring.

Proof. In a monotonic negative semiring, the ⊕-
sum of any n terms is upper-bounded by each of
the n terms and hence by the ⊕̂-sum of these n
terms. It follows that

𭟋(q) = β(q)

=
⊕

p∈Pq→F

k̄[p] ⪯
⊕̂

p∈Pq→F

k̄[p]

= β̂(q),
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and this shows that 𭟋 = β is an admissible heuris-
tic for β̂.

Theorem 3.2. The backwards shortest distance of
an WFSA over a monotonic negative semiring is
a consistent heuristic for the A* search over its
companion semiring.

Proof. Let (q, z, k, r) be a transition in δ. Lever-
aging again the property that an ⊕-sum of any n
terms is upper-bounded by any of these terms, we
show that

𭟋(q) = β(q)

=
⊕

p∈Pq→F

k̄[p]

=
⊕

(q,z′,k′,r′)∈δ
k′ ⊗ β(r′) ⪯ k ⊗ β(r)

= k ⊗𭟋(r)

showing 𭟋 = β is a consistent heuristic.

Having established that this is an admissible and
consistent heuristic for A* search over the compan-
ion semiring, a naïve algorithm then suggests itself,
following Lemma 2.2 and Remark 2.12. Given a
non-deterministic WFSA over the monotonic neg-
ative semiring (K,⊕,⊗, 0̄, 1̄), apply determiniza-
tion to obtain an equivalent DFA, compute βd, the
backwards shortest distance over the resulting DFA
over (K,⊕,⊗, 0̄, 1̄) and then perform A* search
over the companion semiring using βd as the heuris-
tic. However, as mentioned in Remark 2.10, de-
terminization has an exponential worse-case com-
plexity in time and space and is often prohibitive
in practice. Yet determinization—and the computa-
tion of elements of βd—only need to be performed
for states actually visited by A* search. Let β
denote the backwards shortest distance over a non-
deterministic WFSA over the monotonic negative
semiring (K,⊕,⊗, 0̄, 1̄). Then, the algorithm is as
follows:

1. Compute β over (K,⊕,⊗, 0̄, 1̄).

2. Lazily determinize the WFSA, lazily comput-
ing βd from β over (K,⊕,⊗, 0̄, 1̄).

3. Perform A* search for the shortest string over
(K, ⊕̂,⊗, 0̄, 1̄) with βd as the heuristic.

4 Evaluation

We evaluate the proposed algorithm using non-
idempotent speech recognition lattices.

4.1 Data

We search for the shortest string in a sample of 700
word lattices derived from Google Voice Search
traffic. This data set was previously used by Mohri
and Riley (2015) and Gorman and Sproat (2021,
ch. 4) for evaluating related WFSA algorithms.
Each path in these lattices is a single hypothesis
transcription produced by a production-grade au-
tomatic speech recognizer, here treated as a black
box. The exact size of each input lattice size is
determined by a probability threshold, so paths
with probabilities below a certain threshold have
been pruned. These lattices are acyclic, ϵ-free,
non-deterministic WFSAs over the log semiring, a
monotonic non-idempotent semiring.

4.2 Implementation

The above algorithm is implemented as part of
OpenGrm-BaumWelch, an open-source C++17
library released under the Apache-2.0 license.4

This toolkit includes baumwelchdecode, a
command-line tool which implements the above
algorithm over the log semiring, using the tropical
semiring as a companion semiring. This implemen-
tation depends in turn on implementations of de-
terminization, shortest distance, and shortest path
algorithms provided by OpenFst (Allauzen et al.,
2007). This command-line tool, along with vari-
ous OpenFst command-line utilities, were used to
conduct the following experiment.

4.3 Methods

We compare the proposed algorithm to the naïve
algorithm mentioned in (§3). The naïve algo-
rithm first exhaustively constructs the equivalent
DFA by applying weighted determinization—as
implemented by OpenFst’s fstdeterminize
command-line tool—then performs A* search on
the DFA over the companion semiring. Its com-
plexity is bounded by the number of states in the
full DFA. In contrast, the complexity of the pro-
posed algorithm is bounded by the number of DFA
states dynamically constructed—i.e., when they are
visited—during search. As an additional measure,
we also compare the number of states visited by
the proposed algorithm to the number of states in
the original NFA lattice.

4https://baumwelch.opengrm.org
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4.4 Results

Figure 2 compares the proposed algorithm to the
naïve algorithm. One can see that the naïve algo-
rithm may in some cases have to construct upwards
of 100,000 states for word lattices where the pro-
posed algorithm need only construct hundreds of
states. This demonstrates that the proposed algo-
rithm is substantially more efficient than the naïve
algorithm. Figure 3 visualizes the number of states
visited by the proposed algorithm as a function of
the size of the input NFA.

Figure 2: Comparison of word lattice decoding with the
proposed algorithm vs. the naïve algorithm. The x-axis
shows the number of states in the full DFA; the y-axis
shows the number of DFA states visited by the proposed
algorithm. Both axes are in logarithmic scale.

5 Related work

Several prior studies use A* search for decoding
speech lattices over idempotent semirings. For ex-
ample, Mohri and Riley (2002) describe a related
algorithm for computing n-best lists over an idem-
potent WFSA. Like the algorithm proposed here,
they use A* search and on-the-fly determinization;
however, they do not consider decoding over non-
idempotent semirings. We note that the algorithm
proposed here could be generalized to compute the
n shortest strings over a non-idempotent WFSA.
Specifically, one would perform A* search over
the companion semiring using βd as the heuristic
as described in §3, but would then solve for the n
shortest strings (Mohri, 2002, §6).5

5We thank an anonymous reviewer for this observation.

Figure 3: Comparison of word lattice decoding with the
proposed algorithm to the size of the input NFA. The
x-axis shows the number of states in the input NFA;
the y-axis shows the number of states visited by the
proposed algorithm. Both axes are in logarithmic scale.

6 Conclusions

We propose an algorithm which allows for efficient
shortest string decoding of weighted automata over
non-idempotent semirings using A* search and on-
the-fly determinization. We find that A* search
results in a substantial reduction in the number
of states visited during decoding, which in turn
minimizes the amount of determinization required
to find the shortest string.

We envision several possible applications for the
proposed algorithm. It could be used to exactly
decode noisy channel “decipherment” models (e.g.,
Knight et al., 2006) of the form

P̂ (p | c) ∝ P (p)P (c | p)

estimated with ordinary EM, as well as training
scenarios which mix rounds of ordinary and Viterbi
EM (e.g., Spitkovsky et al., 2011). The decoding
algorithm could also be used for exact decoding of
lattices scored with interpolated language models
(e.g., Jelinek and Mercer, 1980) of the form

P̂ (w | h) = λhP̃ (w | h) + (1− λh)P̂ (w | h′)

where λh is estimated using ordinary EM.

7 Limitations

While the evaluation (§4) finds the proposed algo-
rithm to be substantially more efficient than the
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naïve algorithm on real-world data, it has the same
exponential worst-case complexity as exhaustive
determinization of acyclic WFSAs. This worst case
dominates the linear-time operations used to com-
pute βn and βd, and to solve for the single shortest
path. However, we conjecture that the worst case is
unlikely to arise for topologies encountered in ac-
tual speech and language processing applications.

8 Broader impacts

We are aware of no ethical issues raised by the
proposed algorithm beyond issues of dual use, bias,
etc., which are inherent to all known speech and
language technologies.
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