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Abstract
Text segmentation is a fundamental task in nat-
ural language processing, where documents are
split into contiguous sections. However, prior
research in this area has been constrained by
limited datasets, which are either small in scale,
synthesized, or only contain well-structured
documents. In this paper, we address these
limitations by introducing a novel benchmark
YTSEG focusing on spoken content that is in-
herently more unstructured and both topically
and structurally diverse. As part of this work,
we introduce an efficient hierarchical segmenta-
tion model MiniSeg, that outperforms state-of-
the-art baselines. Lastly, we expand the notion
of text segmentation to a more practical “smart
chaptering” task that involves the segmentation
of unstructured content, the generation of mean-
ingful segment titles, and a potential real-time
application of the models.

1 Introduction

Text segmentation, also occasionally referred to as
document segmentation or topic segmentation, is
the task of delimiting the boundaries of topically
(or functionally) coherent segments of text, placing
them in a hierarchical structure, typically a linear
one. Text segmentation has been shown to support
a number of applications and downstream tasks
where long documents are involved, such as infor-
mation retrieval (Prince and Labadié, 2007; Shtekh
et al., 2018; Chivers et al., 2022) or text summariza-
tion (Zechner and Waibel, 2000; Cho et al., 2022;
Liu et al., 2022b).

Despite its significance, the field currently lacks
robust benchmarks, as it is attested and evident in
recent works (Lukasik et al., 2020; Glavaš et al.,
2021). Most datasets like Choi (Choi, 2000) either
suffer from their small scale or are purely synthetic.
In practice, WIKI-727K (Koshorek et al., 2018)
is the only larger-scale available benchmark, con-
sisting of more than 727,000 Wikipedia documents.
However, Wikipedia documents may fall short of

fully representing the diversity and complexities
of real-world text segmentation challenges. These
documents are well-structured, informative, and
have a fixed style (in accordance with Wikipedia’s
Manual of Style). This uniformity may not ade-
quately reflect the unstructured and varied nature
of text found in other sources.

Structuring a document proves to be particularly
valuable in two cases, both of which frequently
occur in spoken and conversational content: first,
when the content is inherently unstructured; and
second, when the content, being structured or semi-
structured, lacks explicit or formal organization.
Consequently, text segmentation plays a crucial
role in many recently rolled-out AI-powered fea-
tures in applications such as Discord, YouTube,
Microsoft Teams, and Zoom.

Based on this observation and the lack of avail-
able, large-scale benchmarks, we have developed a
novel benchmark centered around diverse spoken
content. We adopt a more holistic and practical
approach than prior works, viewing text segmen-
tation as a valuable application that involves both
the prediction of segment boundaries as well as the
generation of segment titles. Previous works have
not considered and evaluated the generation of sec-
tion headings, which is crucial for practical appli-
cations. We term this challenge smart chaptering
to describe the transformation of unstructured con-
tent into a high-level semantic structure with mean-
ingful headings, a critical process for improving
document comprehension and organization. This
term reflects the additional capabilities required for
a system to offer practical utility. Correspondingly,
we introduce MiniSeg, a small-scale and state-of-
the-art hierarchical segmentation model focused on
efficiency, thus viable for use in practical settings.
Finally, in addition to traditional offline settings,
we also evaluate our approach in online scenarios
where real-time processing is crucial, further ex-
panding its practical applicability.
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In summary, the contributions of our paper are:

• The introduction of a novel larger-scale text
segmentation benchmark YTSEG which ad-
dresses an important limitation of this re-
search area, the lack of robust benchmarks,
and gives researchers a chance to evaluate
their models on a benchmark other than WIKI-
727K. In addition, it is the first available
benchmark around speech text segmentation.

• We introduce MiniSeg, an efficient, hierarchi-
cal, state-of-the-art text segmentation model
that demonstrates the effectiveness of a num-
ber of incremental methodological improve-
ments compared to previous models.

• We extend the (offline) text segmentation task
by online segmentation and title generation.
For these tasks, we provide a strong set of
baselines on our benchmark.

2 YTSEG Dataset

As part of this work, we introduce a new bench-
mark, YTSEG, to evaluate text segmentation sys-
tems on less structured and more diverse content
than previous benchmarks aimed for. The dataset
consists of 19,299 English YouTube videos with
their transcripts and chapters. An example of a
YouTube video organized into chapters can be
found in the screenshot provided in Figure A1. We
processed the data to adapt it for the text segmenta-
tion task, aligning the sentences in the transcription
with video chapters. In addition, we release YT-
SEG[TITLES] for the training and evaluation of
generative models predicting the chapter titles. By
including video and audio data, the benchmark also
paves the way for multi-modal approaches. The
dataset, along with the instructions and scripts, is
available online and released under a CC BY-NC-
SA 4.0 license1.

2.1 Collection
For the dataset, we utilize yt-dlp to collect
videos, their transcripts, and their chapters. The
dataset collection is limited to videos with closed
captions and chapters provided by the content cre-
ator. In both cases, YouTube exposes whether the
information is automatically generated.2 We note

1https://huggingface.co/datasets/
retkowski/ytseg

2While for closed captions, this information can be ac-
cessed directly via yt-dlp, for chapters, it is derived from
raw data returned by yt-dlp’s low-level APIs.

that only a small subset of YouTube videos fall
under this category, which motivates the following
procedure.

In the first step, we define a wide variety of seed
keywords as listed in Section E. Their purpose is to
surface a higher-quality and diverse set of videos
that are more likely to have manually provided
closed captions and chapters. Then, we utilize the
YouTube search and various search filters (e.g., to
filter videos without closed captions or to surface
more recent content or long-form videos). Based
on the video search results, we select corresponding
channels to be crawled after reviewing a sample of
the channel’s videos for the audio language and the
quality of its closed captions and chapters.

2.2 Preprocessing

Following previous benchmarks for the text seg-
mentation task, our dataset aims to provide seg-
ment boundaries on a sentence level. For this, we
sentence tokenize the closed captions using the pre-
trained PUNKT tokenizer available in the NLTK li-
brary (Bird et al., 2009). We annotate the sentences
with respective timestamps based on the closed cap-
tions. It is important to note that the closed captions
do not always respect sentence boundaries, which
may necessitate potential splitting and joining of
sentences while linearly interpolating timestamps
based on their character length. Unlike purely tex-
tual datasets, the segment boundaries might not
necessarily agree with sentence boundaries (i.e.,
YouTube chapters can start or end in the middle of
a sentence). Thus, sentences spanning two chapters
are assigned to the chapter with the greater time-
based overlap. We also observed instances where
sentences remain unassigned when the first chap-
ter starts later or the last chapter ends earlier than
the first, respectively, the last caption. To address
this issue, we add an additional “Intro” or “Outro”
chapter in these cases.

We exclude all videos for which inconsistent
timestamps cannot be fixed3, final sanity checks
are not passed, or our procedure returns an error.
These errors can stem from various reasons, such
as empty captions, transcripts without punctuation,
or a malformed VTT format. This affects 4.70% of
the collected videos.

Finally, the data is split into stratified partitions
for training, validation, and testing based on the

3In a number of instances, we observed certain inconsis-
tencies in the provided timestamps fixable by simple rules.
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Channel Name # Videos

YaleCourses 1015
The List 984
Mashed 904
Bestie 577
Google Cloud Tech 551
Linus Tech Tips 461
Unveiled 425
Flipping Physics 390
Looper 385
GeologyHub 364

(a) YouTube Channels by Number of Videos

Channel Name Length[h]

YaleCourses 907.05
CS50 276.21
Rich Roll 179.16
Andrew Huberman 178.92
The List 168.27
Mashed 159.24
Tech With Tim 131.37
Linus Tech Tips 120.14
SAS Users 106.12
David Bombal 93.09

(b) YouTube Channels by Content Length

Table 1: YouTube Channels by Number of Videos and Content Length

channel identifier (see Table A1a). As part of this
process, channels with only a single video form a
separate group.

2.3 Data Statistics

The dataset comprises 19,299 videos from 393
channels, amounting to 6,533 content hours. The
topics are wide-ranging, covering domains such as
science, lifestyle, politics, health, economy, and
technology. The videos are from various types of
content formats, such as podcasts, lectures, news,
corporate events & promotional content, and, more
broadly, videos from individual content creators.
Table 1a and the analysis depicted in Figure 1 offer
insights into the dataset’s diversity, while Table 1b
shows that the content hours are dominated by the
long-form formats such as podcasts and lectures.
The dataset’s structural diversity is also evident in
its data statistics, as depicted in Table 2. In contrast
to WIKI-727K, our benchmark exhibits a greater
number of segments per document and a higher
number of sentences per segment while simultane-
ously showing a wider variation.

YTSEG WIKI-727K

Document Length [Sent.] 196.2 ± 267.2 57.6 ± 46.9
Video Length [min.] 20.3 ± 25.3 –

Segment Length [Sent.] 21.5 ± 34.2 13.6 ± 20.3
Segment Duration [min.] 2.49 ± 2.98 –
Segments per Document 9.12 ± 5.42 3.48 ± 2.23

Title Length [Words] 4.03 ± 2.75 2.01 ± 1.49
Concentration Index1 9.50% 24.96%

1 with n = 20

Table 2: Data Statistics for YTSEG and WIKI-727K
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Figure 1: UMAP (McInnes et al., 2018) plot of YTSEG
video titles, embedded using Instructor (Su et al., 2023).
Category labels are assigned through zero-shot classifi-
cation with LLaMA 2 (Touvron et al., 2023).

2.4 Chapter Titles

Based on the same data partitioning outlined in
Section 2.2, we prepared another view on the same
dataset, providing 173,195 pairs of sections and
chapter titles. We refer to this dataset view as
YTSEG[TITLES]. As a result of the same data
partitioning, all section title pairs of a particular
video will be assigned to the same data partition.
The resulting data split can be found in Table A1b.
We removed every pair for which the section title
exceeds 75 characters to exclude atypically and ex-
cessively lengthy titles4 accounting for 1.5% of the
total number of titles. Despite this, the title length
is meaningfully longer and more diverse than in
titles in the WIKI-727K dataset (see Table 2). We
also point out that the titles in the WIKI-727K
dataset are highly concentrated. The 20 most fre-

4Some of these lengthy titles tend to be complete sentences
or summaries, deviating from our understanding of a title. We
also note the computational advantages of excluding them.
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quent titles in the dataset account for 24.96% of
the overall dataset, with the title “History” alone
constituting 7.53% of it. On the contrary, for the
YTSEG dataset, this concentration is notably lower,
as the top 20 titles collectively represent just 9.50%
of the dataset. These titles predominantly consist
of functional segments like “Introduction” or “Con-
clusion”.

3 Methodology

In the following, we present the models designed
for the text segmentation and title generation task,
which are used in our experiments and applied to
the newly introduced benchmark. We also elabo-
rate on the modifications we have made to adapt
them for online implementation.

Sentence Encoder

Document Encoder

Mean Pooling

t1

Sentence Tokens

Sentence

Representations

Segment Boundaries

t2 t3 t4 t5 tk...

o1

s1

o2 o3 o4 o5 ok...

s1s1 s2 s3 s4 s5 sl...

...0 0 0 001

Figure 2: The hierarchical architecture of the segmenta-
tion model consists of a sentence encoder and a docu-
ment encoder returning the binary segment boundaries.

3.1 Offline Segmentation

The model used in our experiments (see the ar-
chitecture outlined in Figure 2) closely resembles
the previous work of Koshorek et al. (2018) and
Lukasik et al. (2020). Both proposed a hierarchi-
cally structured network consisting of a sentence
encoder and a document encoder. The sentence
encoder processes each token within a sentence to
generate a corresponding sentence representation.
Following this, the document encoder performs a
sequence labeling task, where its aim is to predict

whether each sentence serves as a segment bound-
ary. The network is trained in a supervised fashion
using a binary classification objective.

In the following, we highlight the methodologi-
cal differences between our MiniSeg model and the
hierarchical BERT architecture outlined in Lukasik
et al. (2020).

• We utilize a pre-trained sentence transformer
based on MiniLM (Reimers and Gurevych,
2019; Wang et al., 2020) for the sentence en-
coder (33M parameters). This network has
specifically been trained on paraphrase data in
a siamese network structure to produce mean-
ingful sentence representations.

• For the document encoder, we use a randomly
initialized RoFormer encoder with 12 lay-
ers, 8 attention heads, and 384-dimensional
embeddings (26M parameters). This Trans-
former variant uses rotary positional embed-
dings (RoPE) introduced by Su et al. (2021).

• Motivated by the class imbalance, we opted to
use a weighted binary cross-entropy term. In a
thoughtful adjustment, we assigned double the
weight to segment boundaries with w = [1, 2].
A similar reweighting has been performed by
Ghosh et al. (2022).

• Instead of using the [CLS] token, we apply
mean pooling on the output embeddings to
create fixed-sized sentence representations, as
it has been shown to outperform other pooling
strategies (Reimers and Gurevych, 2019).

• While training, we randomly sample a subset
of gradients for the sentence-encoding sub-
network in each backward pass. We set this
gradient sampling rate to 0.5, meaning half
of the documents are backpropagated through
the sentence encoder. In our experiments, this
has been shown to reduce the memory require-
ment while having a regularizing effect and
improving the final performance.

3.2 Online Segmentation

Our proposed online segmentation model mirrors
the offline segmentation model in its architecture
(see Section 3.1). The major difference is that we
limit the future context that the model can process,
for which we use a different masking strategy that
we refer to as progressive context accumulation.
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Figure 3: Our offline document encoder is a typical transformer encoder with N transformer layers, each of which
applies a full attention mask. Consequently, the encoder can attend to the whole document. In contrast, our online
document encoder has N −M layers with causal attention masks that only allow attention to past context, while
the initial M layers have attention masks with limited right-side context, that, over these M layers, accumulate to a
defined future context size c.

Starting from a purely causal model, we replace a
subset of causal attention masks with masks that
allow attention to a controlled amount of future
context. The corresponding architecture and idea
are illustrated in Figure 3.

Specifically, in the early M layers of the docu-
ment encoder, we employ causal attention masks
with an offset that is the limited right-side context
αi where i ∈ [1,M ] is the index of the layer. These
masks provide each layer with selective access to
a portion of additional future context, and their
sizes sum up to our predefined target future context
size, denoted as c. In the later N −M layers, we
transition back to causal attention masks to prevent
any additional future context from leaking into the
predictions.

This approach introduces a structural hyperpa-
rameter α defining the partitioning distribution of
the total future context size c to be allocated to
each of the first M layers. We note the relation be-
tween the introduced hyperparameters: M = |α|
and c =

∑
αi.

3.3 Title Generation

We fine-tune a BART-large (Lewis et al., 2020)
model on our YTSEG[TITLES] dataset for section
title generation. BART is a transformer encoder-

decoder model pre-trained on a denoising task.

• For online title generation, we limit the
amount of text we provide from a given sec-
tion to the model for generating titles. The
term input span further refers to the number
of starting sentences from a section. This ap-
proach enables titles to be prematurely gener-
ated in an online setting while maintaining a
defined latency (in terms of sentences).

• Conditional title generation: To incorporate
the context of the document’s structure, we
prepend previous section titles. This way, the
model is conditioned on both the content of
the current section and the preceding context,
allowing the generation of more relevant and
coherent titles. We note that this approach
requires generating titles sequentially, which
affects offline title generation. In contrast,
for online title generation, titles are always
generated sequentially.

4 Experiments

4.1 Segmentation

We perform the following experiments to evaluate
our benchmark and our segmentation model:
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P (↑) R (↑) F1 (↑) Pk (↓) B1(↑)

WIKI-727K

Bi-LSTM2,4 69.3 ± 0.1 49.5 ± 0.2 57.7 ± 0.1 – –
CS BERT3,4 69.1 ± 0.1 63.2 ± 0.2 66.0 ± 0.1 – –
Hier. BERT3,4 69.8 ± 0.1 63.5 ± 0.1 66.5 ± 0.1 – –
MiniSeg (Ours) 68.57 ± 0.13 70.76 ± 0.13 69.65 ± 0.09 17.57 ± 0.06 59.81 ± 0.12

YTSEG MiniSeg 45.44 ± 0.83 41.48 ± 0.85 43.37 ± 0.60 28.73 ± 0.39 35.74 ± 0.68

WIKI-727K → YTSEG

MiniSeg 48.30 ± 0.84 43.56 ± 0.84 45.81 ± 0.60 27.13 ± 0.43 37.89 ± 0.70

MiniSeg (c = 0) 43.69 ± 0.79 37.49 ± 0.76 40.35 ± 0.55 29.81 ± 0.38 33.11 ± 0.72
MiniSeg (c = 1) 45.05 ± 0.82 40.05 ± 0.80 42.41 ± 0.58 28.70 ± 0.40 34.72 ± 0.79
MiniSeg (c = 3) 46.02 ± 0.88 41.45 ± 0.77 43.61 ± 0.58 28.08 ± 0.43 36.13 ± 0.76
MiniSeg (c = 5) 46.24 ± 0.75 42.23 ± 0.91 44.15 ± 0.60 27.91 ± 0.80 36.62 ± 0.78
MiniSeg (c = 8) 46.92 ± 0.80 41.89 ± 0.79 44.26 ± 0.57 27.68 ± 0.42 36.81 ± 0.77
MiniSeg (c = 10) 45.99 ± 0.81 41.31 ± 0.89 43.52 ± 0.61 27.97 ± 0.39 36.35 ± 0.74
MiniSeg (c = 20) 46.46 ± 0.89 42.34 ± 0.83 44.30 ± 0.61 27.95 ± 0.41 37.07 ± 0.76

1 Boundary Similarity (Fournier, 2013)
2 Koshorek et al. (2018)

3 Lukasik et al. (2020)
4 Results as reported by Lukasik et al. (2020).

Table 3: Results of our text segmentation models and baselines on WIKI-727K and YTSEG. Standard deviations
are estimated by bootstrapping the test set 100 times, similar as in Lukasik et al. (2020).

P (↑) R (↑) F1 (↑)

Zero-Shot

WIKI-727K 1.58 ± 0.89 15.85 ± 3.61 2.87 ± 1.47
YTSEG 12.55 ± 4.21 8.30 ± 2.78 9.99 ± 2.41
WIKI-727K → YTSEG 6.09 ± 1.92 18.07 ± 3.36 9.11 ± 2.19

Fine-Tuned on QMSUM

No Pre-Training 21.62 ± 4.54 15.61 ± 3.58 18.13 ± 2.90
WIKI-727K 23.45 ± 5.42 11.88 ± 2.75 15.77 ± 2.71
YTSEG 31.09 ± 5.35 16.92 ± 3.20 21.92 ± 2.99
WIKI-727K → YTSEG 25.21 ± 4.71 15.82 ± 3.15 19.44 ± 2.76

Table 4: Text segmentation results of MiniSeg on the
QMSUM dataset, both zero-shot and fine-tuned.

• First, we train our introduced MiniSeg model
on the established benchmark WIKI-727K
and compare it against the baselines of
Koshorek et al. (2018) and Lukasik et al.
(2020). For a fair comparison, we use the
same setup as in Koshorek et al. (2018) by
predicting top-level sections of the document
and using the original preprocessing scripts.

• We establish a benchmark for the YTSEG

dataset employing our MiniSeg model. This
involves training the model on the dataset to
set the baseline performance.

• In addition, we experiment with a two-stage
training process where we first do a task adap-
tational pre-training of the model on the WIKI-
727K dataset and then fine-tune it on our YT-
SEG benchmark.

• We test and fine-tune our model on QMSUM

(Zhong et al., 2021) to evaluate whether our

dataset and model can improve the segmenta-
tion of even more unstructured content such
as meetings. This dataset provides 232 seg-
mented meetings.

• Finally, we train online segmentation models
with different future context sizes c. The cor-
responding partitioning α for each setting can
be found in Table A3.

We evaluate our segmentation models using a
combination of standard binary classification met-
rics, such as precision, recall, and F1 score, as well
as metrics specifically tailored for text segmenta-
tion tasks, including Pk as introduced in the work
of Beeferman et al. (1999) and Boundary Similar-
ity, as discussed in Fournier (2013). The results of
the experiments are presented in Table 3 and 4.

MiniSeg. The experiments presented in Table 3
demonstrate that MiniSeg outperforms the base-
lines, namely Bi-LSTM, cross-segmenter BERT,
and hierarchical BERT, on the established WIKI-
727K benchmark, even though it is equipped with
only 59 million parameters. Given this parame-
ter count, it is meaningfully more efficient com-
pared to state-of-the-art baselines such as hierar-
chical BERT (220 million parameters) and cross-
segmenter BERT (336 million parameters). Several
factors contribute to the observed performance as
demonstrated in an ablation study shown in Table
5, with the strength of the pre-trained sentence en-
coder emerging as one of the most crucial contrib-
utors. It is worth noting that BERT (Devlin et al.,
2019), as used by Lukasik et al. (2020), was not
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P (↑) R (↑) F1 (↑) Pk (↓) B (↑)

MiniSeg 45.44 ± 0.83 41.48 ± 0.85 43.37 ± 0.60 28.73 ± 0.39 35.74 ± 0.68

w/o WBCE 48.76 ± 0.95 31.66 ± 0.77 38.39 ± 0.64 30.53 ± 0.36 30.42 ± 0.71
w/o RoPE1 42.13 ± 0.70 42.05 ± 0.81 42.09 ± 0.54 30.59 ± 0.47 33.75 ± 0.69
w/o Pre-Training2 38.73 ± 0.81 28.62 ± 0.61 32.92 ± 0.50 33.52 ± 0.36 25.45 ± 0.59
with [CLS] pooling 45.76 ± 0.80 41.39 ± 0.85 43.47 ± 0.59 28.87 ± 0.39 35.54 ± 0.68
w/o gradient sampling 43.41 ± 0.83 40.38 ± 0.79 41.84 ± 0.57 29.94 ± 0.41 34.10 ± 0.72

1 A standard transformer with sinusoidal positional encodings is used as the document encoder.
2 The weights of MiniLM, the sentence transformer, are initialized randomly.

Table 5: Results of ablated versions of MiniSeg on the YTSEG dataset.

trained to represent sentences in particular and that
Liu et al. (2019) have described BERT as “signifi-
cantly undertrained”. Additionally, our approach
relies on a weighted cross-entropy loss function,
allowing us to balance precision and recall. Im-
portantly, while our model exhibits lower precision
compared to the baselines and ablated version, it
excels in terms of recall. Smaller incremental gains
can be attributed to RoPE and the sampling of gradi-
ents. Lastly, no noticeable effect is observed when
replacing [CLS] pooling with mean pooling.

Task Adaptation. We find that the task-
adaptational pre-training with WIKI-727K im-
proves the result on the YTSEG benchmark (see
Table 3). This outcome contrasts with the findings
of Ghosh et al. (2022), who reported that such a
pre-training step has a negative or negligible effect
when applied to semi-structured content. While
the domain is different (YouTube videos versus
chat conversations), we emphasize that the dataset
in Ghosh et al. (2022) is synthetically constructed
and, as such, is qualitatively different from WIKI-
727K and YTSEG presumably contributing to the
varying effectiveness of the pre-training.

Meeting Segmentation. Our experiments on
QMSUM displayed in Table 4 reveal that the pre-
training with YTSEG improves the final perfor-
mance of models on QMSUM. Even in zero-
shot conditions, the beneficial effect of YTSEG

becomes apparent. This underscores the domain
proximity of video content and meetings, both of
which are less structured and are spoken in nature.
However, we note that due to its small size, QM-
SUM is not a robust benchmark, and the effect of
WIKI-727K remains inconclusive.

Online Segmentation. In the results (see Table
3), we observe noticeable jumps in performance
when increasing the future context size. However,
diminishing returns set in after about three to five

sentences of future context, especially when consid-
ering the latency trade-off in online segmentation.
This strongly suggests that local context is more
important. In fact, even a model without future con-
text at all scores solidly (with the performance only
increasing from 40.35 to 45.81 for a model without
any future context and one with global context).

4.2 Title Generation

We conducted a series of experiments to evaluate
the performance of our title generation model, sum-
marized as follows:

• In our initial experiment, we conducted a
comparative analysis of fine-tuning the BART
model under two distinct conditions. The first
involved training the model to generate titles
solely based on the current section text, devoid
of any contextual information. In the second
setting, the model was trained with the added
context of previous titles.

• For the online setting, we assessed different
scenarios where the model receives a limited
number of starting sentences s ∈ [1, 3, 5, 10].
We conducted this evaluation for both the
context-less scenario and the scenario where
previous titles were incorporated as context.

The generation of section titles can be consid-
ered an extreme form of summarization. As such,
we evaluate our models using established metrics in
summarization: ROUGE (Lin, 2004), which mea-
sures the lexical overlap, and BARTScore (Yuan
et al., 2021), an increasingly used metric for seman-
tic equivalence. The results of our experiments are
shown in Table 6.

Importance of Context. The results strongly un-
derscore the difficulty in generating chapter titles
solely based on the content of the current section
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R1 (↑) R2 (↑) RL (↑) BS1(↑)

No Context

BART 36.42 ± 0.36 17.03 ± 0.28 36.19 ± 0.35 -4.21 ± 0.02

BART (s = 1) 25.02 ± 0.31 10.98 ± 0.23 24.87 ± 0.30 -4.97 ± 0.02
BART (s = 3) 31.40 ± 0.31 14.32 ± 0.26 31.21 ± 0.32 -4.51 ± 0.02
BART (s = 5) 33.64 ± 0.31 15.61 ± 0.29 33.42 ± 0.35 -4.37 ± 0.02
BART (s = 10) 34.83 ± 0.33 16.18 ± 0.27 34.60 ± 0.37 -4.30 ± 0.02

Previous Titles

BART 42.79 ± 0.34 22.07 ± 0.30 42.45 ± 0.31 -3.87 ± 0.02

BART (s = 1) 27.66 ± 0.35 11.87 ± 0.26 27.47 ± 0.29 -4.83 ± 0.02
BART (s = 3) 36.33 ± 0.37 17.74 ± 0.31 36.08 ± 0.30 -4.25 ± 0.02
BART (s = 5) 36.02 ± 0.32 19.68 ± 0.32 35.74 ± 0.29 -4.09 ± 0.02
BART (s = 10) 41.52 ± 0.33 21.24 ± 0.30 41.21 ± 0.30 -3.94 ± 0.03

1 BARTScore (Yuan et al., 2021)

Table 6: Results of the title generation models on the YTSEG[TITLES] dataset.

without additional contextual information. An ex-
amination of the model’s outputs (see Figure 4)
reveals how the lack of context leads to degraded
coherence between titles of a document. Notably,
the model has no knowledge about the placement of
the current section in the document, leading to the
repetition of functional titles such as “Intro”, which
occur frequently in the dataset. Similarly, it also
cannot generate sequential numbering or uphold
uniform stylistic elements across the document’s
titles. In contrast, supplying the model with pre-
viously generated titles results in a meaningful in-
crease in performance. This approach provides the
model with the past context of the document struc-
ture, enabling stylistic continuity and a smoother
flow between the titles.

Online Generation. Expectedly, the model’s per-
formance improves as the input span s increases.
While diminishing returns are observable, they are
less pronounced compared to the segmentation
models. It is worth pointing out that the BART
model with s = 3 and which has access to the pre-
vious titles matches the performance of the BART
model that has no context at all, once again under-
scoring the importance of context. Overall, consid-
ering both the segmentation models and the title
generation models, we see 3 to 5 sentences as a rea-
sonable trade-off between latency and performance
for the future context size c and the input span s.
We note that c can, in principle, be independently
chosen from s for practical smart chaptering sys-
tems. The overall latency for the title generation
is dependent on the segmentation model, though,
as segment boundaries for the span s need to be
determined before the generation of the title, as
each sentence may belong to the next section.

5 Related Work

A number of benchmarks have been proposed for
the text segmentation task. However, the majority
are either small in size or synthetically constructed,
often by concatenating documents or sections of
documents (Choi, 2000; Chen et al., 2009; Glavaš
et al., 2016, 2021). Larger-scale benchmarks are
scarce and limited to a narrow type of documents
such as Wikipedia articles (Koshorek et al., 2018)
or specific domains like news (Liu et al., 2022b)5.
Equally, these datasets have in common that they
only encompass documents that are structured in
nature. In contrast, research on spoken, conversa-
tional, or generally unstructured or semi-structured
content is still in its infancy. Lv et al. (2021) and
Cho et al. (2022) separately proposed segmentation
for lecture video transcripts. Although these works
are related to our task, they are only confined to a
single domain (lecture videos), while segments are
artificially constructed based on the presentation
slides. In the context of conversational content,
Ghosh et al. (2022) constructed a dataset by join-
ing excerpts of different chat conversations, while
Zhong et al. (2021) provided a small set of meeting
transcriptions segmented by topic shifts.

Regarding title generation, this study focuses
on generating section headings and chapter titles
for video transcripts. While research exists in ti-
tle generation across various domains, including
news headlines (Gu et al., 2020; Liu et al., 2020;
Cai et al., 2023), product titles (Yang et al., 2023;
Zhu et al., 2022), video titles (Zeng et al., 2016;
Yu et al., 2023), StackOverflow posts (Liu et al.,

5The news text segmentation dataset claimed to be made
available by Liu et al. (2022b) is presently inaccessible through
the provided GitHub link, effectively yielding WIKI-727K to
be the only large-scale benchmark.
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Configuring Cloud Operations on Google Cloud – Google Cloud Tech (xIaaGef1QvI)

Intro Intro Introduction & agenda

Intro How to know what’s going on in the cloud How the operations components play together
Operational use cases Exploring the products of interest for the opera-

tions team
Google Cloud Operations Suite

Site Reliability Engineering Google SRE SRE Practices
Customer success story: Krikey Customer success story: Krikey Customer Story - Krikey
Wrap-up Wrap up Wrap up & additional resources

Generated (No Context) Generated (Previous Titles) Reference

(a) An exemplary output showing duplicate section titles.

8 Email Etiquette Tips - How to Write Better Emails at Work – Harvard Business Review (1XctnF7C74s)
Intro Intro Why bother with email etiquette?
Step 1: Have a call to action if appropriate 1. Have a call to action when appropriate Include CTA in subject line

Stick with one email thread for the same topic 2. Stick with one email thread for the same topic One email thread per topic
Tip #3 3. Explain why you added in or took out recipi-

ents
Manage recipients

Tip #5: summarize the sender’s main points 4. Include your main point first followed by con-
text

Summarize in your reply

Tip #2: Include the context 5. summarize the sender’s main points in your
reply

Start with the main point

6. Hyperlink Whatever Possible 6. Hyperlink whatever possible Hyperlink whenever possible
Change Default Setting to reply instead of reply
all

7. Change default setting to reply instead of reply
all

Change default setting to "Reply" (not "Reply
all")

Change Undo Send Option to 30 Seconds 8. Change undo send option to 30 seconds Change undo send options
Outro Outro Outro

Generated (No Context) Generated (Previous Titles) Reference

(b) An exemplary output showing inconsistent numbering and formatting.

Figure 4: A comparison of chapter titles generated by the fine-tuned BART models, both without any context and
with previously generated titles, and the reference titles on select examples from YTSEG’s validation dataset. A
lack of context, as highlighted , leads to repetitive titles, coherence gaps, and variations in writing styles.

2022a; Zhang et al., 2022a, 2023), and pull requests
(Irsan et al., 2022; Zhang et al., 2022b), our work
addresses the unique challenges of video content
structuring. One distinctive aspect lies in ensuring
that all section headings of one document not only
serve as informative signposts but also maintain
a coherent and seamless flow between them. The
closest work to ours has been conducted by Zhang
et al. (2019), whose proposed model generates hi-
erarchical outlines for Wikipedia documents.

6 Conclusion

In this work, we present a novel benchmark for
smart chaptering. The task aims to segment unstruc-
tured content, in particular speech, conversations,
and transcriptions, in a linear sequence of chapters
and provides each chapter with a title. We think this
benchmark is a valuable addition to the text seg-
mentation landscape as larger-scale, non-synthetic
benchmarks are scarce, and previous research fo-
cused primarily on well-structured, homogeneous

documents. As part of this, we propose an effi-
cient and state-of-the-art hierarchical segmentation
model and a corresponding title-generating model,
both of which have also been architected to work
online. By combining our proposed segmentation
and title generation models, various practical ap-
plications are conceivable. For example, content
creators, podcasters, and educators could use it to
structure their content for their audience. We see
our work also as a stepping stone to support even
more unstructured content and speech in a broader
scope, such as meetings.

Limitations

Our study is subject to several limitations. First,
the benchmark only provides English transcriptions
which means it cannot assess text segmentation al-
gorithms in languages other than English or be
utilized in multilingual or cross-lingual contexts,
an important area of research. Second, while the
benchmark is inherently multi-modal, our evalu-
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ations were conducted solely on models trained
on a single modality, which is the transcript, thus
ignoring potentially valuable contextual informa-
tion. Third, we want to note that the latency and
real-timeliness of the online chaptering models de-
pend on sentence lengths as the models operate on
a sentence-level granularity. This dependence on
sentence length restricts our ability to exert precise
control over latency. Lastly, our title generation
model suffers from exposure bias since it is trained
using reference segmentations and prepending ref-
erence titles. In practical systems, we rely on both
generated segment boundaries and titles, which can
potentially lead to error propagation.

Acknowledgements

This research is supported by the project "How
is AI Changing Science? Research in the Era
of Learning Algorithms" (HiAICS), funded by
the Volkswagen Foundation. We also thank Jan
Niehues for insightful discussions.

References
Doug Beeferman, Adam Berger, and John Lafferty.

1999. Statistical Models for Text Segmentation. Ma-
chine Learning, 34(1):177–210.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python, 1st edi-
tion. O’Reilly, Beijing ; Cambridge [Mass.]. OCLC:
ocn301885973.

Pengshan Cai, Kaiqiang Song, Sangwoo Cho, Hong-
wei Wang, Xiaoyang Wang, Hong Yu, Fei Liu, and
Dong Yu. 2023. Generating User-Engaging News
Headlines. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3265–3280, Toronto,
Canada. Association for Computational Linguistics.

Harr Chen, S.R.K. Branavan, Regina Barzilay, and
David R. Karger. 2009. Global Models of Document
Structure using Latent Permutations. In Proceedings
of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
371–379, Boulder, Colorado. Association for Com-
putational Linguistics.

Brian Chivers, Mason P. Jiang, Wonhee Lee, Amy Ng,
Natalya I. Rapstine, and Alex Storer. 2022. ANTS:
A Framework for Retrieval of Text Segments in Un-
structured Documents. In Proceedings of the Third
Workshop on Deep Learning for Low-Resource Natu-
ral Language Processing, pages 38–47, Hybrid. As-
sociation for Computational Linguistics.

Sangwoo Cho, Kaiqiang Song, Xiaoyang Wang, Fei
Liu, and Dong Yu. 2022. Toward Unifying Text
Segmentation and Long Document Summarization.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 106–
118, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Freddy Y. Y. Choi. 2000. Advances in domain inde-
pendent linear text segmentation. In 1st Meeting of
the North American Chapter of the Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Chris Fournier. 2013. Evaluating Text Segmentation
using Boundary Edit Distance. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1702–1712, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Reshmi Ghosh, Harjeet Singh Kajal, Sharanya Kamath,
Dhuri Shrivastava, Samyadeep Basu, and Soundarara-
jan Srinivasan. 2022. Topic Segmentation in the
Wild: Towards Segmentation of Semi-structured &
Unstructured Chats. ArXiv:2211.14954 [cs].

Goran Glavaš, Ananya Ganesh, and Swapna Somasun-
daran. 2021. Training and Domain Adaptation for
Supervised Text Segmentation. In Proceedings of
the 16th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 110–116,
Online. Association for Computational Linguistics.

Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2016. Unsupervised Text Segmentation
Using Semantic Relatedness Graphs. In Proceedings
of the Fifth Joint Conference on Lexical and Compu-
tational Semantics, pages 125–130, Berlin, Germany.
Association for Computational Linguistics.

Xiaotao Gu, Yuning Mao, Jiawei Han, Jialu Liu, You
Wu, Cong Yu, Daniel Finnie, Hongkun Yu, Jiaqi
Zhai, and Nicholas Zukoski. 2020. Generating Rep-
resentative Headlines for News Stories. In Proceed-
ings of The Web Conference 2020, WWW ’20, pages
1773–1784, New York, NY, USA. Association for
Computing Machinery.

Ivana Clairine Irsan, Ting Zhang, Ferdian Thung, David
Lo, and Lingxiao Jiang. 2022. AutoPRTitle: A Tool
for Automatic Pull Request Title Generation. pages
454–458. IEEE Computer Society.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rot-
man, and Jonathan Berant. 2018. Text Segmentation

415

https://doi.org/10.1023/A:1007506220214
https://doi.org/10.18653/v1/2023.acl-long.183
https://doi.org/10.18653/v1/2023.acl-long.183
https://aclanthology.org/N09-1042
https://aclanthology.org/N09-1042
https://doi.org/10.18653/v1/2022.deeplo-1.5
https://doi.org/10.18653/v1/2022.deeplo-1.5
https://doi.org/10.18653/v1/2022.deeplo-1.5
https://doi.org/10.18653/v1/2022.emnlp-main.8
https://doi.org/10.18653/v1/2022.emnlp-main.8
https://aclanthology.org/A00-2004
https://aclanthology.org/A00-2004
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/P13-1167
https://aclanthology.org/P13-1167
https://doi.org/10.48550/arXiv.2211.14954
https://doi.org/10.48550/arXiv.2211.14954
https://doi.org/10.48550/arXiv.2211.14954
https://aclanthology.org/2021.bea-1.11
https://aclanthology.org/2021.bea-1.11
https://doi.org/10.18653/v1/S16-2016
https://doi.org/10.18653/v1/S16-2016
https://doi.org/10.1145/3366423.3380247
https://doi.org/10.1145/3366423.3380247
https://doi.org/10.1109/ICSME55016.2022.00058
https://doi.org/10.1109/ICSME55016.2022.00058
https://doi.org/10.18653/v1/N18-2075


as a Supervised Learning Task. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 469–473, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Dayiheng Liu, Yeyun Gong, Yu Yan, Jie Fu, Bo Shao,
Daxin Jiang, Jiancheng Lv, and Nan Duan. 2020. Di-
verse, Controllable, and Keyphrase-Aware: A Corpus
and Method for News Multi-Headline Generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6241–6250, Online. Association for Computa-
tional Linguistics.

Ke Liu, Guang Yang, Xiang Chen, and Chi Yu. 2022a.
SOTitle: A Transformer-based Post Title Generation
Approach for Stack Overflow. pages 577–588. IEEE
Computer Society. ISSN: 1534-5351.

Yang Liu, Chenguang Zhu, and Michael Zeng. 2022b.
End-to-End Segmentation-based News Summariza-
tion. In Findings of the Association for Compu-
tational Linguistics: ACL 2022, pages 544–554,
Dublin, Ireland. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. ArXiv:1907.11692 [cs].

Michal Lukasik, Boris Dadachev, Kishore Papineni, and
Gonçalo Simões. 2020. Text Segmentation by Cross
Segment Attention. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4707–4716, Online. As-
sociation for Computational Linguistics.

Tengchao Lv, Lei Cui, Momcilo Vasilijevic, and Furu
Wei. 2021. VT-SSum: A Benchmark Dataset for
Video Transcript Segmentation and Summarization.
ArXiv:2106.05606 [cs].

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. UMAP: Uniform Manifold Ap-
proximation and Projection. Journal of Open Source
Software, 3(29):861.

Violaine Prince and Alexandre Labadié. 2007. Text
Segmentation Based on Document Understanding
for Information Retrieval. In Natural Language Pro-
cessing and Information Systems, Lecture Notes in
Computer Science, pages 295–304, Berlin, Heidel-
berg. Springer.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Gennady Shtekh, Polina Kazakova, Nikita Nikitinsky,
and Nikolay Skachkov. 2018. Applying Topic Seg-
mentation to Document-Level Information Retrieval.
In Proceedings of the 14th Central and Eastern Euro-
pean Software Engineering Conference Russia, CEE-
SECR ’18, pages 1–6, New York, NY, USA. Associ-
ation for Computing Machinery.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
Embedder, Any Task: Instruction-Finetuned Text Em-
beddings. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 1102–1121,
Toronto, Canada. Association for Computational Lin-
guistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2021. RoFormer: En-
hanced Transformer with Rotary Position Embed-
ding.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models. ArXiv:2307.09288 [cs].

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. MiniLM: Deep Self-
Attention Distillation for Task-Agnostic Compres-
sion of Pre-Trained Transformers. In Advances in

416

https://doi.org/10.18653/v1/N18-2075
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.1109/SANER53432.2022.00075
https://doi.org/10.1109/SANER53432.2022.00075
https://doi.org/10.18653/v1/2022.findings-acl.46
https://doi.org/10.18653/v1/2022.findings-acl.46
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.18653/v1/2020.emnlp-main.380
https://doi.org/10.18653/v1/2020.emnlp-main.380
https://doi.org/10.48550/arXiv.2106.05606
https://doi.org/10.48550/arXiv.2106.05606
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1007/978-3-540-73351-5_26
https://doi.org/10.1007/978-3-540-73351-5_26
https://doi.org/10.1007/978-3-540-73351-5_26
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/3290621.3290630
https://doi.org/10.1145/3290621.3290630
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://arxiv.org/abs/2104.09864v4
https://arxiv.org/abs/2104.09864v4
https://arxiv.org/abs/2104.09864v4
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Neural Information Processing Systems, volume 33,
pages 5776–5788. Curran Associates, Inc.

Bang Yang, Fenglin Liu, Zheng Li, Qingyu Yin, Chenyu
You, Bing Yin, and Yuexian Zou. 2023. Multimodal
Prompt Learning for Product Title Generation with
Extremely Limited Labels. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 2652–2665, Toronto, Canada. Association for
Computational Linguistics.

Yakun Yu, Jiuding Yang, Weidong Guo, Hui Liu, Yu Xu,
and Di Niu. 2023. TCR: Short Video Title Genera-
tion and Cover Selection with Attention Refinement.
In Advances in Knowledge Discovery and Data Min-
ing, Lecture Notes in Computer Science, pages 245–
256, Cham. Springer Nature Switzerland.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
BARTScore: Evaluating Generated Text as Text Gen-
eration. In Advances in Neural Information Process-
ing Systems, volume 34, pages 27263–27277. Curran
Associates, Inc.

Klaus Zechner and Alex Waibel. 2000. DIASUMM:
Flexible Summarization of Spontaneous Dialogues
in Unrestricted Domains. In COLING 2000 Volume 2:
The 18th International Conference on Computational
Linguistics.

Kuo-Hao Zeng, Tseng-Hung Chen, Juan Carlos Niebles,
and Min Sun. 2016. Title Generation for User Gen-
erated Videos. In Computer Vision – ECCV 2016,
Lecture Notes in Computer Science, pages 609–625,
Cham. Springer International Publishing.

Fengji Zhang, Jin Liu, Yao Wan, Xiao Yu, Xiao Liu,
and Jacky Keung. 2023. Diverse title generation
for Stack Overflow posts with multiple-sampling-
enhanced transformer. Journal of Systems and Soft-
ware, 200:111672.

Fengji Zhang, Xiao Yu, Jacky Keung, Fuyang Li, Zhi-
wen Xie, Zhen Yang, Caoyuan Ma, and Zhimin
Zhang. 2022a. Improving Stack Overflow question
title generation with copying enhanced CodeBERT
model and bi-modal information. Information and
Software Technology, 148:106922.

Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan,
and Xueqi Cheng. 2019. Outline Generation: Un-
derstanding the Inherent Content Structure of Doc-
uments. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR’19, pages 745–
754, New York, NY, USA. Association for Comput-
ing Machinery.

Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, Dong-
Gyun Han, David Lo, and Lingxiao Jiang. 2022b.
Automatic Pull Request Title Generation. In 2022
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pages 71–81. ISSN:
2576-3148.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. QMSum: A New Benchmark for
Query-based Multi-domain Meeting Summarization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5905–5921, Online. Association for Computa-
tional Linguistics.

Wenya Zhu, Yinghua Zhang, Yu Zhang, Yuhang Zhou,
Yinfu Feng, Yuxiang Wu, Qing Da, and Anxi-
ang Zeng. 2022. DHA: Product Title Generation
with Discriminative Hierarchical Attention for E-
commerce. In Advances in Knowledge Discovery
and Data Mining, Lecture Notes in Computer Sci-
ence, pages 275–287, Cham. Springer International
Publishing.

417

https://doi.org/10.18653/v1/2023.findings-acl.166
https://doi.org/10.18653/v1/2023.findings-acl.166
https://doi.org/10.18653/v1/2023.findings-acl.166
https://doi.org/10.1007/978-3-031-33380-4_19
https://doi.org/10.1007/978-3-031-33380-4_19
https://proceedings.neurips.cc/paper_files/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://aclanthology.org/C00-2140
https://aclanthology.org/C00-2140
https://aclanthology.org/C00-2140
https://doi.org/10.1007/978-3-319-46475-6_38
https://doi.org/10.1007/978-3-319-46475-6_38
https://doi.org/10.1016/j.jss.2023.111672
https://doi.org/10.1016/j.jss.2023.111672
https://doi.org/10.1016/j.jss.2023.111672
https://doi.org/10.1016/j.infsof.2022.106922
https://doi.org/10.1016/j.infsof.2022.106922
https://doi.org/10.1016/j.infsof.2022.106922
https://doi.org/10.1145/3331184.3331208
https://doi.org/10.1145/3331184.3331208
https://doi.org/10.1145/3331184.3331208
https://doi.org/10.1109/ICSME55016.2022.00015
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.1007/978-3-031-05981-0_22
https://doi.org/10.1007/978-3-031-05981-0_22
https://doi.org/10.1007/978-3-031-05981-0_22


A YouTube Chapters

Figure A1: A screenshot of a YouTube video featuring segments as chapters, which form the basis of our new text
segmentation benchmark YTSEG.

B Data Splits

Partition # Examples

Training 16,404 (85%)
Validation 1,447 (7.5%)
Testing 1,448 (7.5%)

Total 19,229

(a) YTSEG data split

Partition # Examples

Training 146,907 (84.8%)
Validation 13,206 (7.6%)
Testing 13,082 (7.6%)

Total 173,195

(b) YTSEG[TITLES] data split

Table A1: Data splits for YTSEG and YTSEG[TITLES]

C Hyperparameters

We manually tuned hyperparameters and provide the parameter sets responsible for the results disclosed
in this research. While training, we continuously calculated the relevant test metrics (such as the F1 score
for segmentation) on the validation data and performed model selection based on this information.

Hyperparameter Value

Sentence Encoder sentence-transformers/all-MiniLM-L6-v2

Loss Function Weighted Binary Cross-Entropy
Cross-Entropy Weights [1, 2]
Learning Rate 2.5× 10−5

Batch Size 115,000 Tokens
Epochs 15
Learning Rate Schedule Cosine
Optimizer AdamW
Dropout Rate 0.1
Gradient Sampling Rate 0.5

Table A2: Hyperparameters for MiniSeg training on the YTSEG dataset
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c M α

1 1 [1]
3 2 [2, 1]
5 3 [2, 2, 1]
8 4 [2, 2, 2, 2]

10 5 [2, 2, 2, 2, 2]
20 7 [4, 4, 4, 2, 2, 2, 2]

Table A3: Overview of the partitioning α and the num-
ber of future-context-accumulating layers M used in the
corresponding online segmentation models with future
context size c.

Hyperparameter Value

Base facebook/bart-large

Learning Rate 5× 10−5

Batch Size 10,000 Tokens
Epochs 2
Learning Rate Schedule Cosine
Optimizer AdamW
Dropout Rate 0.1

Decoding Strategy Beam Sampling
Beam Size 5
Top k 50
Top p 0.95

Table A4: Hyperparameters for training and evaluating
the title generation model on YTSEG[TITLE]

D Evaluation

We use the segeval6 package (Fournier, 2013) for the computation of segmentation performance
metrics, including Pk and Boundary Similarity. In both cases, we adhere to the default parameter settings.
For the evaluation of the title generation models, we rely on the rouge-metric7 package that wraps
and reimplements the official ROUGE-1.5.5 Perl script (Lin, 2004). Lastly, for the BARTScore, we utilize
the official implementation and ParaBank2-trained BART model8 provided by Yuan et al. (2021).

E Seed Keywords

• lecture

• podcast

• meetup

• theory

• math

• physics

• chemistry

• climate history

• geometry

• electrical engi-
neering

• media theory

• fashion

• tech

• explained

• "analysis of"

• "introducing"

• "simplified"

• "explanation of"

• "the art of"

• "mechanics of"

• "recent advances
in"

• "in a nutshell"

• "the theory of"

• "guide to"

• "why do *"

• "why does *"

• "exploring *"

• "* talk"

• robotics

• computer vision

• virtual reality

• insurance

• dietary

• azure

• brain

• linear algebra

• oled

• silicon

• linux

• deployment

• nature

• adobe

• ui design

• rna

• pytorch

• self driving cars

• machine learning

• data science

6https://segeval.readthedocs.io/
7https://github.com/li-plus/rouge-metric
8https://github.com/neulab/BARTScore
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