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Abstract

The representation degeneration problem is a
phenomenon that is widely observed among
self-supervised learning methods based on
Transformers. In NLP, it takes the form of
anisotropy, a singular property of hidden rep-
resentations which makes them unexpectedly
close to each other in terms of angular distance
(cosine-similarity). Some recent works tend to
show that anisotropy is a consequence of op-
timizing the cross-entropy loss on long-tailed
distributions of tokens. We show in this paper
that anisotropy can also be observed empiri-
cally in language models with specific objec-
tives that should not suffer directly from the
same consequences. We also show that the
anisotropy problem extends to Transformers
trained on other modalities. Our observations
suggest that anisotropy is actually inherent to
Transformers-based models.

1 Introduction

In recent years, deep learning models based on
Transformers have led to significant breakthroughs
in the field of natural language processing (NLP).
These models have demonstrated state-of-the-art
performance across a range of tasks, such as lan-
guage modeling, machine translation, and senti-
ment analysis. However, despite their successes,
they suffer from a phenomenon known as the repre-
sentation degeneration problem. Specifically, this
degeneration is characterized by anisotropy, a prop-
erty of hidden representations that makes them all
close to each other in terms of angular distance
(cosine-similarity).

Anisotropy has been widely observed among
self-supervised models based on Transformers, and
literature currently suggests that it may be a con-
sequence of optimizing the cross-entropy loss on
long-tailed distributions of tokens (Gao et al., 2019;
Biś et al., 2021). However, it remains uncertain
whether anisotropy is a fundamental property of

Transformers-based models or a consequence of
the pre-training process.

In this paper, we investigate the anisotropy prob-
lem in depth, and we make several contributions:

• We demonstrate empirically that anisotropy
can be observed in language models with
character-aware architectures that should not
suffer directly from the same consequences as
token-based models. We extend our observa-
tions to Transformers trained on other modali-
ties, such as image and audio data, and show
that anisotropy cannot be explained solely
based on linguistic properties;

• We provide empirical observations on the
anisotropic properties of the Transformer
block by studying untrained layers, and es-
tablish a relation between anisotropy and the
general sharpness of the self-attention mecha-
nism;

• We conduct an analysis of the representations
used in self-attention (queries and keys) along
training and show that anisotropy appears in-
trinsically in the self-attention mechanism,
when training pushes for sharp patterns.

2 Related Work

The general phenomenon of anisotropy in token-
based Transformers for language models has been
shown in Ethayarajh (2019). Figure 1 extends one
of their experiment to more architectures. Gao et al.
(2019) shows that the degeneration of representa-
tions comes from the distributions of subwords in
natural language, namely the existence of unused
and rare tokens that tend to push all representations
away from the origin towards a specific direction.

Other works have established a connection be-
tween word frequency and distortions of the latent
spaces (Yu et al., 2022; Puccetti et al., 2022; Rajaee
and Pilehvar, 2022). Biś et al. (2021) have shown
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Figure 1: Average cosine-similarity between hidden rep-
resentations across layers for token-level NLP models.
For T5-base, we concatenate encoder and decoder re-
sults.

that anisotropy in LMs could be explained by a
global drift of the representations in the same di-
rection, thus unifying conclusions from Ethayarajh
(2019) and Gao et al. (2019). The authors propose
that this drift is caused by the persistent updating
of the representation of rare and unused tokens
in a consistent direction, due to the nature of the
softmax operation in the cross-entropy loss. They
show that removing the average component to all
representations leads to a nearly perfect isotropy.

Several methods have been proposed to reduce
anisotropy in Transformers-based LMs at token-
level (Rajaee and Pilehvar, 2021; Wang et al.,
2020), or at sentence-level (Gao et al., 2021; Yan
et al., 2021; Su et al., 2021). They usually consist
in post-processing the representations, and lead to
downstream performance boosts. We argue that
these positive results are paving the way for the
search of pre-training objectives that do not intro-
duce anisotropy in the first place, in the hope that
the resulting models will also perform better with-
out any post-processing, and potentially be trained
more efficiently. This motivates us to gain a deeper
understanding of the underlying factors that induce
anisotropy, whether they belong in data, architec-
tures, or training procedures.

3 Anisotropy in pre-trained Transformers

3.1 Character-based NLP
To assert whether the cross-entropy objective ap-
plied on vocabularies containing rare tokens is the
sole cause for the common drift issue, we explore
anisotropy in character-based models. We study
different architectures:

• CharacterBERT (El Boukkouri et al., 2020) is

Figure 2: Average cosine-similarity between hidden
representations across layers for character-level models.

constructing whole word representations from
character embeddings put through convolu-
tions and highway layers, before feeding them
to a Transformers architecture.

• CANINE (Clark et al., 2022) is downsampling
contextualized character representations via a
strided convolution before feeding them to a
Transformers. It can be trained either with a
subword-based objective (CANINE-s) or with
a character-level one (CANINE-c).

• MANTa-LM (Godey et al., 2022) is based
on a differentiable segmentation and embed-
ding module added before an encoder-decoder
model in the style of T5 (Raffel et al., 2020).
It takes bytes as inputs and outputs, but builds
internal representations that are usually based
on several bytes.

• ByT5 (Xue et al., 2022) is a version of T5
that is trained at byte-level. To afford for
more complex encoding, the authors resize
the encoder-decoder architecture.

Neither of these architectures should suffer from
out-of-vocabulary tokens in the process of creating
representations. The models that predict at word or
sub-word level (CharacterBERT and CANINE-s)
could have the cross-entropy loss systematically
pushing away rare item representations. However,
it is rather unclear why it would imply an embed-
ding drift at deeper layers. Hence, if anisotropy
was only caused by the presence of unused or rare
subwords, those character-level models should be
much less prone to this issue.

To verify this hypothesis, we compute hid-
den representations for the validation set of the
WikiText-103 corpus (Merity et al., 2016). We then
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compute the average cosine-similarity between two
representations, uniformly taken in the whole vali-
dation corpus.

In fact, as shown in Figure 2, those models all
display significant levels of anisotropy in at least
one of their layers. Interestingly, the models that
are based solely on characters or bytes for input and
prediction (ByT5, CANINE-c, and MANTA-LM)
seem to display even higher levels of anisotropy.
We note, as it is the case for the T5 model, that
the ByT5 decoder displays extremely high levels
of anisotropy.

3.2 Other modalities

We’ve shown in the previous section that character-
level language models suffer from anisotropy sim-
ilarly to token-level ones, hinting that subword
token distributions are not solely responsible for
anisotropy. However, it may be argued that
anisotropy is related to linguistic properties. Thus,
we proceed to explore the anisotropy problem for
Transformers-based models in other modalities,
specifically speech and vision.

For speech models, we consider wav2Vec 2.0
(Baevski et al., 2020), HuBERT (Hsu et al., 2021),
and Whisper (Radford et al., 2022) with the Com-
mon Voice 11.0 dataset (Ardila et al., 2020). For
vision models, we use ViT (Wu et al., 2020), BEiT
(Bao et al., 2021), MiT (Xie et al., 2021), and DEiT
(Touvron et al., 2021) on the ImageNet dataset
(Russakovsky et al., 2015).

As in subsection 3.1, we infer hidden represen-
tations on the validation sets for each modality.
We then uniformly sample pairs of vectors to get
cosine-similarity values for every layer of every
model. The averaged results are displayed in Fig-
ure 3.

Once again, almost every model shows a signifi-
cant level of anisotropy on some of its layers. No-
tably, speech models seem to have very anisotropic
representations, as every layer of every model out-
puts an average cosine-similarity of at least 0.2. We
find some exceptions among vision models, since
the MiT model seems to use isotropic representa-
tion spaces and the ViT model has a low average
cosine-similarity for all its layers.

We also conduct the same experiment for
convolution-based networks in the vision modal-
ity. The models at glance are ResNet (He et al.,
2016), EfficientNet (Tan and Le, 2019), CvT (Wu
et al., 2021), ConvNeXt (Liu et al., 2022), and VAN

(Guo et al., 2022). For these networks, we flatten
convolution maps to vectors before computing the
cosine-similarity.

Figure 4: Average cosine-similarity between hidden rep-
resentations across layers for convolution-based vision
models.

We observe in Figure 4 that most of the
convolution-based models are isotropic. Interest-
ingly, the only exception is ResNet-50, whose rep-
resentations become more and more isotropic as
one explores deeper layers. This could partially be
explained by the fact that the batch normalization
(Ioffe and Szegedy, 2015) used in some of these
models mitigates a posteriori the drift effect by re-
moving the mean component of the representations.
However, the ConvNeXt model also seems to use
isotropic representations while not using batch nor-
malization, which shows that this is not the only
factor in the isotropic behavior of these models.

3.3 To drift or not to drift?
Related works (Biś et al., 2021; Gao et al., 2019)
show that anisotropy in subword-level language
models is caused by a drift of the hidden represen-
tations in a shared direction. In this section, we try
to extend this observation to other modalities.

We study the correlation between the uniformly
measured cosine-similarity, and the norm of the
average hidden representation ||x̄||2 for each layer.
If anisotropy could be directly explained by the
drift effect, we would expect a monotonic relation
between ||x̄||2 and the average cosine-similarity.
To verify this, we apply a Spearman correlation
test on these two metrics for every model from
subsection 3.1 and subsection 3.2, along with some
token-level language models, namely T5 (Raffel
et al., 2020), BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and GPT-2 (Radford et al., 2019).
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(a) Speech (b) Vision

Figure 3: Average cosine-similarity between hidden representations across layers for Speech and Vision modalities.
We observe that across both modalities, several models display significant levels of anisotropy.

Figure 5: p-value of the Spearman correlation test be-
tween the norm of the average representation and the
cosine-similarity averaged over all layers, across modal-
ities. For models above the red dotted line, there is no
significant (p > 0.05) correlation between the drift ef-
fect and the anisotropy level.

In Figure 5, we observe that we can correlate
the anisotropy level and the magnitude of the drift
component across layers for several models. The
anisotropy of subword-based models can generally
be correlated with the drift effect, except for GPT-
2 for which the Spearman correlation metric may
not be appropriate. We provide a similar analysis
based on the Pearson correlation test and discuss
the relevance of each statistic in Appendix A.

Interestingly, we notice that the anisotropy af-
fecting most CNN-based vision models is gener-
ally not correlated with the drift effect, contrary to
Tranformers-based models in the same modality.
Some speech models (HuBERT and Whisper-base)
also display signs of anisotropy that cannot be cor-
related with the drift effect. Figure 5 also shows
a correlation for all character-based models but
Canine-C and MANTa-base.

4 Exploring the representation drift

In this section, we focus on some intrinsic prop-
erties of the Transformer block in a modality-
agnostic fashion, i.e. with minimal assumptions on
the data distribution, and without training. We ana-
lyze experimentally the behavior of the untrained
Transformer block T when a common bias term b
is added to untrained input representations x. This
allows us to mimic the common drift as mentioned
in Biś et al. (2021) and to identify some proper-
ties induced by this artificial drift on the output
representations.

4.1 Experimental setup

We consider an embedding lookup table E and a
Transformer block T with weights initialized as
in BERT (Devlin et al., 2019). We then draw 16
input embedding sequences x of length 512 uni-
formly from E. To account for a drift component of
norm N ∈ R, we generate a vector bu ∼ N (0, Id),
which we normalize into b = bu

||bu||2 × N . We fi-
nally compute T (xi + b) for every sequence xi,
and study the resulting distributions.

Specifically, we study the average norm of
the input representations E(||xi + b||2) against
the average norm of the output representations
E(||T (xi+b)||2) in Figure 6b. We also retrieve the
self-attention scores before the softmax operation,
namely QKT

√
dk

, along with the corresponding Q and
K matrices. We study some of their properties in
Figure 7 and Figure 8.

4.2 Input vs. output analysis

In Figure 6a, we observe that the output representa-
tions have an average cosine-similarity value that
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Figure 6: Input/Output comparison of a Transformer
block from BERT-base as the bias norms increases.

is slightly higher than the one of the input repre-
sentations, no matter the level of input bias. We
also notice that while the norm of the average out-
put representation increases with the bias norm, it
seems to meet the corresponding input measure for
a given bias norm.

Interestingly, this shows that there is a fixed point
in terms of norm in the Transformers function with
biased input. More formally, there seems to exist a
bias norm N∗ ∈ R+ such that:

Ex,bN∗ (||xi + bN∗ ||) = Ex,bN∗ (||T (xi + bN∗)||)

Moreover, this fixed point level N∗ is in the
order of magnitude of the average hidden state
norms of the layers of the trained BERT model.
This hints that the model’s representations stabilize
when their norm is close to this fixed point. We
leave a more thorough analysis of this hypothesis
for future work.

4.3 Exploring the Transformer block
To understand the effect of the drift effect on the
inner workings of the Transformer layer, we take
a closer look at the self-attention operation as the
average input representation drifts away.

Figure 7: Histograms of the pre-softmax attention scores
as the input bias norm increases. Other initializations
of the layer and of the bias direction bu led to a general
increase of the attention scores instead.

Figure 7 shows that the attention scores tend
to move away from zero as the input bias norm
increases. Indeed, as the norm of the average x̄
of the input embeddings increases, we can expect
the query and key vectors Q and K to also dis-
play signs of anisotropy. Actually, for each self-
attention head, and for all position i ∈ [1, L], we
have: {

Ex(Qi) = WQx̄+ bQ

Ex(Ki) = WK x̄+ bK
(1)

We can observe in Figure 8 that query and key
representations indeed increase in norm with the
input bias norm. We also notice that the corre-
sponding distributions are anisotropic even when
no bias is added, which may be a consequence of
BERT’s initialization parameters.

(a) Cosine sim. (b) Norm

Figure 8: Analysis of the self-attention query and key
distributions

4.4 Impact of the drift
After exploring the consequences of the drift of
input representations on the query-key product in
self-attention, we identify in this section the impli-
cations of this drift at a more explainable level, by
observing the resulting post-softmax distributions.
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Figure 9: Evolution of the self-attention softmax values
as the input bias norm increases.

In Figure 9, we retrieve softmax values in the
self-attention block and for each position, we ex-
tract the maximum, the median and the minimum.
We then average these values over the whole batch,
and repeat for various input bias norm levels. We
notice that as the input bias norm increases, the
self-attention softmax distributions tend to become
less entropic, evolving towards higher maximal
probabilities and lower minimal probabilities. In
the following analysis, we’ll use the term sharp-
ness to discuss entropy levels of the self-attention
distributions.

(a) Maximum (b) Minimum

Figure 10: Comparison of the extreme values of each
sequence averaged over the batch as the bias norm in-
creases.

This sharpening effect of the attention distri-
butions becomes even clearer if we consider the
maximum and minimum values over the whole se-
quences, as in Figure 10.

However, at low anisotropy levels, i.e. when the
bias norm is low, we see that the effect is not very
important. Figure 9 and Figure 10 only hint at the
fact that the drift of embeddings may help the self-
attention to be sharper. Another explanation could
be that training favors sharp self-attention patterns,
as has been pointed out in previous works (Clark
et al., 2019), which in turn induces a drift in the
models’ representations. In order to account for
that, we need to study the evolution of latent spaces

at the self-attention level along training.

5 Queries and keys: training dynamics

We have established that manually pushing for drift-
based anisotropy on untrained Transformers mod-
els leads to sharper (i.e. low-entropy) self-attention
patterns. In this section, we show that this evo-
lution of self-attention values actually takes place
during training, and we explore the mechanism be-
hind their appearance. As pointed out in section 4,
the self-attention scores result from the QKT op-
eration, which computes scalar products between
query and key representations corresponding to
each pair of positions. Thus, in this section, we
study the evolution of these query and key represen-
tations along training, and explore the mechanism
behind the increase of the scalar products leading
to self-attention scores.

We use the MultiBERT checkpoints (Sellam
et al., 2021) with seed 0 to retrieve Q and K dis-
tributions at different pretraining steps, and we
use 128 samples from Wikitext-103 as input data.
Along this section, Qs and Ks refer to query and
key representations extracted at a specific layer and
head at a given step s, and Q̂s and K̂s are the av-
erage representations, taken over all tokens in the
sampled batch. By studying Q̄s and K̄s, we aim at
exploring the common (or context-agnostic) drifts
of keys and queries distributions.

In Figure 11 and Figure 12, we compute a SVD
of the union of Qs and Ks for all steps s, so that the
projection makes sense for both distributions across
steps for visualization purposes 1. As shown in our
selected examples, we observe that the dynamics of
Q̄s and K̄s tend to align along training, making the
average of the distributions drift in either similar
or opposite directions. The first dimension of the
SVD seems to describe this common drift. Note
that in Rdh (dh = 64 being the head dimension),
such an alignment is very unlikely to happen ran-
domly. Interestingly, Figure 12a shows that the
common direction dynamics appear in the first few
steps, while the opposite direction dynamics of Fig-
ure 12b only starts after 8% of the total training
steps.

To consolidate our observations, we compute the
evolution of the cosine-similarity between Q̄s and
K̄s along training in Figure 13. We also display

1We actually uniformly sample 20% of the whole set of
representations to compute the SVD under reasonable memory
constraints.
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(a) Step 0 (b) Step 40k (c) Step 200k (d) Step 2M (final)

Figure 11: Evolution of Qs and Ks distributions along training. Vectors are projected using a common SVD.

(a) Similar (b) Opposite

Figure 12: Evolution of Q̄s and K̄s along training for
two different heads in the network, projected via com-
mon SVD. Each arrow represents a checkpoint in the
MultiBERT suite. We display typical examples of dy-
namics in same/opposite direction.

some projected Qs and Ks distributions for several
s steps in Figure 11.

Figure 13 shows that the first layers display
a common direction dynamic, as the cosine-
similarity tends to increase, thus showing that the
key and query distributions drift along a simi-
lar direction in average. The last layers seem to
adopt an opposite direction dynamic, as the cosine-
similarity between their mean key and query repre-
sentations gets negative along training.

As shown in Figure 14, this drift induces an in-
crease in the magnitude of scalar products obtained
in the self-attention QKT operation, thus facilitat-
ing the emergence of sharp patterns where attention
focuses on specific tokens.

Finally, Figure 15 describes the evolution of the
average entropy in self-attention distributions. We
observe that training induces an overall decay of the
entropy for all layers, with different dynamics. This
corresponds to sharper self-attention distributions.
It is interesting to notice that the distributions in
the first layers remain sharper than the ones in the
last layers.

Overall, this section shows that drift anisotropy
emerges in the query and key representations dur-
ing the training of MultiBERT, as self-attention
distributions become sharper. The drifts of queries

and keys tend to align, thus increasing the magni-
tude of scalar products, and the general sharpness
of self-attention.

Although this section focuses on the case of
token-based NLP, we believe that strong attention
patterns may be required when training Transform-
ers across all modalities, potentially generating dis-
tortions in query and key distributions that account
for the final observed anisotropy of the models.
However, we could not extend experiments to other
modalities due to the lack of released intermediate
checkpoints, to the best of our knowledge.

6 Discussion

In this work, we argue that the nature of data
distributions is not solely responsible for the
anisotropy observed in most hidden representations
of Transformers-based models across modalities.
As section 4 shows, untrained Transformers layers
display a tendency towards anisotropy. Biased in-
puts tend to increase the variance of the attention
scores and thus facilitate the emergence of sharp
patterns in the self-attention mechanisms. We also
show in section 5 that along training, query and
key distributions drift in parallel directions, which
increases anisotropy in the inner representations
of the Transformer layers, while allowing sharper
attention patterns. As discussed in Puccetti et al.
(2022), outlier dimensions in Transformers are also
involved in the emergence of strong attention pat-
terns.

Consistency of the SVD In section 5, we use an
SVD on the union of Qs and Ks for visualization
purposes (see Figure 11 and Figure 12). It may be
argued that this approach favors the emergence of
a discriminative singular direction, that helps dis-
tinguish between keys and queries, thus supporting
the findings in a less convincing way. To address
this concern, we display alternative projections in
Appendix C, where we compute the SVD on Qs or
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(a) Layer 0 (b) Layer 4 (c) Layer 9 (d) Layer 11

Figure 13: Evolution of cosine-similarity between Q̄s and K̄s along training. Each color represents one self-attention
head. Steps are counted in thousands. We generally observe that almost all heads see Q̄s and K̄s align in common
or opposite directions along training. In other words, the average components of keys and queries representations
tend to align in self-attention heads, which maximizes the magnitude of the scalar product between two average
representations. We run a similar experiment on all MultiBERT seeds in Figure 23, and obtain comparable results.

(a) Similar (b) Opposite

Figure 14: Evolution of the scalar product between Q̄s

and K̄s along training. Steps are in thousands.

Figure 15: Average entropy of the probability distribu-
tions corresponding to self-attention rows along training.
Each curve corresponds to one layer.

Ks only, and then project all representations using
this SVD. Our observations show that our findings
are consistent for these alternative projections.

Harmfulness of anisotropy Even though
anisotropy has not been shown to be an issue in lan-
guage modeling, previous works have advocated
that removing anisotropy in output representations
leads to better sense disambiguation abilities
(Bihani and Rayz, 2021; Biś et al., 2021). Isotropic
models could also improve cross-lingual alignment
in multilingual language models (Hämmerl et al.,

2023). Nevertheless, concurrent works have
suggested that anisotropy may not hurt the quality
of the representations (Ait-Saada and Nadif, 2023;
Rudman and Eickhoff, 2023). We argue that
anisotropy in the Transformer architecture may
actually help models by allowing sharp attention
patterns, but we also believe that our work can
pave the way for new isotropic architectures that
can easily use sharp attention patterns.

Conclusion

In this paper, we investigated the anisotropy prob-
lem through the lens of the drift effect, and made
several contributions to the understanding of this
phenomenon. We demonstrated that anisotropy can
be observed in language models with character-
aware architectures, extended our observations to
Transformers trained on other modalities, and stud-
ied anisotropy in untrained Transformers layers.
We finally explored the training dynamics of the
query and key distributions, and found that they
drift along a shared direction hence maximizing
QKT scalar products in absolute value, allowing
stronger attention patterns as a result.

We conclude that anisotropy almost systemati-
cally affects Transformers on all modalities, in a
way that is not always correlated with the drift of
the representations. We also provide empirical evi-
dence that anisotropy appears as an inherent prop-
erty of latent distributions used in the self-attention
mechanism when modeling sharp attention patterns.
We hypothesize that a revision of the self-attention
operation could help reduce anisotropy by facil-
itating the emergence of sharp attention softmax
distributions without distorting the geometry of the
hidden representations.

42



Limitations

As mentioned in the Discussion section, we ac-
knowledge that section 4 does not take into account
the training dynamics, and only exposes some prop-
erties of the Transformer layer at initialization. We
also notice that the Spearman correlation test used
in Figure 5 may not be well-suited for such noisy
observations, as the high p-value of the GPT-2
model shows. We provide a similar graph based on
the Pearson correlation in Appendix A.

Moreover, we are aware that our approach is
not theoretically rigorous in some aspects. For in-
stance, we don’t prove that sharp self-attention pat-
terns cannot emerge without anisotropy in keys and
queries representations. In other words, this arti-
cle is focusing on exposing and correlating factors
that explain anisotropy, but we do not demonstrate
theoretical properties that would help identify the
causes of anisotropy. Nevertheless, we believe that
our work can pave the way for such theoretical
exploration in the future.
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raise any ethical concern. However, as noted in
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Acknowledgements

This work was funded by the last authors’ chair
in the PRAIRIE institute funded by the French na-
tional agency ANR as part of the “Investissements
d’avenir” programme under the reference ANR-
19-P3IA-0001. This work was granted access to
the HPC resources of IDRIS under the allocation
2023-AD011013680R1 made by GENCI.

We would like to thank Roman Castagné for
useful discussions that led to focusing on observing
the effect of anisotropy in the self-attention process.

References
Mira Ait-Saada and Mohamed Nadif. 2023. Is

anisotropy truly harmful? a case study on text cluster-
ing. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1194–1203, Toronto, Canada.
Association for Computational Linguistics.

R. Ardila, M. Branson, K. Davis, M. Henretty,
M. Kohler, J. Meyer, R. Morais, L. Saunders, F. M.
Tyers, and G. Weber. 2020. Common voice: A
massively-multilingual speech corpus. In Proceed-
ings of the 12th Conference on Language Resources
and Evaluation (LREC 2020), pages 4211–4215.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 12449–12460. Curran Asso-
ciates, Inc.

Hangbo Bao, Li Dong, and Furu Wei. 2021. Beit:
BERT pre-training of image transformers. CoRR,
abs/2106.08254.

Geetanjali Bihani and Julia Rayz. 2021. Low anisotropy
sense retrofitting (LASeR) : Towards isotropic and
sense enriched representations. In Proceedings of
Deep Learning Inside Out (DeeLIO): The 2nd Work-
shop on Knowledge Extraction and Integration for
Deep Learning Architectures, pages 81–95, Online.
Association for Computational Linguistics.
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A Pearson correlation of the drift norm
and anisotropy

Figure 16: p-value of the Pearson correlation test be-
tween the norm of the average representation and the
cosine-similarity averaged over all layers, across modal-
ities. Models above the red dotted line are not signifi-
cantly affected by the drift effect.

The Pearson test measures a linear correlation be-
tween random variables, while the Spearman test
measures a monotonic correlation. As there is
no specific argument in favor of a linear relation-
ship between the measured distributions (average
cosine-similarity and norm of the average represen-
tation), we decided to use the Spearman correlation
test in order to take into account more complex
relation patterns.

Nevertheless, this metric is based on the rank of
each observation, and is thus not robust to fluctu-
ations due to sample variance, specifically when
working with such small samples. This is reflected
by the discrepancy between Pearson and Spearman
p-values for some models (e.g. GPT-2).
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B Cosine-similarity and anisotropy

Figure 17: Density function of cosine-similarity for a
normal distribution as the dimension increases.

Figure 18: 95th quartile of the cosine-similarity distribu-
tion on a normal distribution as the dimension increases.
We add points for the average cosine-similarity level of
Transformers models for several modalities.

It can be argued that describing anisotropy as
the observation of "high" cosine-similarity values
is not a convincing definition. This section aims
at showing which ranges of cosine-similarity val-
ues are characteristic of anisotropic distributions.
In Figure 17, we show the density function of the
cosine-similarity values obtained when drawing
pairs of samples from isotropic normal distribu-
tions in Rd as d increases.

For smaller dimensions (d = 16), we see that the
range of cosine-similarity values that are attained
between isotropic distributions is relatively broad
compared to the possible spectrum ([−1, 1]). As
d increases, the support of the observed distribu-
tions seems to become smaller, due to the curse of
dimensionality.

We analyze this effect more in-depth in Fig-
ure 18, where we plot the 95th quantile of the
cosine-similarity distribution in the isotropic sce-
nario. We also add values for the layer-wise av-
erage cosine-similarity levels of typical models
in several modalities for comparison. We can
clearly observe that the levels of cosine-similarity
observed in the representations of Transformers-
based models are significantly unlikely to be ob-
served in between samples drawn in isotropic nor-
mal distributions.

Nevertheless, as we go towards higher dimen-
sional spaces for bigger models (e.g. Llama-65B
from Touvron et al. (2023) has 8192 hidden di-
mensions), we believe that it may be relevant to
introduce isotropy metrics that are grounded to
isotropic cosine-similarity distributions. We leave
this question for future works.

C Other projections for Qs and Ks

As mentioned in the Discussion (section 6), we
reproduce visualizations from section 5 using dif-
ferent projection choices. Namely, we compute the
SVD on Ks only in Figure 19 and Figure 21, and
on Qs only in Figure 20 and Figure 22.

The plots show that not only does the distribu-
tion used for the SVD drifts away from the origin
along training, but also that the other distribution
drifts away from the origin in an opposite direc-
tion. In other words, the singular components of
each distribution are also relevant to describe the
drift of the other distribution. Hence, Figure 19
and Figure 20 support our conclusion that the drift
directions of keys and queries are aligned during
training.

D Stability across MultiBERT seeds
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(a) Step 0 (b) Step 40k (c) Step 200k (d) Step 2M (final)

Figure 19: Evolution of Qs and Ks distributions along training. Vectors are projected using the SVD computed on
Ks.

(a) Step 0 (b) Step 40k (c) Step 200k (d) Step 2M (final)

Figure 20: Evolution of Qs and Ks distributions along training. Vectors are projected using the SVD computed on
Qs.

(a) Similar (b) Opposite

Figure 21: Evolution of Q̄s and K̄s along training for
two different heads in the network, projected via the
SVD of Ks.

(a) Similar (b) Opposite

Figure 22: Evolution of Q̄s and K̄s along training for
two different heads in the network, projected via the
SVD of Qs.
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(a) Layer 0 (b) Layer 2 (c) Layer 6 (d) Layer 11

Figure 23: Evolution of cosine-similarity between Q̄s and K̄s along training for various initialization seeds.
Representations are concatenated across heads, and each color represents one seed of the MultiBERT models. We
observe similar trends across seeds.
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