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Abstract

Reasoning over Commonsense Knowledge
Bases (CSKB), i.e., CSKB reasoning, has been
explored as a way to acquire new commonsense
knowledge based on reference knowledge in
the original CSKBs and external prior knowl-
edge. Despite the advancement of Large Lan-
guage Models (LLM) and prompt engineering
techniques in various reasoning tasks, they still
struggle to deal with CSKB reasoning. One of
the problems is that it is hard for them to ac-
quire explicit relational constraints in CSKBs
from only in-context exemplars, due to a lack
of symbolic reasoning capabilities (Bengio
et al., 2021). To this end, we proposed Con-
straintChecker, a plugin over prompting tech-
niques to provide and check explicit constraints.
When considering a new knowledge instance,
ConstraintChecker employs a rule-based mod-
ule to produce a list of constraints, then it
uses a zero-shot learning module to check
whether this knowledge instance satisfies all
constraints. The acquired constraint-checking
result is then aggregated with the output of the
main prompting technique to produce the final
output. Experimental results on CSKB Reason-
ing benchmarks demonstrate the effectiveness
of our method by bringing consistent improve-
ments over all prompting methods. Codes and
data are available at https://github.com/
HKUST-KnowComp/ConstraintChecker.

1 Introduction

Commonsense Knowledge Bases (CSKB) Rea-
soning, as one of many commonsense reasoning
tasks, has been well explored in Natural Language
Processing for the past few years. As human-
annotated CSKBs (Speer et al., 2017; Sap et al.,
2019; Mostafazadeh et al., 2020) are usually in-
complete and of a small coverage, reasoning over
CSKBs, i.e., CSKB reasoning, is a way for ex-
pansion. CSKB reasoning is defined as determin-
ing whether a new knowledge triple (head event,
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Figure 1: Examples of CSKB Reasoning. Solid ar-
rows represent existing triples (i.e., instances) in CSKBs,
while the dashed arrows with question marks represent
new knowledge triples which will be determined if they
are commonsense. LLMs often fail to acquire the ex-
plicit relational constraints in CSKBs, hence making
wrong predictions for many new knowledge triples.

relation, tail event) is commonsense (in other ex-
pressions, being plausible or having label 1) based
on the reference knowledge in original CSKBs as
well as external prior knowledge (Fang et al., 2023;
Davison et al., 2019). Expanding CSKBs via such
a reasoning process can lead to better and broader
commonsense knowledge as valuable resources to
augment AI models in various aspects, such as
visual reasoning (Zellers et al., 2019), text gen-
eration (Zhou et al., 2021; Ilievski et al., 2021),
or building more capable knowledge models for
further downstream applications (Yu et al., 2022;
Hwang et al., 2021; Wang et al., 2023a).

Recently, inspired by the emergence of Large
Language Models (LLMs) that can perform well
in many commonsense reasoning tasks (Qin et al.,
2023; Bian et al., 2023), Chan et al. (2023) at-
tempted to use LLMs for a CSKB Reasoning bench-
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mark named CSKB Population (CKBP) (Fang
et al., 2023). However, the result shows that LLMs
still fall short in the benchmark, even with a large
number of in-context examples. One of the prob-
lems is that LLMs find it hard to acquire the ex-
plicit relational constraints in CSKBs, hence mak-
ing wrong predictions. In the example in Figure
1, the xReact1 relation in CSKBs requires the tail
event of the knowledge triple to express a mental
state, such as “PersonX is confident”, instead of an
action, such as “PersonX win”. Meanwhile, LLMs
fail to recognize the constraint from in-context ex-
emplars, thus making the judgment mainly based
on the semantics of the head and tail events. It
leads to an incorrect prediction that the triple (Per-
sonX prepare for the competition, xReact, PersonX
win) is plausible. In light of this, many advanced
prompting techniques, such as Chain-of-Thouht
(CoT) (Wei et al., 2022), Least-to-Most (Zhou et al.,
2023), Active-CoT (Diao et al., 2023), etc., can be
possible alternatives for improvements. Nonethe-
less, they are task-agnostic and suffer from the in-
herent shortcoming of LLMs in inducing the rules
in CSKBs (which we refer as symbolic reasoning
ability), as current deep learning still struggles to
deal with symbolic and high-level concepts reason-
ing tasks (Bengio et al., 2021; Huang and Chang,
2023; Pan et al., 2023).

To this end, we propose ConstraintChecker, a
plugin component for LLMs to handle the prob-
lem of explicit constraints in CSKB reasoning.
ConstraintChecker supports LLMs’ reasoning as
an independent component in addition to the main-
task component that determines whether a knowl-
edge triple is commonsense or not. There are two
modules in this plugin. Given a knowledge triple
(head event, relation, tail event), we first employ
a rule-based/symbolic module to produce a list of
constraints based on the relation. The list is then
passed to a zero-shot learning module, where we
construct constraint-checking questions and use the
same LLM as in the main-task component in a zero-
shot manner to check whether the instance satisfies
all constraints. The acquired constraint-checking
result is then aggregated with the prediction from
the main-task component by logical conjunction to
produce the final prediction.

We implement ConstraintChecker and conduct
extensive experiments on a CSKB Reasoning

1By definition in (Sap et al., 2019), a tail event of the
xReact relation expresses how the protagonist feels after the
corresponding head event.

benchmark CKBPv2 (Fang et al., 2023) as well as
a synthetic discriminative version of ATOMIC20

20

(in short, SD-ATOMIC20
20), over two large lan-

guage models: ChatGPT (gpt-3.5-turbo-0301) and
GPT3.5 (text-davinci-003). On both language mod-
els, ConstraintChecker improves over prompting
techniques (as the main-task component) by a sig-
nificant margin in different metrics, achieving the
best result on both the benchmarks CKBPv2 and
SD-ATOMIC20

20. Further analyses and ablation stud-
ies show the effect of each of the considered con-
straints as well as different choices of prompt de-
sign in ConstraintChecker, and the superiority of
its plug-and-play design over the single-prompt
counterpart.

To summarize, our contribution is two-fold: (1)
We propose ConstraintChecker, an independent
plugin that handles the problem of explicit con-
straints in CSKB reasoning to improve over main-
task prompt methods, and (2) We conduct extensive
experiments on two CSKB Reasoning benchmarks
CKBPv2 and SD-ATOMIC20

20, to demonstrate our
method’s effectiveness and advantages over other
advanced prompting techniques.

2 Background and Related Works

2.1 CSKB Reasoning

Commonsense knowledge bases store com-
monsense knowledge in the format of (head
event, relation, tail event) triples. Rea-
soning on CSKBs includes two main set-
tings, a discriminative and a generative one.
They are formally defined as: Given B =
{(h, r, t)|h ∈ H, r ∈ R, t ∈ T} (where H/R/T is
the set of head events/relations/tail events) the ref-
erence knowledge base, the discriminative setting
(Fang et al., 2021b,a, 2023) assigns a binary label
y ∈ {0, 1} to a new knowledge triple T = (h, r, t)
to indicate whether the triple T is commonsense or
not; while the generative setting (Bosselut et al.,
2019; Hwang et al., 2021) generates new common-
sense knowledge triples T ′ = (h, r, t′) based on
existing head events h and relations r. Although
our method can be adapted to the generative setting,
the evaluation of our method is more complex than
that in the discriminative setting. Therefore, in this
work, we only focus on the discriminative setting.

In terms of benchmarks with the discriminative
setting, to our best knowledge, CKBPv2 (Fang
et al., 2023) and its predecessor CKBPv1 (Fang
et al., 2021a) stand as only comprehensive CSKB
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Reasoning benchmarks, which cover the knowl-
edge on four popular CSKBs (ConceptNet; Speer
et al., 2017, ATOMIC; Sap et al., 2019, ATOMIC20

20;
Hwang et al., 2021, and GLUCOSE; Mostafazadeh
et al., 2020). Nonetheless, since the reference
CSKBs are popular and widely used among the
NLP community, we believe CKBPv2 is represen-
tative enough in terms of CSKB reasoning. Besides,
to ensure the reliability of our result in this work,
we synthesize a discriminative-setting dataset from
ATOMIC20

20 which is designated for the generative
setting. Indeed, the two benchmark datasets in-
herit similar head/tail events’ formats and the same
relation list from ATOMIC20

20.

Meanwhile, in term of methodology, despite pre-
vious efforts to CSKB reasoning, most of them are
based on knowledge base embeddings (Li et al.,
2016; Malaviya et al., 2020; Hua and Zhang, 2022)
or (lightweight) fine-tuning pre-trained language
models (Yao et al., 2019; Fang et al., 2021a; Zhang
et al., 2023), and less effort has been dedicated to
studying how to use LLMs for CSKB reasoning
via prompting. We address this research gap by
studying a constraint-checking plugin to enhance
the performance of LLMs.

2.2 Constraint Modelling in Traditional
Knowledge Bases

Integrating rules or constraints into reasoning
systems on traditional knowledge bases (KB)
and knowledge graphs (KG) has long been stud-
ied (Wang et al., 2015; Krompaß et al., 2015; Ding
et al., 2018; Zhang et al., 2019; Lan et al., 2023).
While Wang et al. (2015) aimed to incorporate
rules seamlessly into embedding models for KB
completion during inference time by formulating
inference as an integer linear programming (ILP)
problem, Krompaß et al. (2015) studied the effect
of type-constraints on the statistical modeling with
latent variable models for large knowledge graphs.
In a more recent time, other works such as Ding
et al. (2018); Zhang et al. (2019); Lan et al. (2023)
attempt to improve KG embedding by modelling
rules and constraints in the learning objective. Our
work, by contrast, introduces a novel augmenta-
tion paradigm which employs an explicit use of
constraints in the inference time to improve the
performance of large language models on CSKB
reasoning.

2.3 Prompting Methods in LLMs

While simple prompt engineering and vanilla in-
context learning have already witnessed a remark-
able performance in terms of various NLP tasks,
there are more sophisticated prompt paradigms to
elicit better reasoning capabilities. One represen-
tative paradigm is chain-of-thought (CoT) prompt-
ing (Wei et al., 2022), which enrichs the few-shot
examples with explicit reasoning steps towards the
final answers, leading to the emergence of many
complex reasoning abilities such as arithmetic and
commonsense reasoning. Following CoT, other
techniques adopt self-consistency (Wang et al.,
2023b), least-to-most that break down each ques-
tion to sub-steps (Zhou et al., 2023), pre-trained ver-
ifier to validate the reasoning path (Li et al., 2023),
diversity-based method for CoT selection (Zhang
et al., 2022), restrict explicit and rigorous deduc-
tive reasoning of intermediate CoT reasoning pro-
cess (Ling et al., 2023), uncertainty-based method
for CoT selection and annotation (Diao et al., 2023),
and automatic prompt augmentation and selection
with CoT (Shum et al., 2023). Our work differs
from those CoT-based prompt techniques in that
we study add-on constraints to be applied to the
result of any prompting technique.

3 ConstraintChecker

An overview of our proposed ConstraintChecker
is shown in Figure 2. The CSKB reasoning task
we focus on is inherently a binary classification
task and the expected outputs are either plausible
or implausible. ConstraintChecker consists of two
modules, entitled Module 1 and Module 2. For
each instance, Module 1 queries preset rules to
get all relational constraints corresponding to the
instance’s relation. Module 2 then constructs ques-
tions accordingly to ask whether each constraint
is satisfied, and passes these questions to the back-
bone LLM to get predictions. Together with the
prediction from the main-task component, we use
the logical conjunction (AND operator) to aggregate
the final prediction. In fact, ConstraintChecker
only has the effect on instances that are predicted
as commonsense (or “Yes”, corresponding to plau-
sible) by the main-task component, and can only
change the prediction from “Yes” to “No”, in view
of the nature of logical conjunction. Thus, it targets
and corrects False-Positive predictions.

In this section, we elaborate on how we select
the pool of constraints and the preset rules to map
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Final Answer

(PersonX prepare for the competition,
xReact, PersonX win)

Yes

ConstraintChecker

Answer whether the following statement is 
plausible. Answer with only Yes or No:
PersonX prepare for the competition, as a 
result, PersonX feels PersonX win

Prompt 
Engineering

xReact

Module 1

No
Module 2

Triple Gold label: No

Pre-set Constraints
- “Typing”: xReact, oReact, …
- “Temporal”: xIntent, …
- “Ambiguity”: …

…

“Typing” Constraint:
xReact’s triples must have tail event 
expresses a mental state

…

Checking:
“Does the clause 'PersonX win' express 
a mental state of the subject? Answer 
Yes or No.”

…
No

Main-task Component

Figure 2: Illustration of ConstraintChecker. For each instance, Module 1 queries preset rules to get all relational
constraints corresponding to the instance’s relation. Module 2 then constructs questions accordingly to ask whether
each constraint is satisfied, and passes these questions to the backbone LLM to get predictions. Together with the
prediction from the main-task component, we use the logical conjunction (i.e., ∧ or AND operator) to aggregate the
final prediction. Note that “Prompt Engineering” refers to baseline prompting methods (subsection 4.2).

relations to constraints in Module 1, as well as the
constraint-checking prompt design in Module 2
concerning the two benchmarks.

3.1 Constraints Selection

We follow the definitions of CSKB relations in
previous works, including the taxonomy of if-then
reasoning types in Sap et al. (2019) and human-
readable templates for crowdsourced evaluation in
Hwang et al. (2021)2, to derive the set of consid-
ered constraints and the rule to apply constraints.
For example, the readable template “as a result,
PersonX feels” of the xReact relation suggests the
“temporal” constraint, in which the head event must
happen before the tail event, and the taxonomy of
xReact implies the “typing” constraint, in which
the tail event must express a mental state. Note that
the template “as a result, PersonX feels” of xReact
may not strictly impose the typing constraint on
the tail event, due to a subtle problem in natural
language. For example, for human, two text se-
quences “as a result, PersonX feels PersonX will
win” and “as a result, PersonX feels PersonX is
confident” all make sense, although “PersonX will
win” completely does not express a mental state of
PersonX.

In addition, as Davis (2023) suggests that many
commonsense datasets have significant portions of
ambiguous instances, we also consider the “ambi-
guity” constraint.

Among of possible constraints, we shortlisted
the most likely needed constraints, namely typing,

2The templates are shown in Table 9 and 10 in the Ap-
pendix.

temporal, and ambiguity constraints. The formal
definition of each constraint is as follows:
• Typing: The tail event has to express the type of

content (one among three types: activity, men-
tal state, persona) that the relation expects. For
example, xReact’s tail events need to express a
mental state, while xAttr’s tail events need to
express a persona.

• Temporal: The (estimated) temporal order (i.e.
before or after) of the head event and the tail
event must follow the order derived from the
definition/human-readable template of the rela-
tion. For example, for HinderedBy relation, the
head event must happen after the tail event.

• Ambiguity: The meaning of the head and tail
events must be grammatically complete and se-
mantically informative. For example, “PersonX
order a salad” is not ambiguous, while “PersonX
would like” is ambiguous.

3.2 Preset Rules
Each relation will be mapped into a set of con-
straints based on the aforementioned taxonomy and
templates, as well as human-readable templates
used by the main-task component in terms of how
well the template of the relation semantically re-
flects the constraints of that relation. For example,
the template of xReact “as a result, PersonX feels”
does contain the phrase “as a result” representing
the temporal constraint which is needed to check.
To refine the rule, we conduct a pilot study with
ChatGPT on the development set of CKBPv2 to
estimate the effectiveness of designated constraints
on each relation. According to the results of the
pilot study (Appendix A.2), we remove ineffective
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Constraint Relations on effect (pre-pilot-study) Relations on effect (post-pilot-study)

Typing xReact (m), oReact (m), xAttr (p) xReact (m), oReact (m), xAttr (p)

Temporal xIntent (a), xNeed (a), Causes (b), HinderedBy (a) xIntent (a), xNeed (a)

Ambiguity All relations No relation

Table 1: Relations on range of effect of each constraint. For Typing constraint, the notation (m) and (p) denote
the required type “mental state” and “person” of the tail event. For Temporal constraint, the notation (a) and (b)
denote the required estimated order “after” and “before” of the head and tail events.

constraint-relation pairs to refine the rule, as shown
in Table 1. In fact, the ineffectiveness of Am-
biguity constraint suggests that randomly taking
a constraint and then cherry-picking its effective
constraint-relation pairs would not work, instead
we need to derive the rules from prior knowledge
about relations. We further conduct an ablation
study on the main experiments w.r.t. ChatGPT on
CKBPv2 to show the ineffectiveness of removed
relation-constraint pairs (Section 4.4).

3.3 Constraint-Checking Prompt Design

As we use a zero-shot LLM to check constraints,
we construct questions for derived constraints in
a direct question-answering manner. For example,
for the typing constraint, which requires the tail
event of the triple to express a mental state, we
design a prompt as “Does the clause <tail event>
express a mental state of the subject? Answer Yes
or No”. Thanks to the robustness of LLMs and
the fact that constraint satisfaction is a relatively
simple task that does not require complex reason-
ing, exemplars for constraint-checking questions
are not needed. For each constraint, we design two
templates to seek the best one. We provide an anal-
ysis of different prompt choices later in Section 4.4.
Overall, we choose the following prompt designs
for typing and temporal constraints respectively.
Typing: “Which aspect (among three options 1.
event/activity, 2. persona, 3. mental state) of the
subject does the clause <tail event> express. An-
swer the choice only.”
Temporal: “Which one of the following two state-
ments is more plausible: 0. <tail event> before
<head event>, 1. <tail event> after <head event>.
Answer 0 or 1 only.”

Since the chosen prompts do not standardly ques-
tion whether the constraint is satisfied, we use a
snippet of code to convert the acquired prediction
into the Yes/No answer for the standard constraint-
checking question.

4 Experiments

4.1 Benchmarks

We use CKBPv2 (Fang et al., 2023) and SD-
ATOMIC20

20 as the CSKB reasoning benchmarks
for evaluation. For CKBPv2, to reduce the com-
putational cost while keeping the same data dis-
tribution w.r.t two attributes relation and label,
we use stratified sampling to down-scale the test
set, hence forming a set of 979 instances. Mean-
while, SD-ATOMIC20

20 is curated from the test set
of ATOMIC20

20 using random relation/tail event re-
placement as the negative sampling strategy, re-
sulting in a set of 1000 instances with the equal
numbers of positive and negative instances. More
details about the two benchmarks can be found in
Appendix A.1.

4.2 Setups

The following prompting methods serve as the
main-task component’s baselines in our experi-
ments.
• Zero-shot: standard zero-shot prompting, which

directly asks the task question and “forces”
LLMs to only return the final answer.

• Few-shot: standard prompting which uses ex-
emplars to facilitate in-context learning. Here,
we consider three variants which are different in
the way they select exemplars. In detail, we use
(1) Random exemplar selection. (2) KATE (Liu
et al., 2022), which chooses exemplars that are
the most semantically similar to the test instance
using sentence embedding models. (3) KATE-s,
a special version of Few-shot KATE for CSKB
reasoning, in which the selected exemplars must
have the same relation as the test instance.

• Zero-shot-CoT (Kojima et al., 2022): the zero-
shot prompting technique which uses the phrase
“Let’s think step by step” to stimulate LLMs to
generate rationales before the final answer.

• Few-shot-CoT: chain-of-thought methods which
use exemplars. Here, we employ a simple
method that randomly selects CoT exemplars.

718



Method
CKBPv2 SD-ATOMIC20

20

ChatGPT GPT3.5 ChatGPT GPT3.5
Acc F1 Acc F1 Acc F1 Acc F1

Zero-shot 67.58 47.48 73.92 37.16 59.6 61.3 59.7 62.72
+ ConstraintChecker 69.19 48.45 (+0.97) 74.97 38.09 (+0.93) 63.4 63.62 (+2.32) 62.2 64.2 (+1.48)

Few-shot (Random) 69.94 48.84 72.12 49.76 59.4 60.43 57.4 61.13
+ ConstraintChecker 71.67 50.15 (+1.31) 73.82 51.07 (+1.31) 62.0 62.0 (+1.57) 60.2 62.73 (+1.6)

Few-shot (KATE) 68.0 44.94 69.87 47.41 61.3 60.55 58.5 61.4
+ ConstraintChecker 69.73 46.01 (+1.07) 71.81 48.89 (+1.48) 63.8 62.13 (+1.58) 61.7 63.28 (+1.88)

Few-shot (KATE-s) 67.35 45.99 69.25 47.52 59.0 59.08 60.3 62.51
+ ConstraintChecker 69.19 46.95 (+0.96) 71.09 48.68 (+1.16) 61.7 60.72 (+1.64) 63.0 64.15 (+1.64)

Zero-shot-CoT 62.14 42.37 77.25 39.49 49.9 50.25 58.4 57.89
+ ConstraintChecker 64.35 43.58 (+1.21) 77.93 40.21 (+0.72) 52.7 51.69 (+1.44) 60.8 59.34 (+1.45)

Few-shot-CoT 76.92 48.41 62.0 45.71 60.1 61.52 57.0 62.74
+ ConstraintChecker 77.46 48.67 (+0.26) 63.84 46.74 (+1.03) 62.2 62.8 (+1.28) 60.1 64.47 (+1.73)

Table 2: Main experimental results on the test data of CKBPv2 and SD-ATOMIC20
20. F1 score is the main metric.

Our experiments are based on two large language
models ChatGPT (gpt-3.5-turbo-0301) and GPT3.5
(text-davinci-003), as they are available, stable, and
two of the most capable models at the time we were
conducting our experiments. We set temperature
T = 0 for all experiments. For KATE strategy, we
use the best model reported in Liu et al. (2022).3

For baselines with exemplars, all exemplars are
selected from the training set provided in Fang
et al. (2023) regardless of labels, and the number
of exemplars used in each prompt is 5 by default.

We design three prompt templates which are
used to convert knowledge triples (both tested in-
stances and exemplars) into the free-text format,
then input the text to LLMs. The result of each
baseline will be averaged from the results of three
different prompt designs. We leave details about
prompt designs in Appendix B.2. Nonetheless, we
provide one example of how we use a prompt tem-
plate to convert a knowledge triple to the free-text
format as follow:
Triple: (PersonX prepare for the competition,
xReact, PersonX win)
Template: Answer whether the following state-
ment is plausible. Answer with only Yes or No:
<head event>, <human-readable template of rela-
tion> <tail event>.
→ Input Prompt: Answer whether the following
statement is plausible. Answer with only Yes or No:
PersonX prepare for the competition, as a result,
PersonX feels PersonX win.

3We use the checkpoint sentence-transformers/roberta-
large-nli-stsb-mean-tokens via Huggingface Transformers.

4.3 Results and Analysis

The experimental results are shown in Table 2. We
report accuracy w.r.t all instances and (binary) F1
score w.r.t. the positive class of all baselines and
our method. Following Fang et al. (2023), we
choose F1 as the main metric. In the columns
corresponding to F1 score, we add numbers in
scriptsize to indicate the performance gain of Con-
straintChecker over prompting methods.

Overall, our method consistently improves4

over all prompting methods and backbone LLMs
for both benchmarks, by an average margin of
0.96%/1.11% and 1.64%/1.63% in F1 score with
respect to backbone ChatGPT/GPT3.5 on CKBPv2
and SD-ATOMIC20

20 respectively. Similar perfor-
mance gain can be also observed in groups of non-
CoT, CoT, zero-shot, few-shot baselines. Further-
more, we achieve the best result on the CKBPv2
benchmark with ConstraintChecker paired with
Few-shot (Random), and also achieve the best re-
sult on the synthetic benchmark SD-ATOMIC20

20

with ConstraintChecker paired with Few-shot-CoT.
We note that on CKBPv2, our result is not directly
comparable to results from previous works (Fang
et al., 2023; Chan et al., 2023), as the scale of the
evaluation set, the number of exemplars used in
few-shot prompting methods, and the version of
LLMs of our and previous works are different.

We further analyze5 results on CKBPv2 in-depth

4Statistically significant under one-tailed t-test with confi-
dence level 99%.

5Since CKBPv2 is human-curated, the analysis on the
benchmark is more objective and reliable than that on our
synthetic SD-ATOMIC20

20.
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to point out the source of improvement of Con-
straintChecker and to compare the improvement
brought by our method and by main-task prompt-
ing techniques.

Where does the improvement of Con-
straintChecker come from? We take relations
xReact, oReact, xAttr with the Typing
constraint as an example to show the effect of
ConstraintChecker on GPT3.5. Recall that when
ConstraintChecker is applied, the final prediction
will be the logical conjunction of predictions from
the zero-shot baseline and our ConstraintChecker.
Thus, triples that our method has an effect on
are those with positive predictions from the
zero-shot baseline and negative predictions from
ConstraintChecker. As our method aims to
correct False Positive (FP) predictions (and not
to hurt True Positive predictions), we examine
among concerned triples, how many cases
ConstraintChecker:

1. correctly judge a triple as it violates the con-
straint, and because the triple’s gold label has
to be 0 (except incorrect human annotation), thus
helps to turn the FP prediction of the baseline to
True Negative,

2. incorrectly judge a triple as it violates the con-
straint (in fact it does not), however, because the
triple’s gold label is 0, the misjudgment acci-
dentally helps to turn the FP prediction to True
Negative,

3. incorrectly judge a triple as it violates the con-
straint (in fact it does not), and because the
triple’s gold label is 1, the misjudgment unde-
sirably turns the True Positive prediction of the
baseline to False Negative.

In fact, ConstraintChecker is designated for the
first category. Therefore, the more the first cate-
gory happens in comparison to the second and third
categories, the more reliable the improvement of
ConstraintChecker is.

We ask four external voluntary graduate NLP
researchers who have at least one year of experi-
ence working on CSKBs to annotate the typing con-
straint status (i.e. “satisfied” or “not satisfied”) of
those considered triples. The Fleiss’ Kappa score
of this annotation is 0.2381, and the final label is
the majority vote among four annotators. From
relevant annotations and predictions, we calculate
the percentage of cases falling into each mentioned
category, and find that 93% of the concerned triples
fall into the first category. Similarly, when consider-

ing other relations and other baselines, we observe
the majority of the cases fall into the first category.
That shows the valid source of improvement of
ConstraintChecker.

Comparison of ConstraintChecker and other
prompt engineering techniques We also com-
pare the average effectiveness of our method with
other types of prompt engineering, including 1.
the use of exemplar, 2. exemplar selection, and
3. chain-of-thought. We estimate the effectiveness
(i.e. net average gain) of each prompt engineering
type as the average difference of F1 score between
two groups of corresponding baselines with or with-
out the appliance of such a type. While exemplar
selection and chain-of-thought do not bring any
certain benefit, the usage of exemplars brings a re-
markable improvement. In fact, exemplars help to
hugely increase the recall of zero-shot baselines
with GPT3.5 backbone (from 36.06% to 66.55%
on average). However, it is deemed to the strictness
of GPT3.5 in judging if a knowledge triple is com-
monsense, as its zero-shot baselines have a much
lower recall comparing to other baselines. Mean-
while, the improvement of ConstraintChecker is
consistent over all baselines as it helps to correct
False-Positive predictions. Indeed, it improves the
precision of baselines and does not significantly
hurt the recall. Also, thanks to the simple prompt
design, our method is more efficient than the use
of exemplars and CoT (Table 8).

4.4 Ablation Study
We further conduct several additional experiments
with ChatGPT on CKBPv2 to show the importance
of our preset rules, constraint-checking prompt
choices, and ConstraintChecker’s role as a sepa-
rate module from the main-task component.

We report the result of the zero-shot baseline
with each constraint and each prompt design ap-
plied in Table 3. We focus on F1 score of test
triples of 5 relations xReact, oReact, xAttr,
xIntent, xNeed in which ConstraintChecker has
effects on according to the final preset rules, as
well as of 4 extra relations xWant, xEffect,
HinderedBy, Causes. We show F1 score of these
relations because xWant and xEffect account for
a large portion of the test set, while HinderedBy
and Cause were set to be checked with temporal
constraint before the pilot study.

Effect of Preset Rules In previous analyses, we
show where and how ConstraintChecker improves
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Constraint (Prompt Design) xReact oReact xAttr xIntent xNeed xWant xEffect HinderedBy Causes

N/A (Zero-shot baseline) 52.75 41.76 49.89 37.79 46.11 51.76 52.61 34.67 44.18

Typing (selected P.D.) 54.38 41.76 51.66 - - - - - -
Typing (alternative P.D.) 59.37 28.33 52.77 - - - - - -
Temporal (selected P.D.) 45.24 54.27 49.89 44.88 48.48 30.41 42.97 27.76 31.19
Temporal (alternative P.D.) - - - 26.13 17.27 - - - -

Ambiguity (P.D. 1) 31.15 41.27 27.01 13.65 2.9 41.24 24.4 3.33 14.85
Ambiguity (P.D. 2) 38.67 42.18 34.48 30.73 5.34 48.52 50.53 3.33 31.29

Constraint-L2M (w/o exemplars) 45.35 43.16 43.43 23.92 24.26 - - - -
Constraint-L2M (w/ 3 exemplars) 52.16 38.72 31.5 13.49 42.9 - - - -

Table 3: Ablation study on each constraint and prompt choice. P.D. in the setting names abbreviates “prompt
design”. Results in this table are F1 scores w.r.t. triples of each relation. The notation “-” indicates no change in
comparing to the result of the zero-shot baseline, because we do not consider those constraint-relation pairs in the
preset rules (either pre- or post-pilot-study) w.r.t. the setting.

the results of other main-task prompting methods.
However, it does not mean both typing and tem-
poral constraints are necessary. As observed in
two rows, Typing (selected prompt design, P.D. for
short) and Temporal (selected P.D.), of Table 3,
each constraint boosts the performance on each
relation that they affect on according to the post-
pilot-study preset rules. That demonstrates the im-
portance of each selected constraint.

Similarly, we study the result regarding
constraint-relation pairs which are never in or re-
moved from the preset rules after our pilot study.
As shown in Table 3, for Temporal (selected P.D.)
constraint, F1 score on HinderedBy and Causes
are lower than the counterparts in the zero-shot
baseline. Also, for other relations which are never
in the preset rules of the temporal constraint, such
as xWant and xEffect, the constraint often hurts
the performance. Apart from that, the Ambiguity
constraint (in both prompt designs which are shown
in Appendix B.2) also hurt the performance of all
relations. We argue that ambiguity is a subjective
concept, thus within the simple design philosophy
of ConstraintChecker, we may not find the best way
to use the constraint. Overall, the result regarding
unconsidered constraint-relation pairs is consistent
with our observation in the pilot study.

Effect of the Prompt Design We also ablate
prompt designs of typing and temporal constraints
to study the effect of constraint question design
on the performance on triples of each relation. In
Table 3, Typing (alternative P.D.) and Temporal
(alternative P.D.) indicate the result w.r.t the alter-
native prompt design for typing and temporal con-
straints respectively. In fact, the alternative prompt
designs (shown in Appendix B.2), are formulated

in a more direct way that asks if the constraint is
satisfied/violated, while our selected prompt de-
sign asks more general multiple-choice questions.
It can be seen that the alternative for typing con-
straint gives higher scores for xReact and xAttr
but much lower scores for oReact. Also, the alter-
native prompt of temporal is hugely worse than the
selected prompt design. We argue that the reason
could be the advantage of having more context and
references when asking general multiple-choice
questions than when focusing on a specific case.
That demonstrates the sensitivity of our method on
constraint prompt design.

Effect of ConstraintChecker as an Independent
Component ConstraintChecker is used in a plug-
and-play manner, where we can get predictions
independently from the main-task component. In
this part, we study an alternative single-prompt de-
sign choice that models ConstraintChecker as an
end-to-end CoT-like pipeline to directly add to the
main-task prompt. This serves as additional exper-
iments to demonstrate the advantage of our plug-
and-play design as opposed to the single-prompt
counterpart.

Inspired by Least-to-Most (L2M) (Zhou et al.,
2023) which first decomposes a complex problem
into a list of easier subproblems, and then sequen-
tially solving these subproblems in different passes
to LLM to reach the final answer, in this ablation,
we treat constraints as easier subproblems and the
main question as the hardest question which is
asked ultimately. The CoT will immediately stop
and conclude that a triple is not commonsense if
the triple does not satisfy the constraint. We name
the alternative method as Constraint-L2M for sim-
plicity. The prompt design of this baseline is shown
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in Appendix B.2.
On the one hand, results in Table 3 show that

even with exemplars, Constraint-L2M hurts the per-
formance on all considered relations, in contrast
to ConstraintChecker. Taking a closer look into
the output of Constraint-L2M (w/o exemplars) w.r.t
backbone GPT3.5 and the typing constraint, we ob-
serve that 14% of the logic step (to check if the de-
termined tail event’s type matches with the desired
type, virtually equivalent to string matching) is in-
correct. Meanwhile, other combinations, though
having a small error rate in the logic step, unex-
pectedly perform worse than the zero-shot coun-
terparts in the main-task step. We argue that the
phenomenon possibly results from the influence of
patterns (Turpin et al., 2023) in constraint-checking
steps’ output. That shows the advantages offered by
our method’s separateness from main-task prompt-
ing methods, as fusing the constraint checking step
to the main-task prompt can even increase the error
rate due to failures in the symbolic reasoning step
or its interference on the main-task step.

On the other hand, in term of efficiency,
Constraint-L2M even used without exemplars
poses a much higher cost than our method (Table
8). Thus, the plug-and-play design of our method
is preferable over the single-prompt design in both
aspects - effectiveness and cost.

5 Conclusion

In this paper, we proposed ConstraintChecker, a
constraint-wise plugin, to help LLMs and prompt-
ing methods to cope with the problem of explicit
relational constraint in CSKB reasoning. Experi-
mental results show that ConstraintChecker con-
sistently improves over any main-task prompting
technique by a significant margin, achieving SoTA
performance on the benchmark.

Acknowledgement

The authors of this paper were supported by
the NSFC Fund (U20B2053) from the NSFC of
China, the RIF (R6020-19 and R6021-20) and
the GRF (16211520 and 16205322) from RGC
of Hong Kong, and the UGC Research Match-
ing Grants (RMGS20EG01-D, RMGS20CR11,
RMGS20CR12, RMGS20EG19, RMGS20EG21,
RMGS23CR05, RMGS23EG08). We also thank
Samuel Cahyawijaya and Bryan Wilie from
HKUST for their helpful comments.

Limitations

This paper works on a task-specific method as well
as evaluates it on two CSKB reasoning benchmarks.
Further study of the proposed method on other rea-
soning tasks is expected to examine its broader
generalizability. Also, the process of building the
first module of our method is complex and requires
a certain understanding of the task and the bench-
marks. How to systematically adapt this module to
other tasks (e.g. automatically inducing constraints
from questions), such as CSKB reasoning in the
generative setting or commonsense question an-
swering, remains to be studied. Last but not least,
as the number of prompt designs, especially the
set of human-readable templates, is limited, it is
not 100% guaranteed that our method will be ef-
fective for other designs of prompt of this CSKB
reasoning or other reasoning tasks in general. More
experiments are needed to make our claim more
certain.

Ethical Considerations

This work aims to improve the performance of
LLMs on a commonsense reasoning task, which
- in the case of this work - involves the use
of ChatGPT (gpt-3.5-turbo-0301) and GPT3.5
(text-davinci-003). Therefore, the same risks
from LLMs research are also applicable to this
work (Bender et al., 2021).

In term of computational cost, our work does
not involve any training or finetuning of (large) lan-
guage models. From our rough calculation which
is partially shown in Table 8, the expense to con-
duct all experiments (including both preliminary
and main experiments) in this project is around
US$200.

Last but not least, this paper works on CKBPv2
and ATOMIC20

20, open-source benchmarks for the
research community to study the CSKB reasoning
problem under an MIT and CC-BY license respec-
tively. This work shares the same ethical issues
as the work of CKBPv2 and ATOMIC20

20. Data
is anonymized, thus our work does not propagate
any privacy problems about any specific entities.
Also, we carried out human expert annotation for
analysis purposes. Since the amount of work is
small, we and the annotators agree to consider it as
a voluntary service.
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A Experiments

In this section, we provide details of how to form
test benchmarks, the pilot study, additional analy-
ses of results, and baselines.

A.1 Benchmarks

CKBPv2 originally consists of approximately 1k
development instances and 4k test instances. To
reduce the computational cost while keeping the
same data distribution, we use stratified sampling to
down-scale the test split of the benchmark by a fac-
tor of 4, hence forming a test set of 979 instances.
The down-sampled test set includes 208 instances
with label 1 (which means they are commonsense
or “positive”), thus, the ratio of the number of
commonsense/not commonsense instances remains
approximately 1/4. In fact, results of the human-
performance baseline and supervised-learning base-
line in Table 4 suggest that the down-scaled test set
is representative of the whole test set.

Meanwhile, SD-ATOMIC20
20 is curated from the

test set of ATOMIC20
20 as follow. First, we ran-

domly select 1000 distinct head events, and then
for each head event, we select one triple (i.e. in-
stance). Since our final preset rules concern 5
relations xReact, oReact, xAttr, xIntent,
xNeed, the selected triples are also of these 5 rela-
tions only. Finally, we apply a data-manipulation
method on the collection of 1000 triples to sample
negative instances for SD-ATOMIC20

20, in which
we randomly select (1) 250 triples and change the
relation, and (2) 250 triples (h,r,t) and change the
tail event so that obtained triples do not exist in the
ATOMIC20

20’s test set. By assumption, these 500 in-
stances are not commonsense and then assigned the
label 0, while the rest 500 instances which remain
intact are commonsense and assigned the label 1.

A.2 Pilot Study

We sampled 102 instances from the dev split of
CKBPv2 in a relation-wise stratified manner to
form a small dataset for the pilot study. The prompt
design used in this pilot study consists of zero-shot
template design 3 (Table 13), constraint template
design 1 for Typing and Temporal and template
design 2 for Ambiguity (Table 12). The result is
shown in Table 5, with a similar organization as
Table 3.

We observed no effect of the Ambiguity con-
straint, thus we dropped that constraint. Further-
more, as we observed no effect of the Temporal
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Method Acc. Pre. Rec. F1

Random (p = 0.5) 50.00 20.00 50.00 28.57
Human (full set) - - - 91.50
Prior best (full set) - - - 46.63
Human 96.38 94.37 88.22 91.17
Prior best 60.54 32.08 76.76 45.25

Table 4: Random, Human, and previous best Supervised
Learning baselines’ performance as a lower bound, up-
per bound, and a competitive baseline to compare with
LLM prompting methods. Here, Acc., Pre., Rec. re-
spectively mean Accuracy, Precision, and Recall. The
random baseline follows the Bernoulli distribution with
probability p is 0.5. Results of baselines with suffix (full
set) are results on the whole test set of CKBPv2 (Fang
et al., 2023). For the last two rows, we use the avail-
able human annotation of CKBPv2 and rebuild the best
baseline based on its description in Fang et al. (2023)
to compute these statistics. Results in this table sug-
gest that the down-scaled test set is representative of the
whole test set.

constraint on samples of relations HinderedBy and
Causes, we decided to remove these constraint-
relation pairs. Nonetheless, while there is no effect
of the Typing constraint on samples of relations
oReact and xAttr, we still kept these constraint-
relation pairs because the readable templates of the
two relations do not adequately reflect their Typing
constraint.

A.3 Analysis

As observed in Table 2, two groups of non-CoT
and CoT baselines have the results w.r.t ChatGPT
and GPT3.5 showing different patterns. While non-
CoT baselines with backbone ChatGPT do not ben-
efit much from or even suffer from a performance
decrease due to exemplars, the non-CoT baselines
with GPT3.5 and all CoT baselines hugely benefit
from in-context exemplars. In CKBPv2, baselines
with in-context exemplars are 6% to 10% better
than their corresponding zero-shot counterparts.

For CKBPv2, we try two exemplar optimiza-
tion methods - Active-CoT (Diao et al., 2023) and
Automate-CoT (Shum et al., 2023) which respec-
tively use uncertainty-based active learning and
rational chains optimization for exemplar selection
(Table 6). We notice that exemplar optimization
becomes more important for CoT baselines, as the
optimization gives a significant gain on ChatGPT
and a large improvement on GPT3.5. Also, CoT
baselines generally achieve higher score than non-
CoT baselines, which is often observed in other
benchmarks.

We further explore the dependence of overall
baseline performance on our 3 seed prompt de-
signs. The average precision, recall, F1 score over
all baselines w.r.t to each prompt design is reported
in Table 7. There is a gap between the third seed
prompt design and other two seed prompt designs,
however, the gap is not significantly large. There-
fore, we conclude that there is no significant de-
pendence of baseline performance on seed prompt
designs.

Last but not least, we examine to what extent
LLMs fail to handle the explicit constraints. We
focus on a specific context, which considers the
prediction of Few-shot-CoT baseline (with Chat-
GPT backbone and the third prompt design) and
the xReact relation. As the Few-shot-CoT baseline
works on the main-task question of whether a triple
is commonsense, its prediction is not equivalent to
the prediction of whether the triple satisfies the con-
straint. Only its “Yes” prediction implies a “Yes”
prediction of constraint satisfaction. Thus, we esti-
mate the failure rate of the Few-shot-CoT baseline
based on triples with positive predictions. Among
those triples, 43% of the triples do not satisfy the
typing constraint, but the baseline implicitly pre-
dicts them as satisfied. That supports our claim
that LLMs and advanced prompting techniques be-
come less effective in handling explicit constraints
in CSKB reasoning.

A.4 Cost Estimation

In Table 8, we estimate the total number of words
processed for each instance in each baseline as well
as the overhead cost of using additional prompt-
ing engineering techniques. We ignore the cost
of exemplar optimization, as the process is done
at most once per baseline and independent of the
size of the test set. As such, here we treat Few-
shot (KATE(-s)) the same as Few-shot (Random),
and treat Active-CoT and Automate-CoT the same
as Few-shot-CoT. Also, since ConstraintChecker’s
constraint design only involves the head and tail
events of test triples, which are irrelevant to seed
prompt designs for the main-task component, we
only need to run ConstraintChecker once then ap-
ply for all baselines and for all seed prompt de-
signs. Overall, it shows the efficiency of Con-
straintChecker over other types of prompt engi-
neering.
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Constraint All xReact oReact xAttr xIntent xNeed xWant xEffect HinderedBy Causes

N/A (Baseline) 61.29 66.67 100.00 75.00 50.00 50.00 66.67 66.67 100.00 0.00
Typing 72.73 62.30 100.00 75.00 - - - - - -
Temporal 64.41 - - - 100.00 57.14 - - 100.00 0.00
Ambiguity 29.27 25.00 0.00 57.14 66.67 0.00 57.14 0.00 0.00 0.00

Table 5: Result in the pilot study. The result is presented in a similar organization as Table 3

Method ChatGPT GPT3.5
Acc F1 Acc F1

Active-CoT 74.67 49.29 72.28 50.39
Automate-CoT 76.0 50.82 76.68 50.31

Table 6: Results of extra exemplar-optimization base-
lines on CKBPv2.

Prompt design 1 2 3

Precision 39.85 39.76 39.63
Recall 59.95 59.31 60.37
F1 score 46.38 46.32 47.15

Table 7: Average Precision, Recall, and F1 score over
all baselines of each seed prompt design. There is no
significant dependence of baseline performance on seed
prompt designs.

A.5 Why is ConstraintChecker not extended
to intervene False Negatives?

Intervening on False Negatives is equivalent to us-
ing constraints satisfaction to “convince” the main-
task component that a triple is correct. However,
constraint satisfaction is not adequate to justify if
the triple is correct, as we also need to consider its
overall semantic.

A real example from the development split
of CKBPv2 is (PersonX go to sleep on hollow,
xReact, PersonX be tired). Clearly, “PersonX be
tired” expresses a mental state, which means the
triple satisfies the typing constraint corresponding
to xReact that the tail event has to express a men-
tal state. However, the phrase “sleep on hollow” is
ambiguous, and even if we ignore the words “on
hollow”, it’s unlikely that “PersonX be tired” is a
result of “PersonX go to sleep”. That means the
triple is not common sense.

B Supplementary Materials

B.1 Taxonomy of CSKB relations

The taxonomy of CSKB relations are aggregrated
from prior works (Sap et al., 2019; Hwang et al.,
2021) and demonstrated in Table 9.

Method Words

Representative baselines

Zero-shot 28
Few-shot 120
Zero-shot-CoT 68
Few-shot-CoT 321

Type of prompt engineering

Using exemplars 172
Using CoT 120
ConstraintChecker 72
Constraint-L2M (w/o exemplar) 254

Table 8: Per-instance estimated costs for baselines and
additional costs for each type of prompt engineering,
including “Using exemplars”, “Using CoT”, and Con-
straintChecker. “Words” indicates the average number
of words in the input prompt and generated which are
both charged by OpenAI, which are proportional to the
actual costs. For types of prompt engineering other than
ConstraintChecker, we take the average gap between
two groups of baselines w.r.t the type. Here, we gener-
ously assume that all constraints of ConstraintChecker
are run for every instance, instead of only instances of
concerned relations as following the preset rules.

B.2 Prompt design

For each triple (head event, relation, tail event),
we convert the triple into a free-text format (so-
called assertion) using human-readable templates.
Along with the original set of templates in Hwang
et al. (2021), we also design and experiment with
another set of templates to study the correlation
between human-readable template design and the
result. Likewise, we take the direct question-
answering prompt (so-called main question) design
from Fang et al. (2023) and self-curate another one.
The two sets of human-readable templates and two
main question designs are shown in the following
tables.

An input prompt to LLMs consists of two main
parts, the main question and the assertion. We
select three combinations of human-readable tem-
plates of relations and main question designs as
seed prompt designs, from which each baseline
will adapt to get its three prompt designs (if neces-
sary). The result of each baseline will be averaged
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Type Relations

ATOMIC (Sap et al., 2019)

Event xNeed, xEffect, xWant, oEffect, oWant
Mental state xIntent, xReact, oReact
Persona xAttr

ATOMIC20
20 (Hwang et al., 2021)

Physical-Entity ObjectUse, AtLocation, MadeUpOf, HasProperty, CapableOf, Desires, Not Desires
Event-Centered IsAfter, HasSubEvent, IsBefore, HinderedBy, Causes, xReason, isFilledBy
Social-Interaction xNeed, xAttr, xEffect, xReact, xWant, xIntent, oEffect, oReact, oWant

Table 9: Taxonomy of CSKB relations, cited from previous works (Sap et al., 2019; Hwang et al., 2021). In the
context of this work, we are only interested in 15 relations included in CKBPv2.

from the results of three different prompt designs.
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Relation Template

xWant as a result, PersonX wants to
oWant as a result, PersonY or others want to
xEffect as a result, PersonX will
oEffect as a result, PersonY or others will
xReact as a result, PersonX feels
oReact as a result, PersonY or others feel
xAttr PersonX is seen as
xIntent because PersonX wanted
xNeed but before, PersonX needed
Causes causes
xReason because
isBefore happens before
isAfter happens after
HinderedBy can be hindered by
HasSubEvent includes the event or action

Table 10: Readable templates from Hwang et al. (2021) (denoted as H-template), concerning 15 relations which
comprise CKBPv2. When these templates are used in the main-task component, the head and tail events will be
respectively prepended and appended to the templates.

Relation Template

xWant <h>, thus, <t>
oWant <h>, thus, <t>
xEffect <h>, thus as an result, <t>
oEffect <h>, thus as an result, <t>
xReact <h>, thus as a result on PersonX’s emotion, <t>
oReact <h>, thus as a result on PersonY’s emotion, <t>
xAttr <h>, thus it can be seen about PersonX’s attribute that <t>
xIntent <h>, thus it can be seen about PersonX’s intention that <t>
xNeed The event <h> will not happen unless <t>
Causes Because <h>, <t>
xReason <h>, because <t>
isBefore After <h>, <t>
isAfter Before <h>, <t>
HinderedBy The event <h> will not happen, if <t>
HasSubEvent The event <h> includes the event/action that <t>

Table 11: Self-curated readable templates (denoted as S-template) for 15 relations in CKBPv2. <h> and <t> denote
the head and tail event respectively.

Constraint Prompt Designs

Typing

Design 1 (selected):
Which aspect (among three options 1. event/activity, 2. persona, 3. mental state) of the subject does the clause
<t> express? Answer the choice only.

Design 2 (alternative):
Determine if clause <t> expresses an event or activity of the subject. Answer “Yes” or “No” only.

Temporal

Design 1 (selected):
Which one of the following two statements is more plausible:
0. <t> before <h>,
1. <t> after <h>.
Answer 0 or 1 only.

Design 2 (alternative):
Judge if the event <t> likely occurs after the event <h>. Answer “Yes” or “No” only.

Ambiguity

Design 1:
Which one of the following two statements make more sense:
0. Two clauses <h> and <t> all have clear meaning.
1. One of two following clauses <h> and <t> has ambiguous meaning.
Answer 0 or 1 only.

Design 2:
Judge if the meaning of the clauses <h> and <t> are all clear. Answer ’Yes’ or ’No’ only.

Table 12: Constraint prompt designs for typing, temporal, and ambiguity constraints. <h> and <t> denote the head
and tail event respectively.
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Baselines Prompt Designs

Zero-shot

Design 1:
Answer whether the following statement is plausible. Answer with only Yes or No: <free-text H-template
format of the test triple>

Design 2:
Answer whether the following statement is plausible. Answer with only Yes or No: <free-text S-template
format of the test triple>

Design 3:
Judge the following statement if it’s likely to occur, only answer True or False: <free-text S-template format
of the test triple>

Few-shot

Design 1:
Answer whether the following statement is plausible. Answer with only Yes or No: Statement: If PersonX
push PersonY back, as a result, PersonY or others will, PeopleX step back from PersonX
Answer: Yes
Statement: If PersonX regain PersonY ’s composure, can be hindered by, PersonY be disown personx
Answer: Yes
Statement: If PersonX be nowhere, can be hindered by, PersonX friend will not keep PersonY
Answer: Yes
Statement: If PersonX chase PersonZ away, as a result, PersonX will, PersonY lose friend
Answer: Yes
Statement: If PersonX wave PersonY away, as a result, PersonX will, PersonY roll PersonZ eye
Answer: Yes
Statement: <free-text H-template format of the test triple>
Answer:

Design 2:
Answer whether the following statement is plausible. Answer with only Yes or No:
Statement: PersonX stay away from PersonY, thus as an result, PersonX call out to PersonX
Answer: No
Statement: PersonX help the PersonY, thus as an result, PersonX be rebuff by PersonY
Answer: Yes
Statement: PersonX turn down that, thus it can be seen about PersonX’s attribute that PersonX get PersonY
into trouble
Answer: No
Statement: PersonX be real, thus as an result, PersonY argue PersonZ about it
Answer: Yes
Statement: PersonX challenge PersonZ ’s friend, thus, PersonY want PersonY not let
Answer: Yes
Statement: <free-text S-template format of the test triple>
Answer:

Design 3:
Judge the following statement if it’s likely to occur, only answer True or False:
Statement: PersonX get PersonX thing together, thus it can be seen about PersonX’s attribute that PersonX be
helpful
Answer: True
Statement: PersonX invite PersonY to lunch, thus, PersonY want PersonX be a leader
Answer: False
Statement: PersonX catch, thus as a result on PersonY’s emotion, PersonY feel PersonY be fluster
Answer: True
Statement: PersonX break PersonX glass, thus as a result on PersonX’s emotion, PersonX feel PersonX be
ashamed
Answer: True
Statement: The event PersonX need to set plan will not happen unless PersonX know about it
Answer: False
Statement: <free-text S-template format of the test triple>
Answer:

Zero-shot-
CoT

Design 1:
Answer whether the statement <free-text H-template format of the test triple> is plausible. Let’s think step by
step, then conclude by answering True or False.
Design 2:
Answer whether the statement <free-text S-template format of the test triple> is plausible. Let’s think step by
step, then conclude by answering True or False.

Table 13: Prompt designs of baselines. H-template and S-template denote two sets of readable templates, from
Hwang et al. (2021) and self-curated. For baselines which select exemplars randomly or based on the test instance,
the exemplars will change according to each test instance, rather than remaining the same as what are shown here.
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Baselines Prompt Designs

Zero-shot-
CoT

Design 3:
Judge the statement <free-text S-template format of the test triple> if it’s likely to occur. Let’s think step by
step, then conclude by answering True or False.

Few-shot-
CoT

Design 1:
Q: Answer whether the following statement is plausible: PersonX find PersonY happens before PersonX wake
up on ground.
A: Let’s think step by step. If PersonX just wake up on the ground, that means PersonX was sleeping before
that. Thus, PersonX cannot be conscious to find another person. Thus, the statement is not likely to occur.

Q: Answer whether the following statement is plausible: PeopleX deserve happiness, as a result, PersonX
feels, PersonX reach out to PeopleX.
A: Let’s think step by step. The events ’PeopleX deserve happiness’ and ’PersonX reach out to PeopleX’ are
likely irrevelant. Also, the clause ’PersonX reach out to PeopleX’ does not describe what PersonX feels. Thus,
the statement is not likely to occur.

Q: Answer whether the following statement is plausible: PersonX have a sheet, but before, PersonX needed
PersonX meet PersonY requirement.
A: Let’s think step by step. If PersonX doesn’t meet PersonY requirement, PersonX likely doesn’t get the
reward from PersonY. However, in this case, it’s not clear whether ’a sheet’ refer to PersonY’s reward or not.
Thus, the statement is not likely to occur.

Q: Answer whether the following statement is plausible: PersonX occupy PersonY position, as a result,
PersonX wants to PersonY want to aid in position.
A: Let’s think step by step. When PersonX occupy PersonY position, it means PersonY already worked at this
position and has experience to do the job. Therefore, it’s likely that PersonX want PersonY to aid PerosonX
when PersonX is in that job position. Thus, the statement is likely to occur.

Q: Answer whether the following statement is plausible: PersonX see that, as a result, PersonX will PersonX
want a pet.
A: Let’s think step by step. In this context, we can refer the word ’that’ as some activity where people play
with their pet. Therefore, it stimulates PersonX’s desire to have a pet. Thus, the statement is likely to occur.

Q: Answer whether the following statement is plausible: <free-text H-template format of the test triple>.
A:

Constraint-
L2M

Design 1:
For each statement below, please answer several questions to reach the final conclusion if the statement is
commonsense.
Whenever your answer of a question is No, please conclude that the statement is not commonsense. Otherwise,
please conclude that the statement is commonsense.

Statement: If PersonX prevent PersonY, as a result, PersonX feels, PersonX never reach out to anyone
Q: Which aspect (among three options 1. event/activity, 2. persona, 3. mental state) of the subject does the
clause ’PersonX never reach out to anyone’ express. Answer the choice only.
A: 1. event/activity
Q: Is the above answer different from option 1. event/activity?
A: No. Thus, the statement is not commonsense

Statement: If PersonX go to sleep on hollow, as a result, PersonX feels, PersonX be tired
Q: Which aspect (among three options 1. event/activity, 2. persona, 3. mental state) of the subject does the
clause ’PersonX feel PersonX be tired’ express. Answer the choice only.
A: 3. mental state
Q: Is the above answer different from option 1. event/activity?
A: Yes
Q: Is the statement "If PersonX go to sleep on hollow, as a result, PersonX feels, PersonX be tired" plausible?
A: No. Thus, the statement is not commonsense

Statement: If PersonX eat the sub, as a result, PersonX feels, PersonX be full
Q: Which aspect (among three options 1. event/activity, 2. persona, 3. mental state) of the subject does the
clause ’PersonX feel PersonX be full’ express. Answer the choice only.
A: 3. mental state
Q: Is the above answer different from option 1. event/activity?
A: Yes
Q: Is the statement "If PersonX eat the sub, as a result, PersonX feels, PersonX be full" plausible?
A: Yes. Thus, the statement is commonsense

Table 14: (Cont.) Prompt designs of baselines. H-template and S-template denote two sets of readable templates,
from Hwang et al. (2021) and self-curated. For baselines which select exemplars randomly or based on the test
instance, the exemplars will change according to each test instance, rather than remaining the same as what are
shown here. For concision, we only show Design 1 for Few-shot-CoT and Constraint-L2M.
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