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Abstract

Adversarial attacks against Language models
(LMs) are a significant concern. In particular,
adversarial samples exploit the model’s sen-
sitivity to small input changes. While these
changes appear insignificant on the semantics
of the input sample, they result in significant
decay in model performance. In this paper, we
propose Targeted Paraphrasing via RL (TPRL),
an approach to automatically learn a policy to
generate challenging samples that improve the
model’s performance. TPRL leverages FLAN-
T5, a language model, as a generator and em-
ploys a self-learned policy using a proximal
policy optimization to generate the adversar-
ial examples automatically. TPRL’s reward is
based on the confusion induced in the classifier,
preserving the original text meaning through
a Mutual Implication score. We demonstrate
& evaluate TPRL’s effectiveness in discover-
ing natural adversarial attacks and improving
model performance through extensive experi-
ments on four diverse NLP classification tasks
via Automatic & Human evaluation. TPRL
outperforms strong baselines, exhibits gener-
alizability across classifiers and datasets, and
combines the strengths of language modeling
and reinforcement learning to generate diverse
and influential adversarial examples.

1 Introduction

LMs have made impressive advancements in clas-
sification, question-answering, and machine trans-
lation. However, they are susceptible to adversarial
attacks, which exploit their vulnerability to small
input changes (Jia and Liang, 2017; Jin et al., 2020;
Alzantot et al., 2018; Wallace et al., 2019; Jia et al.,
2019; Cheng et al., 2019). These attacks intro-
duce variations not encountered during training.
Two approaches to address these vulnerabilities
are data augmentation-based techniques (Liu et al.,
2020; Wang and Yang, 2015; Kobayashi, 2018;
Yu et al., 2018) and adversarial training-based ap-
proaches (Zhu et al., 2019; Yoo and Qi, 2021; Xu
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Figure 1: Components of our framework TPRL for
Natural Adversarial Generation. (1) Employing Data
filtering and then paraphrasing fine-tuning. (2) Targetted
paraphrasing through employing RL on classification
Datasets.

et al., 2019). Expanding training data using pre-
designed samples generated by data augmentation
methods can assist classifier training. However,
generated samples may lack an adversarial nature
(Altinisik et al., 2022), leading to confusion and in-
accurate classification. Adversarial training-based
approaches (Xu et al., 2019; Le et al., 2022; Deng
et al., 2022; Iyyer et al., 2018; Alzantot et al., 2018)
address this limitation by generating challenging
examples. This improves the model’s ability to han-
dle difficult subsets of data, enhancing robustness
and performance.

Generating diverse and semantically meaningful
adversarial examples is challenging due to limited
operations like word addition, deletion, or substitu-
tion. This lack of diversity in word-level generation
often results in generated sentences with identical
vectors to the original, offering little insight into
the model’s behavior.
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Recent studies (Le et al., 2022; Zhao et al., 2018)
show that character manipulation or word swap
methods can produce irrelevant and incoherent sam-
ples, altering the original text’s meaning. These
methods are unsuitable for real-world applications
and can harm the model. Attacks lacking semantic
significance expose the model’s blind spots, are eas-
ily detectable and removable, and do not represent
real-world examples encountered during deploy-
ment.

To address this, researchers have explored
sentence-level generation methods. GAN-based
approaches (Zhao et al., 2018; Wang et al., 2020a)
show promising results in generating diverse ex-
amples but may result in irrelevant and obtaining
labeled data is challenging. Another approach em-
ploys a paraphrasing technique using LMs. How-
ever, this method lacks targeted fine-tuning to break
the classifier and has limited available styles. In this
paper, we introduce a novel approach called TPRL
that leverages FLAN-TS5 for targeted paraphras-
ing, enhancing classifier performance through Re-
inforcement Learning. We employ a two-step pro-
cess: first, we train a diverse paraphrasing model
using FLAN-TS and then fine-tune it with RL to
preserve text meaning while generating targeted
adversarial examples. We evaluate TPRL on four
classification tasks, both automatically and with
human evaluation, demonstrating its ability to im-
prove classifier robustness and effectiveness. Our
findings can be summarized as follows:

» Utilizing the generated examples for adversar-
ial training improves classifier performance
on original and adversarial test sets.

* Our work demonstrates that the learned pol-
icy for one classifier is universal and can be
generalized to unseen classifiers in the same
dataset.

* Experiments show that TPRL outperforms
strong baselines and improves results on vari-
ous models and datasets.

2 Background

This section briefly introduces and formalizes tex-
tual adversarial attacks for text classification and
employs RL in language models for generating ad-
versarial attacks and other tasks.

2.1 Textual Adversarial Attacks

Generating adversarial attacks against NLP mod-
els is more challenging than for vision models
(Qiu et al., 2022). NLP models rely on discrete
word representations, where even slight adjust-
ments can drastically change the meaning or va-
lidity of a phrase. Unlike images, NLP models
require a deeper understanding of context and lan-
guage structure, making successful attacks difficult.

Attacks Properties. For a victim classification
model, denoted as Fy, tested on dataset D; with
samples (z,y;), "an adversarial attacker aims to
perturb x; to maintain semantic similarity to hu-
mans but destroy its meaning when classified by
the model." This generates an adversarial example,
a:;, that the model misclassifies.

2.2 RL In Language Models

Dynamically generating adversarial attacks at the
sentence level is more compatible with the rein-
forcement learning (RL) paradigm. In the realm of
NLP, RL has gained prominence for addressing un-
desirable behavior, including toxicity, social biases,
offensive speech, and data memorization(Paulus
et al., 2017; Rennie et al., 2017; Wu et al., 2016;
Kassem et al., 2023). This is accomplished by
using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) to optimize a Language Model
(LLM) based on a reward model. Despite RL’s suc-
cess in mitigating undesirable behavior in LMs, its
potential for generating adversarial attacks remains
largely unexplored. This paper presents the first
investigation of using RL with a language model
for generating natural adversarial attacks.

3 Collecting Labeled Paraphrasing Pairs

This section will show the selected datasets for
training the paraphrase model. Afterward, we will
outline a systematic procedure for filtering those
datasets to maximize the paraphrase pairs’ diversity,
similarity, and relevance.

3.1 Paraphrasing Datasets

In our initial stage, we gathered seven diverse para-
phrase datasets, most undergoing thorough human
judgment annotation to ensure high-quality para-
phrasing examples. This comprehensive paraphras-
ing corpus comprises data from the APT dataset
(Nighojkar and Licato, 2021), Microsoft Research
Paraphrase Corpus (MSRP) (Dolan and Brockett,
2005), PARANMT-50M corpus (Wieting and Gim-
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pel, 2018), TwitterPPDB (Lan et al., 2017), PIT-
2015 (Xu et al., 2015), PARADE (He et al., 2020),
and QQP (Iyer et al., 2017). We utilized a filtered
version of the PARANMT-50M corpus as recom-
mended by (Krishna et al., 2020). We retained
sentence pairs with 4, 5, and 6 similarity labels
from TwitterPPDB and sentences with semantic
similarity labels of 5 and 4 from PIT-2015. For
QQP, we selected samples labeled as duplicates.
The merged dataset, totaling 560,550 samples, un-
derwent filtering to ensure high-quality similarity
and diversity for the subsequent stage.

3.2 Improving Diversity & Relevance Via
Data Filtering

In the second stage, we choose training data for the
paraphrase model, following (Krishna et al., 2020).
Despite the availability of human annotations, it
is still possible for noise and irrelevant samples
to exist in the dataset. We employ aggressive fil-
tering with four filters to address noise and irrel-
evant samples in the dataset. Firstly, we remove
sentence pairs with over 50% unigram overlap, en-
suring lexical diversity computed using SQUAD
evaluation scripts based on the F1 score (Rajpurkar
et al., 2016). Secondly, we discard pairs with
less than 50% reordering of shared words, promot-
ing syntactic diversity measured by Kendall’s tau
(Kendall, 1938). Thirdly, we eliminate pairs with
less than 50% semantic similarity, measured by
cosine similarity using the "all-MiniLM-L12-v2"
model (Wang et al., 2020b; Reimers and Gurevych,
2019). Finally, we remove sentences with over
70% trigram overlap to improve diversity further.
After applying these filters, the refined dataset con-
tains 96,073 samples, split into training (76,857
samples), validation (9,608 samples), and testing
(9,608 samples) sets. These filters ensure a diverse
and representative sample for effective training and
evaluation.

4 Targeted-Paraphrasing Via RL

Figure 1 illustrates the framework’s structure. Af-
ter filtering data for diverse and relevant paraphrase
pairs, we proceed with the initial fine-tuning of the
model. Subsequently, we utilize proximal policy
optimization, a reinforcement learning technique,
to fine-tune the model further. This approach gen-
erates paraphrases that exploit the classifier’s weak-
nesses, resulting in complex and effective adversar-
ial samples.

4.1 Paraphraser Model

We enhance the FLAN-5-large model by fine-
tuning the filtered data for nine epochs. Employ-
ing the BERT-Score metric (Zhang et al., 2019), it
achieves an F1-score of 75.925%, enhancing flu-
ency, diversity, relevance, and paraphrasing abil-
ity. The LM also addresses task-irrelevant genera-
tion issues. Training on relevant pairs maximizes
task-specific outputs. Utilizing the LM boosts para-
phrasing capability and introduces new information
about entities or objects in the input text, improving
generation quality (Petroni et al., 2019). This opti-
mized paraphrase is then used to create adversarial
training samples.

4.2 Fine-Tuning Paraphraser Via RL

After the initial fine-tuning, the paraphraser model
can generate various relevant and fluent para-
phrases. To enhance its performance, our approach
includes a guiding component via the reward func-
tion. This involves further fine-tuning the model
using reinforcement learning (PPO), enabling it to
produce targeted adversarial examples that confuse
the classifier.

4.2.1 Reward Function

Given tokens z; = {xo, x1,...,2¢—1} and accu-
mulated hidden states hy-, before time step ¢. An
auto-regressive language model (LM) is trained to
maximize the probability of the next step token
Z¢. LM as a generator GG selects the token that has
the highest probability z; as the ¢-th step decoding
output:

xy ~ argmaxg, p(Ze|r<t) = G(w<t, ho<t) (1)

In the reinforcement learning framework, we de-
fine the state at step ¢ as all the sequences generated
before t s; = x4, and the action at step t as the
t-th output token (a; = ;). The policy my repre-
sents the probability of selecting token x; (action
ay) given the preceding state s; = x ;. This prob-
ability is derived from the softmax output of the
hidden states 7g(a|s;) = softmax(hg;), and this
interpretation extends to the conditional case as
well. The single-step reward for token z at step ¢
can defined as follows:

7, (at|st)

Rla%) = B [We(at|5t)

1w - BRLEIG)
2
Where r(z¢) is the objective composed of the
weighted sum of confusion and Mutual Implica-
tion. The KL penalty is applied per token using a
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reference model, which is the original model that
does not receive the signal reward to prevent signif-
icant deviations.

Confusion constraint with classifier. To gen-
erate confusing samples that challenge the model,
we randomly select pairs (z, y) from the dataset D
and input them into the generator G. This process
yields a novel pair (Z, y) through generation. Sub-
sequently, we fed these generated instances (&, y)
into the classifier C' to obtain the likelihood of the
true label L(y|Z) = pc(y|Z;1). Where 1) repre-
sents the parameter of the classifier. We then incor-
porate (1 — L(y|Z)) into our reward function. This
term aims to incentivize the generator to acquire
a policy that produces confusing samples capable
of decreasing the classifier’s confidence. It can be
viewed as searching for confusing samples within
the classifier’s space.

Similarity constraint with Mutual Implica-
tion. Previous research in word and sentence-
level attacks often used embeddings like word2vec
(Mikolov et al., 2013), and GloVe (Pennington
et al., 2014), along with contextual embeddings
such as BERTScore (Zhang et al., 2019) and
BLEURT (Sellam et al., 2020). However, these
methods often fail to capture inferential semantics,
leading to irrelevant sample generation when used
as a reward function. For example, BERTScore
assigns a high similarity score to sentences like
"I bought an iPad" and "I bought a Laptop," even
though they refer to different products.

To address this, we propose an alternative ap-
proach: using Mutual Implication (Nighojkar and
Licato, 2021), a similarity score that more accu-
rately evaluates text generation by considering
both relevance and semantic equivalence as the
bi-directional relationship adds more constraints
between the generated and original sentence. Let
A=ual,...,anand B = bl,...,bm be two to-
ken sequences, and let L be a language model
trained on the Natural Language inference task
(NLI) that produces three labels, Entailment, Con-
tradiction, and Neutral. We estimate the Mutual
Implication as follows:

MI(A, B) = [LNL](A = B)+LNL[(B = A)]/Q

(3

Where Ly is ALBERT XXLarge vo model

(Lan et al., 2019) trained on various NLI datasets

(Nie et al., 2019; Bowman et al., 2015; Williams
et al., 2018; Nie et al., 2019, 2020).

KL Penalty. The policy of the fine-tuned model
may deviate significantly from the old policy (the
model before fine-tuning), potentially leading to a
less coherent and relevant generation. To address
this issue, we introduce a KL divergence penalty
term to quantify the dissimilarity between these two
policies. This step helps ensure that our optimiza-
tion process remains within a trustworthy region.
The KL divergence, calculated for the policies, is
expressed as:

7T9(ai|5i)
KL(0|6.) = ilsi) - log ———=
(B116) = > molailsi) - log ==

1€[1,1]

)

We deduct KL divergence with default value weight
B = 0.2 as a penalty term in the reward function
(Equation 2).

Objective function. We consolidate all con-
straints from previous sections into a unified ob-
jective. Our objective function blends the negative
likelihood, which drives the generator to produce
confusing samples, with the mutual implication,
which ensures the similarity, naturalness of mean-
ing, and semantic equivalence. This measures how
closely the paraphrases convey the same meaning
as the original text and vice versa. The final objec-
tive function is defined as:

r(de) = v- (1 =pc(ylE; ) +a- MI(z,z) (5)

Here, 1 represents the classifier’s parameter, and
v as well as « serve as weighting factors, both set
to 0.5. This balance ensures that the model neither
generates overly confusing examples at the expense
of relevance nor produces irrelevant results at the
cost of coherence.

4.2.2 Generation Settings

We applied several constraints to sentence gener-
ation, such as matching the generated sentence
length to the original one to avoid irrelevant tokens.
We use early stopping when enough complete can-
didate beams are available to prevent meaningless
or off-topic tokens. These constraints enable the
generator to introduce new, relevant information
or replace existing tokens with a diverse range of
novel and pertinent tokens. We also generate ten
alternative samples and assess their adequacy and
fluency using the Parrot Tool (Damodaran, 2021),
selecting the most suitable one for reward compu-
tation to maximize fluency and relevance.
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4.2.3 Policy Optimization

We use a proximal policy optimization approach
with top-p sampling 0.95, known as Natural Lan-
guage Policy Optimization (Ramamurthy et al.,
2022)(see Appendix A for more details). Given
the reward and the definitions described above, we
update our policy at ¢-th step as:

Onew = argmaxgE [min (r4(6), clip (r:(0),1 — €,1 + €)) A{]
(6)

where () = 2L The optimization objec-

T Ty (at]st)”
tive is to find the new policy parameters that max-

imize expected rewards while keeping the policy
update bounded within a certain range defined by
the clipping parameter. This helps maintain stabil-
ity during training. PPO also balances the trade-off
between exploration and exploitation by encourag-
ing actions that have higher estimated advantages
while avoiding drastic policy changes that could
disrupt learning. Further details on PPO & NLPO
methods can be found in Appendix A. The model
was trained for thirty epochs with a batch size of
32 and optimized using the Lion optimizer (Chen
et al., 2023), using a learning rate of 4.9 x 1075;
see Appendix F for more details about the hyperpa-
rameters.

4.3 Sampling Adversarial Texts

Once the paraphraser has been optimized vial RL,
we can sample from the adversarial distribution to
construct adversarial examples. We generate coun-
terparts for each sample in the original training set
to create adversarial samples. However, it is possi-
ble that some samples are irrelevant or not useful
for training (Xu et al., 2019). Thus, we exclude
those with a mutual implication score below 50%,
ensuring that only semantically equivalent samples
are included. Finally, These samples are added to
the training set, creating an updated dataset. Using
the same random seed, we train a new classifier
from scratch, employing adversarial training.

For the classifiers, we began by fine-tuning the
classification models (subsubsection 5.1.2) on the
respective dataset (subsubsection 5.1.1) and re-
ported their performance. Each model achieved
a different performance and made different errors.
We then leveraged these classifiers within the RL
feedback loop.

5 Experiments

We assess the effectiveness of targeted paraphras-
ing via RL adversarial attacks (TPRL) on four dis-

tinct classification tasks: sentiment analysis, news
topic classification, hate speech detection, and of-
fensive speech detection. To this end, we carefully
select relevant datasets, outline our implementa-
tion details, establish baseline methods, and specify
evaluation metrics.

5.1 Experimental Settings
5.1.1 Tasks & Datasets.

Sentiment Analysis. SS7-2 & SST-5 datasets for
sentiment analysis in movie reviews from the Stan-
ford Sentiment Treebank (Socher et al., 2013). SST-
2 (N=6920)has binary sentiment labels (positive
or negative), while SST-5 (N=8540) has more fine-
grained sentiment labels (very positive, positive,
neutral, negative, and very negative) with an aver-
age of 19 words per sample.

New Topic Classification. AG News dataset
(Zhang et al., 2015) with a number of sam-
ples 120,000, categorizing news articles into
four classes: World, Sports, Business, and Sci-
ence/Technology, with an average of 38 words per
sample.

Offensive Speech Detection. SemFEval2019
Task 6 (OffensEval) dataset (N=11916) (Zampieri
et al., 2019) for offensive detection in tweets has
binary classes: offensive and non-offensive tweets
with an average of 19 words per sample.

Hate Speech Detection. Hate speech dataset
(N=7071), a collection of sentences extracted from
Stormfront, a white supremacist forum (de Gibert
et al., 2018). Based on their content, sentences are
categorized into two different classes, HATE and
NoHate, with an average of 16 words per sample.

We eliminated all punctuation, mentions, hash-
tags, and URL links from the samples of all
datasets. Furthermore, we employed lowercase for
all samples. The maximum sequence length was
implemented as the maximum length parameter in
all BERT models. The training, validation, and test
sets officially released by the creator of the datasets
were utilized.

5.1.2 Victim Models.

To assess the effectiveness of our approach across
different models, we selected five popular pre-
trained language models: BERT-base, BERT-large
(Devlin et al., 2018), RoBERTa-base, RoBERTa-
large (Liu et al., 2019), and DeBERTa-v3-large
(He et al., 2021), which vary in architecture and
size.
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Classifier SST2 SST5 AG’sNews HS? OFF?
BERT ggse 90.88  53.52 93.97 * 84.76
+SCPN 89.67 51.71 93.26 * 83.60
+StyAdv 87.91 5235 93.19 * 81.86
+UNTP * 51.90 94.17 * *

+TPRL 91.15 52.39 94.46 * 85.11
BERT L4rge 91.43  53.52 94.18 * 85.11
+SCPN 90.66  53.61 93.17 * 72.09
+StyAdv 90.17  23.07 93.57 * 72.09
+UNTP * 54.84 94.42 * *

+TPRL 92.58 54.93 94.36 * 85.58
RoBERTap,s, 94.34  54.79 93.78 91.90 83.95
+SCPN 92.31  53.89 93.61 91.30  82.67
+StyAdv 91.81 52.21 93.32 91.55  82.32
+UNTP * 56.19 93.78 91.90 *

+TPRL 94.00  56.15 93.93 92.45 85.00
RoBERTa qge 93.73  58.30 93.92 92.45  85.93
+SCPN 49.91  23.07 93.80 92.30 72.093
+StyAdv 4991 23.07 93.73 91.75  72.09
+UNTP * * 93.86 92.45 *

+TPRL 94.72 58.95 94.21 92.05 84.53
DeBERTa-V31,,4. 94.89  58.46 93.92 89.50  84.65
+SCPN 93.52 59.23 93.75 89.50  84.76
+StyAdv 93.41  55.42 * 92.95 80.93
+UNTP * 58.09 93.85 89.50 *

+TPRL 95.82 58.77 94.22 92.30 85.93

Table 1: The classifier-dataset experiments for five clas-
sifiers. We show the accuracy results on the original
test set before & after we apply AT with TPRL & the
three baseline methods. ¥ Refer to Hate dataset, OFF to
Offensive dataset. * Refer to not deployed experiments.
The best comparable performances are bolded

Baseline Methods. TPRL is compared to
SCPN (Iyyer et al., 2018) and StyleAdv (Qi et al.,
2021), other sentence-level adversarial attack tech-
niques. SCPN uses a seq2seq Bi-directional LSTM
(Hochreiter and Schmidhuber, 1997) with the
PARANMT-50M corpus and syntactic templates.
StyleAdv utilizes the STRAP model (Krishna et al.,
2020) for style transfer, incorporating five distinct
styles. Also, we considered an untargeted para-
phrasing model (UNTP) without the guiding com-
ponent. See Appendix B for implementation de-
tails.

5.2 Evaluation Metrics

We thoroughly evaluated TPRL’s effectiveness in
five key areas, ensuring the following:

(1) Improving Performance: We evaluated
TPRL’s impact on the accuracy of the original test
set, alone and in combination with other methods,
to assess its overall performance enhancement. Em-
phasizing that we follow a model-performance per-
spective, our objective is to find the model’s weak-
nesses and enhance them, not just attack or break
the model.

. SCPN StyleAdv UNTP TPRL
Classifier/Framework (%) (%) (%) %)

BERT g 69.37 30.62 64.43  34.84
+AT 68.70 54.28 66.24  42.28

BERT [ qgc 70.86 29.97 64.89  41.51
+AT 68.00 51.73 6435 44.36
RoBERTag ;. 95.53 29.29 67.52  37.27
+AT 74.01 57.42 67.27 4341
RoBERTa_,;4c 82.49 28.02 89.78  40.27
+AT 75.55 52.28 90.19  49.22
DeBERTa-v3/,,,gc 74.77 36.79 63.38  34.66
+AT 75.01 45.33 64.83  47.82

Table 2: The classifier-framework experiments for five
classifiers. We show the accuracy results on the adver-
sarial test set before & after we apply AT with TPRL &
the three baseline methods.

(2) Fluency and Quality: We assessed fluency
using perplexity (PPL) from GPT-2-XL (Radford
et al., 2019) and a RoBERTa-large classifier trained
on the CoLA corpus (Warstadt et al., 2019), to
overcome the limitations of perplexity in evaluating
fluency as the model provides accurate grammatical
acceptability judgments.

(3) Semantic Similarity (SIM): We assessed
semantic similarity between input sentence and
generated samples using the "all-MPNet-Base-v2"
embedding-based SIM model (Song et al., 2020;
Reimers and Gurevych, 2019), known for its perfor-
mance on semantic textual similarity (STS) bench-
mark (Muennighoff et al., 2022). We also used the
mutual implication (MI) metric to capture infer-
ential semantics comprehensively, addressing the
limitations of STS.

(4) Validity Via Human Evaluation: We con-
ducted human evaluations to determine the percent-
age of samples that produced adversarial examples
without altering the original label.

(5) Validity Via GPT-3.5: To overcome human
evaluation cost, we employed GPT-3.5, which has
demonstrated comparable or superior performance
to crowd-workers in-text annotation tasks (Gilardi
et al., 2023; Tornberg, 2023; Chiang et al., 2023).
This assessment validated the credibility of TPRL-
generated samples.

5.3 Experimental Results & Discussion

We conducted comprehensive experiments to an-
swer the following three overarching questions re-
garding TPRL:

5.3.1 Does TPRL Enhance The Performance?

Table 1 shows the evaluation of TPRL’s accuracy
against the three baseline methods and vanilla mod-
els on different benchmark datasets. Overall, TPRL
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Figure 2: T-SNE visualization of the vectorized origi-
nal and TPRL-adversarial sentences in the SST-2. The
adversarial sentences (circles) mostly overlap with the
original sentences (triangles), suggesting that generated
sentences maintain the original class distribution.

consistently gained improved performance across
the five classifiers and datasets. While UNTP out-
performed SCPN and StyleAdy, it still lacked con-
sistent effectiveness. In terms of the adversarial
test set as shown in Table 3, SCPN did not en-
hance classifier performance, StyleAdv showed
significant improvement but not consistently on
the original test set, and UNTP had a small and
sometimes non-existent improvement. However,
TPRL achieved an ~8% improvement on the ad-
versarial test set while maintaining a balance in
the tradeoff between the performance on both the
original and adversarial sets. Note that the miss-
ing values in Table 1 because UNTP failed to meet
the filtering criteria (<0.5 MI) for the SST2, Hate
speech, and offensive speech datasets. Generator
collapse! occurred during training for BERT g
in the hate speech dataset. For a fair comparison,
AG’s News with DeBERTa-V3y,,,.4. was excluded
due to low accuracy in adversarial training.

5.3.2 Does TPRL Generate Relevant
Samples?

In an adversarial generation, maintaining topic and
meaning while fooling the classifier is crucial since
a sample can easily change the classifier’s decision
if the meaning changes. This concern is even more
significant for sentence-level methods that create
new sentences. We evaluated the generated samples
using three approaches:

(1) Automatic evaluation for similarity and flu-
ency, including PPL for accurate fluency assess-
ment. (2) Human evaluation for validity. (3) Visu-

'The language model-generator could not learn an effective
policy to attack the classifier and produced such low reward
values.

Classifier Framework P(F{’%I; + F(‘;)T S{% T 1\(/10;;
SCPN 567.66 5057 7449 8058

StyleAdv 67047  57.65 7462 5834
BERTgase UNTP 49861 8520 77.33 92.41
TPRL  368.41 87.1 7356  89.9

SCPN 56561 5071 7467  80.94

BERT. StyleAdv  863.50 5642 7414 5740
Large UNTP 37352 8597 77.64 9125

TPRL 37251 86.84 7388  89.82

SCPN 56346 5031 7443 8028

4 StyleAdv 70828 5726 7566  58.99
RoBERTagise UNTP 25437 8331 7832 8992
TPRL 49252 8558 7122 89.99

SCPN 55502 5043 7443  80.19

StyleAdv 57980 5734 7430 5681

ROBERTaLuge UNTP 23073 8332 7844 8849
TPRL 30276 87.38 70.84 90.61

SCPN 56070 5020 7428 7991

StyleAdv 84576  57.60 74.92 5746

DeBERTaV3iwee ~ UNTP  372.44 7321 6886  73.14
TPRL 39306 87.27 7390 89.67

Table 3: Automatic evaluation results showing the
average of generated adversarial training samples of the
five datasets across selected classifiers & baselines. The

best comparable performances are bolded

alization techniques for observing the geometric
interpretation of samples. Table 2 shows the results,
with TPRL and UNTP achieving the lowest PPL
and superior generation quality. TPRL also outper-
forms other baselines in fluency, ranging from 86%
to 87%, across classifiers and datasets, thanks to
including the MI score in the reward function to
encourage natural sentence generation.

Regarding The Relevance: TPRL surpasses
baseline methods in MI. For specific configurations,
cosine similarity scores are low (~74%), while MI
scores are high (~89%). This discrepancy arises
because cosine similarity struggles to capture the in-
ferential role accurately (further explanation given
in section 6). See Appendix E for dataset-specific
results.

For Human evaluation: Following (Qi et al.,
2021), considering the cost, we conducted a va-
lidity evaluation on SST2. We randomly selected
100 adversarial samples for TPRL, SCPN, and
StyleAdv (36, 33, and 31 samples, respectively).
Each sample was evaluated by three annotators who
determined if the sentiment matched the original
example. The final decision was made by voting.
The percentage of valid adversarial samples was
TPRL 72%, SCPN 51.5%, and StyleAdv 32.2%.
TPRL achieved the highest validity, confirming
minimal distortion to the original distribution. See
Appendix I for details about human evaluation.
For Validity Via GPT-3.5. To evaluate

the similarity of larger generated samples, we
employed GPT-3.5. Randomly choosing 100
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. . BERT3,sc BERT;,.,c RoBERTap,,. RoBERTa;,.,. DeBERTa-v3;,. .
Policy/Classifier %) %) g %) (%) g %) g

None 90.88 91.43 94.34 93.73 94.89
Policy-BERT ggse 91.15 92.09 93.35 * 95.38
Policy-BERT 1,4rge 91.04 92.58 94.45 94.94 96.15
Policy-RoBERTap,se 90.06 93.24 94.0 * 95.60
Policy-RoBERTage 91.87 92.36 * 94.72 95.60
Policy-DeBERTa-v3,4;ge 90.93 93.24 94.12 95.49 95.82

Table 4: Accuracy results of different classifiers trained with the examples generated by various attacking policies
on the SST-2 dataset. Showing the universal policy. The best comparable performance policy for the classifier is

bolded

samples from each framework in the SST-2 dataset,
we rated them on a scale of 1 to 5, where 1
indicated significant dissimilarity, and 5 denoted
substantial similarity. TPRL exhibited superior
performance to the three baselines, receiving the
highest similarity ratings across categories 5, 4,
and 3. Further details can be found in Appendix G.

For Visualization: We randomly selected 60
samples from the SST-2 dataset and converted them
into vectors using the Sentence-BERT ’all-MPNet-
Base-v2’ model. We used T-SNE (Van der Maaten
and Hinton, 2008) to create a 2D representation
of these vectors ((see Figure 2)). TPRL-generated
samples closely resemble the original data, demon-
strating that small changes in the semantic space
can mislead the classifier, revealing vulnerabilities
in LM-based classifiers. We consistently observed
similar results across different datasets, classifiers,
and random samples(refer to Appendix C for more
details).

5.3.3 Does TPRL Learned Attacking Policy
Universal?

To investigate this question, we employed a fine-
tuned generator to create samples targeting specific
classifiers, like BERT-Base. Then, we fine-tuned
another classifier, BERT-Large, using these gen-
erated samples to assess performance changes, re-
peating this process for five classifiers. Table 4
displays the outcomes in the SST-2 dataset(see Ap-
pendix D for the remaining datasets), revealing
that most classifiers benefited from the samples
generated by other classifiers, surpassing the naive
baseline. This underscores the universality of the
learned attacking policy. Notably, in certain in-
stances, the improvement for the attacked classifier
equaled that of the transferred classifiers despite
each classifier having distinct errors prior to adver-
sarial training(Appendix H).

6 Ablation & Analysis Studies

In this section, we conduct ablations and analyze
TPRL’s key components’ impact on baseline im-
provements.

TRPL Diversity Enhances Classifier Perfor-
mance: We explore diversity’s impact on perfor-
mance, comparing TPRL with the baseline meth-
ods. Similarity scores increased with reduced di-
versity post-adversarial training, while the MI met-
ric sustains diversity. Human evaluations support
MTI’s alignment. Also, we use GPT-3.5 to confirm
TPRL’s diversity; details in Appendix G.

The Importance of Targeted Component: Our
TPRL implementation has a targeted component
using RL. However, we evaluated using only the
fine-tuned paraphraser without RL (UNTP), which
showed inconsistent performance compared to
TPRL (Table 1). Similarly, other baselines requir-
ing a targeted component also yielded minor im-
provements. TPRL outperformed other models
across most metrics (Table 3), emphasizing the im-
portance of the targeted component.

Number of Generated Samples Impact: We
explore the link between increasing sample size
and the resultant performance improvements
for both TPRL and a vanilla classifier. TPRL’s
average sample generation per dataset: SST-2:
359, SST-5: 2993, HS: 135, OFF: 407, AG’s
News: 3825. We examined the correlation
between sample count (normalized by total set
size) and TPRL’s performance boost, finding
no significant correlation (Pearson correlation
of 0.144, p <« 0.05). The insignificance stems
from performance enhancements’ variability due
to classifier weaknesses. Thus, we introduced a
Mutual Implication filtering criterion of 0.5 for
selecting high-quality samples, improving model
performance without irrelevant sampling.
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Original: i complain all the time about seeing the same ideas repeated in films over and over again,
but the bourne identity proves that a fresh take is always possible.

Adversarial: ive always been complaining that movies repeat the same ideas but the identity of bourne

proves that you dont need to reinvent the wheel

Original: something must be done to halt this terrible wave of immigrants entering britian

Adversarial: in order to stop a terrible wave of immigration into britian it is necessary to do something

Original: i live in oslo and race mixing is a huge problem

Adversarial: theres a huge problem of race mixing in oslo

Original: william shatner as a pompous professor is the sole bright spot

Adversarial: the only bright spot of the movie is william shatner in a pompous professor

Original: if you enjoy more thoughtful comedies with interesting conflicted characters; this one is for you

Adversarial: this is a good comedy for those who like thoughtful comedies with interesting characters

Original: any ways smearing a single dna steam with black dna is horrible

Adversarial: any way it seems disgusting to smear one steam with black dna

Original: we spend so much time on black people when the real problem is asians and hispanics

Adversarial: we spend too much time and effort worrying about black while the asians and hispanics were the ones

Table 5: Comparing original & adversarial examples generated by TPRL.

Sample adversarial texts. Table 5 shows ex-
amples of generated samples by TPRL. TPRL
introduces changes by paraphrasing the original
sentence while preserving the original sentence’s
meaning and equivalence. Paraphrasing can be no-
ticed in changing the writing style order of words
and substituting or introducing new words simul-
taneously in one sentence, which is an advantage
over word-level attacks that introduce limited oper-
ations for one sentence.

7 Conclusion

In this paper, we propose TPRL, an adversarial gen-
eration method designed to improve classification
model robustness. Our innovation involves rein-
forcement training to learn various attack strategies
automatically. We confirm TPRL’s effectiveness
in four classification tasks, consistently produc-
ing high-quality adversarial samples that represent
edge cases with minimal distortion in the data dis-
tribution.

Limitations

One limitation of our work is the reliance on a sin-
gle scalar reward for optimization, despite the prob-
lem having dual objectives: confusion and main-
taining similarity. We recommend investigating
alternative techniques, such as Multi-objective Re-
inforcement Learning, to address this limitation.
This approach has the potential to enhance perfor-
mance by optimizing both objectives concurrently.

Moreover, the datasets used in paraphrasing cur-
rently need longer sequences, approximately 256
tokens, which restricts our approach to generating
adversarial samples for longer sequences.

Ethics Statement

Enhancing classifier performance is of utmost im-
portance, especially considering the prevalence of
hate and offensive speech on social media plat-
forms. Many users attempt to circumvent the
classifier’s detection capabilities by altering their
writing style or incorporating unfamiliar words,
thereby creating edge cases where the classifier
needs to identify such content accurately. This pa-
per presents an innovative approach to generating
these edge cases and leveraging adversarial train-
ing to enhance the classifier’s ability to detect and
protect against such samples.
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A Natural Language Policy Optimization vs PPO

NLPO (Natural Language Policy Optimization) is proposed to address the problem of large action spaces
in language generation tasks. (Ramamurthy et al., 2022) showed that existing RL algorithms struggle
with these spaces, as seen in models like GPT-2/3 and T5 with their extensive vocabularies of SOK and
32K, respectively, and even more prominent with the recent models. NLPO introduces a masking policy
that is periodically updated and applies a top-p sampling technique to mask out irrelevant tokens during
training. This helps balance the inclusion of task-relevant information with the risk of reward hacking. By
extending the PPO algorithm, NLPO aims to improve the stability and effectiveness of training language
models. NLPO achieves that by NLPO utilizing top-p sampling via generating, which limits the token
selection to the smallest set where the cumulative probability exceeds a given threshold parameter p
(Holtzman et al., 2018).

B Implementation Details For Baseline Methods

We utilized the codebase provided by the authors for the baseline methods. Nevertheless, certain aspects
were not explicitly addressed in their paper or the baseline implementation. Despite this, we made efforts
to adapt these aspects in order to ensure minimal disruption to the overall framework.

B.1 SCPN

SCPN is an approach that leverages an LSTM model trained on a large back-translation corpus to generate
paraphrases. These paraphrases are then parsed using the Stanford parser. In order to generate adversarial
samples, SCPN employs ten different parsing templates. We adopted the same methodology as the authors
by utilizing their pre-trained models and following their steps to generate parse trees for our datasets
using the Stanford parser (Manning et al., 2014). However, the paper and codebase did not provide
details on how to select the appropriate parsing template. We devised a strategy for choosing the most
suitable parsing template to address this. Given that the model generates ten templates, we initially use
the pre-trained model to generate multiple paraphrases of input "x" using each template. Subsequently,
we individually query the victim model with each generated paraphrase. We then measure the confusion
and mutual implication score for each paraphrase and select the sample that yields the highest scores as
the chosen paraphrase. This process ensures we prioritize the paraphrase that maximizes confusion and
mutual implication with the victim model.

B.2 StyleAdv

StyleAdyv is an approach that leverages the power of STRAP (Style Transfer via Paraphrasing), a style
transfer framework. This approach incorporates five distinct style transfer models, namely Bible, Poetry,
Shakespeare, Lyrics, and Tweets, each capable of generating a unique style. To ensure consistency
and reproducibility, we meticulously followed the procedure outlined in the paper and codebase for the
adversarial generation of our datasets. However, we encountered a missing reference to the similarity
model in the paper and codebase. Upon contacting the authors, they informed us that any similarity
model would suffice. Consequently, we opted for the "all-MPNet-Base-v2" model, renowned for its
exceptional performance on the semantic textual similarity (STS) benchmark (Muennighoff et al., 2022).
We employed this model to measure cosine similarity, a reliable metric for comparing sentence similarity.
The adversarial generation process unfolds: utilizing each style transfer model, we generate ten paraphrases
for a single sentence, resulting in 50 paraphrases. Subsequently, we subject these generated paraphrases to
classification by our classifier, measuring both the confusion and cosine similarity. If multiple examples
cause the classifier to produce incorrect outputs, we select the adversarial example with the highest cosine
similarity to the original input as the final choice.

C Visualization Results

We utilized the T-SNE technique to generate a two-dimensional representation of the vectorized samples.
To obtain these vectors, we employed the "all-MPNet-Base-v2" model and selected 60 random samples
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from each class for each dataset. We tried various numbers of samples, and 60 gives a clear observation of
the phenomena.

Subsequently, T-SNE was applied to obtain the two-dimensional representation. Upon examining the
figures depicting the proposed datasets, the same observation for TPRL-generated samples in SST-2 holds
for the other datasets, which is the samples generated by TPRL displayed a striking resemblance to the
original data, with instances of overlapping or partial overlap with the original sentences. This intriguing
behavior sheds light on a crucial finding: even a minor shift in the semantic space relative to the original
sentence can yield a sentence that successfully deceives the classifier.
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Figure 3: T-SNE visualization of the vectorized original and TPRL-adversarial sentences in the SST-2. The

adversarial sentences (circles) mostly overlap with the original sentences (triangles), suggesting that generated
sentences maintain the original class distribution.
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Figure 4: T-SNE visualization of the vectorized original and TPRL-adversarial sentences in the SST-5. The

adversarial sentences (circles) mostly overlap with the original sentences (triangles), suggesting that generated
sentences maintain the original class distribution.
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C.3 Offensive Dataset
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Figure 5: T-SNE visualization of the vectorized original and TPRL-adversarial sentences in OFF. The adversarial
sentences (circles) mostly overlap with the original sentences (triangles), suggesting that generated sentences
maintain the original class distribution.

C.4 Hate Dataset
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Figure 6: T-SNE visualization of the vectorized original and TPRL-adversarial sentences in HATE. The adversarial
sentences (circles) mostly overlap with the original sentences (triangles), suggesting that generated sentences

maintain the original class distribution.
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C.5 Agnews Dataset

a A Original -
© Genorated " @ A N @ ® Gormed
@ @ a A % . .
é é » a .
] & a a ' J
a s : a
» a N e a o . s
LN . » 4° a »
s
oA Ao a ¢ s [} ry
é ] a a s 2 .
2
e ..A 4 L) e e ¢ o » ]
o a B e . a
a & . N R
A®
(a) Class-0 (b) Class-1
a a A Original a A Original
©® Generated 'y a © Generated
Iy a P
P e . & Q .
a a
a N s a . . a
Y A PY ° » .
» a é
N a o * . : o e * s ‘ o
. ® A® L
a Q ° a o »
a A 0 . a a 4, 4 e P
. a » e a @ o ° . Ae a
.
a e a ¢ o
@
e . é
(c) Class-2

(d) Class-3

Figure 7: T-SNE visualization of the vectorized original and TPRL-adversarial sentences in AG’s News. The

adversarial sentences (circles) mostly overlap with the original sentences (triangles), suggesting that generated
sentences maintain the original class distribution.
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D Universal Policy

As previously discussed, TPRL’s learned policy demonstrates remarkable universality across multiple
datasets and classifiers. In this section, we extensively analyze the learned policy’s performance on each
dataset, specifically focusing on its efficacy with four different classifiers. The following results highlight
the consistent and impressive performance of the learned policy across diverse datasets and classifiers.

D.1 SST-5
, . BERT;,.. BERT.,, RoBERTas,,, RoBERTa .. DeBERTa-v3, .
Policy/Classifier %) %) g %) %) 9 %) 9
None 53.52 53.52 54.79 58.30 58.46
Policy-BERT pgse 53.52 54.88 56.42 * 57.10
Policy-BERT 1,4;g¢ 52.89 54.93 55.61 * 59.00
Policy-RoBERTapse 51.62 54.84 56.15 * 59.54
Policy-RoBERTay g ge 54.07 55.15 * 58.95 58.91
Policy-DeBERTa-v3 1,4, ge 53.52 54.61 55.56 * 58.77

Table 6: Accuracy Results of Different Classifiers Trained With The Examples Generated By Various Attacking
Policies On The SST-5 Dataset. Showing the Universal Policy. The best comparable performances policy for the
classifier is bolded

D.2 Offensive Dataset

. . BERTg,sc BERT,.,. RoBERTag,,. RoBERTa;,.,. DeBERTa-v3;,...
Policy/Classifier (%) %) g %) %) g %) g

None 84.76 85.11 83.95 85.93 84.65
Policy-BERT ggse 85.11 85.00 83.95 72.09 84.76
Policy-BERT 1,4;.ge 85.11 85.58 84.76 84.76 84.53
Policy-RoBERTap, ¢ 85.11 84.88 85.00 85.93 84.53
Policy-RoBERTa,4yge 84.30 85.93 85.23 84.53 86.04
Policy-DeBERTa-v3 4, ge 85.81 85.81 85.23 83.02 85.93

Table 7: Accuracy Results of Different Classifiers Trained With The Examples Generated By Various Attacking
Policies On The OFF Dataset. Showing the Universal Policy. The best comparable performances policy for the
classifier is bolded

D.3 Hate Dataset

Polc/Claster | ROPER Tz ROBERTs . DeBERTacd
None 91.90 92.45 89.50
Policy-RoBERTap, ¢ 92.45 91.75 93.80
Policy-RoBERTa 4 92.75 92.05 92.60
Policy-DeBERTa-v31,4ge 90.65 91.45 92.30

Table 8: Accuracy Results of Different Classifiers Trained With The Examples Generated By Various Attacking
Policies On The HATE Dataset. Showing the Universal Policy. The best comparable performances policy for the
classifier is bolded
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D.4 AG’s News Dataset

. . BERTpqc BERTr.4 RoOBERTap,,, RoBERTar,.,. DeBERTa-v3;,, ..
Policy/Classifier %) %) %) %) %)

None 93.97 94.18 93.78 93.92 93.94
Policy-BERT g e 94.46 94.60 93.92 93.97 94.23
Policy-BERT 1.4y ge 94.21 94.36 93.73 94.02 93.85

Policy-RoBERTap e 94.17 94.28 93.93 93.78 91.01
Policy-RoBERTarz,4rg¢ 93.85 94.17 93.72 94.21 94.13
Policy-DeBERTa-v314;ge 94.13 94.26 93.94 93.67 94.22

Table 9: Accuracy Results of Different Classifiers Trained With The Examples Generated By Various Attacking
Policies On The AG’s News Dataset. Showing the Universal Policy. The best comparable performances policy for
the classifier is bolded

E Automatic Evaluation

We adopted a comprehensive multi-perspective methodology to assess the quality of the generated
adversarial samples, ensuring the following factors were taken into consideration: fluency, as determined
by Perplexity (PPL) scores obtained from the GPT-2-XL language model (Radford et al., 2019). However,
recognizing the inherent limitations of perplexity in accurately evaluating fluency, we supplemented
this metric with the accuracy of a RoBERTa-large classifier, which was trained on the CoLA corpus
(Warstadt et al., 2019). This classifier offers valuable insights into the grammatical acceptability of the
generated samples. For measuring similarity, we utilized the "all-MPNet-Base-v2" embedding-based SIM
model (Song et al., 2020; Reimers and Gurevych, 2019) to measure the semantic similarity between the
input sentence and the generated samples. This model has demonstrated exceptional performance on the
semantic textual similarity (STS) benchmark (Muennighoff et al., 2022), making it an ideal choice for our
task. To further enhance our evaluation, we also integrated the mutual implication (MI) metric, which
effectively captures the inferential role semantics. By incorporating the MI metric, we overcome the
limitations of STS in fully capturing the inferential semantics, thereby providing a more comprehensive
evaluation of the generated samples. The results for each dataset with each classifier are shown in the
following table.

Classifier BERTpe BERTLurge ROBERTagae ROBERTaqrge DeBERTaarge
Attacker | PPL] _ FLT SIMf MIf | PPL] _ FLT SIM| MIf | PPL] _ FLT SIMJ] MIj] | PPLL _ FLT SIM] MI} | PPLL _ FLT SIM} MIT
SCPN | 467.84 5847 7298 73.20 | 461367 58.68 73.08 7349 | 442519 5729 71.78 70.67 | 44295 5823 71.95 70.16 | 434443 57.88 71.99 70.80
SST-2 | StyleAdv | 1114599 5829 7629 57.27 | 1173.938 57.05 74.57 5344 | 1183201 5675 7424 5296 | 540.362 5638 7393 5135 | 1281.874 5649 7333 5031
TPRL | 293436 8897 67.18 86.11 | 327.538 8636 7221 87.18 | 39676 87.59 7294 85.02 | 40521 8658 58.14 90.11 | 43816 870 7081 858
SCPN | 462351 3922 77.70 83.66 | 444.079 59.10 7823 8419 | 443576 59.10 78.12 84.04 | 430548 58.81 78.21 84.06 | 461905 39.00 77.09 82.13
SST-5 | StyleAdv | 257.311 6824 90.43 78.98 | 256.632 6730 89.79 77.45 | 248617 7050 90.95 79.97 | 315372 6770 89.49 77.26 | 261436 69.42 89.90 78.27
TPRL | 35496 8594 752 87.53 | 28346 8684 75.17 8531 | 401.87 8548 78.96 87.49 | 319.86 86.86 7489 85.02 | 373.00 8672 7590 86.22

Dataset

SCPN * * * * * * * * 736.244 58.85 7583 8591 | 739.991 5859 7570 85.69 | 746.287 5842 7585 8542
HS StyleAdv * * * * * * * * 367.99 5734 79.14 6097 | 360.303 58.84 76.42 56.77 | 407.045 59.15 79.22 60.02
TPRL * * * * * * * * 973.77  80.61 59.14 9215 | 21295 89.69 748 89.76 | 197.68 90.05 7543 90.52

SCPN 780.052 47.44 7343 79.51 | 801.278 47.46 73.39 80.21 | 827.18 4741 7374 8032 | 790.174 4758 73.61 8040 | 817.611 47.20 73.93 80.81
OFF StyleAdv | 1273.684 51.28 77.12 5873 | 2069.405 52.09 77.45 5848 | 1316.525 51.91 76.64 57.20 | 1298.085 52.84 77.46 58.27 | 1827.177 51.87 79.25 59.90
TPRL 31661 87.28 7283 87.50 | 472.94 87.17 7247 88.58 | 41241 85.88 70.87 87.85 | 32749 85.69 67.17 90.60 | 355.65 86.73 71.13 87.32
SCPN 383.066 29.05 72.62 80.76 | 38220 29.05 72.60 80.85 | 367.79 2891 72.68 80.50 | 371.46 2895 7269 80.64 | 343.28 2894 72.56 80.39
AG’s News | StyleAdv | 356.54 51.55 5334 3945 | 43591 5070 5492 42.15| 42510 49.81 57.34 4386 | 38490 50.93 5425 4042 | 451.27 51.55 52.88 3878
TPRL 508.63  86.19 79.05 98.46 | 406.12 87.02 75.68 98.23 | 277.79 8839 7421 9744 | 24827 8811 79.20 97.57 | 600.80 85.88 76.24 98.51

F Hyperparameters Details

The model was trained for thirty epochs as we tried a range of epochs and picked up the best value that
achieves a higher reward in the training environment. While a batch size of 32 was chosen empirically,
as changing batch size did not affect performance. The training process employed the Lion optimizer,
as proposed by (Chen et al., 2023), in their work on symbolic optimization. With a learning rate of 4.9
x 1076 suggested by (von Werra et al., 2020), the Lion optimizer demonstrated superior convergence
compared to the commonly used Adam optimizer (Kingma and Ba, 2014).
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G GPT-3.5 Annotation Details
G.1 Measuring Similarity Via GPT-3.5

To assess the similarity of larger generated samples, we used GPT-3.5. Using “from 1 to 5, how much is
the generated sentence similar to the original (1 being very dissimilar and 5 being very similar)?” as a
prompt. We randomly selected 100 samples from each framework in the SST-2 dataset. Ratings were
given on a scale of 1 to 5, with 1 being very dissimilar and 5 being very similar. Results for TPRL: 5
(9%), 4 (43%), 3 (33%), and 2 (15%); SCPN: 5 (9%), 4 (36%), 3 (29%), 2.5 (1%), 2 (23%), and 1 (1%);
StyleAdv: 4 (22%), 3 (33%), 2 (34%), and 1 (11%). TPRL achieved the highest similarity ratings in
categories 5, 4, and 3, indicating similarity to the original samples. SCPN ranked second, while StyleAdv
received the lowest ratings. These GPT-3.5 findings align with human evaluation results.

G.2 Measuring Diversity Via GPT-3.5

To validate our observation regarding the diversity of the generated samples, we used GPT-3.5 to assess
the diversity of generated samples for the three baselines. Using “from 1 to 5, how much is the generated
sentence diverse from the original (1 being very non-diverse and 5 being very diverse)?” as a prompt.
We randomly selected 250 sentences from SST-2. TPRL had 100 samples, SCPN had 77 samples, and
StyleAdv had 73 samples. The scaling rates were as follows: TPRL: 5 (6%), 4 (34%), 3 (45%), 2 (12%),
and 1 (3%). SCPN: 5 (11%), 4 (20%), 3 (19%), 2 (44%), and 1 (3%). StyleAdv: 4 (9%), 3 (15%), 2
(54%), and 1 (20%). These results confirm that TPRL generates more diverse samples, while cosine
similarity fails to account for this diversity and considers it as a high similarity.

H Classifiers Error Analysis

To demonstrate dissimilarities in errors across employed classifiers, we utilized the following methodology:
We inspected the intersection of misclassified samples for each dataset to examine whether or not a
sample was present in all classifiers’ misclassification sets, which we have termed the AND operation.
Additionally, to inspect whether a sample was present in any of the classifiers’ misclassification sets, we
searched for unique samples, which we have designated as the OR operation. Our analysis indicates that
the AND operation ranges from 9% to 16%, with an average of 10.57%. Conversely, the OR operation
ranges between 32% and 55%, averaging 41.49%. Following fine-tuning with transferred samples from
differing classifiers, we evaluated whether the improved performance was solely achieved through shared
samples, which yielded a shared sample average of 30%. Our analysis confirms that the policy shares
both universal and model-specific features.

I Human Annotation Details

We further conduct a human evaluation study of our attacks to examine to what extent are adversarial
texts generated by TPRL truly imperceptible. We asked the annotators to follow the following instructions:

In this task, you will have two sentences, and you are required to say whether it has the same semantic
meaning or not.

Semantic meaning in this context means that the two sentences have the same meaning, may be fully or
partially. Let’s look at the following example:

Ex.1.
S1: Ezekiel Ansah is wearing 3D glasses wout the lens,
S2: Wait Ezekiel ansah is wearing 3d movie glasses with the lenses knocked out.
Same Meaning: YES

Ex.2.
S1: Marriage equality law passed in Rhode Island,
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S2: Congrats to Rhode Island becoming the 10th state to enact marriage equality.
Same Meaning: YES

EX.3.
S1. Finally saw the Ciara body party video
S2. ciara s Body Party video is on point
Same Meaning: NO

Ex.4.
S1. Now lazy to watch Manchester united vs arsenal
S2. Early lead for Arsenal against Manchester United
Same Meaning: NO

In the first sentence, the two sentences are fully equivalent. In the second sentence, the two sentences
are partially equivalent. In the third and fourth sentences, the two sentences are fully not equivalent. So, if
the sentences are fully/partially equivalent, we can consider them as the same meaning.

J Hardware & Software Dependencies

For the paraphraser fine-tuning process, we utilized a cluster equipped with 4x V100 GPUs, each
with 32GB of memory. To enhance the efficiency, we employed a zero-2 stage DeepSpeed framework
(Rajbhandari et al., 2020). These models were fine-tuned using the HuggingFace library (Wolf et al.,
2019) and PyTorch (Paszke et al., 2017). For RL fine-tuning, we utilized 2x V100 GPUs, each with 32GB
of memory, and employed TRL (Transformer Reinforcement Learning) library(von Werra et al., 2020).
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