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Koç University

Rumelifeneri, Sarıyer Rumeli Feneri Yolu
34450 Sarıyer/İstanbul,Turkey
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Abstract

We present UNSEE: Unsupervised Non-
Contrastive Sentence Embeddings, a novel ap-
proach that outperforms SimCSE in the Mas-
sive Text Embedding benchmark. Our ex-
ploration begins by addressing the challenge
of representation collapse, a phenomenon ob-
served when contrastive objectives in SimCSE
are replaced with non-contrastive objectives.
To counter this issue, we propose a straight-
forward solution known as the target network,
effectively mitigating representation collapse.
The introduction of the target network allows
us to leverage non-contrastive objectives, main-
taining training stability while achieving perfor-
mance improvements comparable to contrastive
objectives. Our method has achieved peak
performance in non-contrastive sentence em-
beddings through meticulous fine-tuning and
optimization. This comprehensive effort has
yielded superior sentence representation mod-
els, showcasing the effectiveness of our ap-
proach.

1 Introduction

Contrastive learning has been used quite exten-
sively in the sentence embedding models (Zhang
et al., 2021b; Liu et al., 2021; Reimers and
Gurevych, 2019; Chuang et al., 2022; Gao et al.,
2021b; Yuxin Jiang and Wang, 2022; Liu et al.,
2022) which hace achieved remarkable results on
MTEB benchmark (Muennighoff et al., 2023). The
fundamental role of the contrastive objective is to
regularize the anisotropic embedding space of lan-
guage models, ultimately enabling them to function
effectively as embedding models (Li et al., 2020).

On the contrary, non-contrastive methods have
not gained widespread popularity as the primary
objective for training sentence embedding models,
despite demonstrating regularization efficacy in vi-
sion (Bardes et al., 2022; Zbontar et al., 2021; Chen
and He, 2020; Grill et al., 2020). This reluctance
stems from the fact that non-contrastive objectives

tend to perform suboptimally in comparison to con-
trastive objectives, particularly in the SimCSE (Gao
et al., 2021b) setting. For example, SCD (Klein and
Nabi, 2022) showcased that Barlow Twins (Zbontar
et al., 2021) achieves only 67.57 on the STSBench-
mark (Cer et al., 2017) test set, while SimCSE (Gao
et al., 2021b) accomplishes 76.85.

Additionally, we demonstrate that the observed
performance drawback is not confined to Bar-
low Twins exclusively. Other well-known non-
contrastive methods (Bardes et al., 2022; Ozsoy
et al., 2022) also suffer from inferior performance.
Specifically, when examining the top evaluation
scores in Figure 2 for the STSBenchmark devel-
opment set, these non-contrastive methods con-
sistently fall short compared to SimCSE, which
achieves an impressive score of 82.5.

Despite the comparatively lower performance
observed when non-contrastive objectives are em-
ployed in a sentence embedding framework, their
inherent characteristics, such as the lack of nega-
tive samples and the ability to prevent dimensional
collapse, as demonstrated in Ozsoy et al. (2022),
inspire us to delve deeper into investigating and
improving the effectiveness of non-contrastive ob-
jectives.

Hence, we begin by presenting empirical ev-
idence of representation collapse observed dur-
ing training with non-contrastive objectives. This
includes instances utilizing siamese networks,
dropout as augmentation, and even those incorpo-
rating additional parametrization with MLP layers.
We delve into the potential reasons behind the sub-
optimal performance in Section 4.1.

Furthermore, we introduce the target network as
a novel augmentation method, which empirically
enhances the diversity of embeddings and effec-
tively mitigates the collapse associated with non-
contrastive objectives. Subsequently, through addi-
tional finetuning and architectural refinements, de-
tailed in Section 4.2 and Section 4.3, we achieve the
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Figure 1: Projection Model is the same as SimCSE (Gao et al., 2021b). The Online keyword is to emphasize that the
model gets gradient updates. The Online Projection Model is similar to the Projection Model except for the Target
Encoder. The Target Encoder is an exponentially moving average of the Online network. Both outputs from Online
and Target Encoders pass through the same MLP layer in the Online Projection Model. Target MLP is not employed
due to the nature of fine-tuning which will slightly change the newly initialized MLP layer that will potentially
corrupt the embeddings. In Single Projection Model, Target embeddings do not go through the MLP layer unlike
Online Projection Model. Single Projection Model is identical to the architecture proposed in BSL (Zhang et al.,
2021a). We only use BERT-base (Devlin et al., 2018) as the encoder.

absolute best performance among non-contrastive
objectives. In summary, we present a series of non-
contrastive models collectively named UNSEE, sur-
passing SimCSE in the MTEB benchmark. This
underscores the potential of non-contrastive ob-
jectives as fundamental components for training
state-of-the-art embedding models.

2 Related Work

Competitive sentence embedding models are typi-
cally built by modifying BERT (Devlin et al., 2018)
with diverse configurations. In the early stages
of sentence embedding development, models like
InferSent (Conneau et al., 2017) and the Univer-
sal Sentence Encoder (Cer et al., 2018) predomi-
nantly relied on LSTM (Hochreiter and Schmid-
huber, 1997) or the Transformer (Vaswani et al.,
2017) architecture.

The conventional BERT model (Devlin et al.,
2018) exhibits suboptimal performance and oper-
ates at a slower pace. Sentence BERT, abbrevi-
ated as SBERT (Reimers and Gurevych, 2019),
represents a modified version of BERT that utilizes
siamese or triplet networks to generate meaningful
and accurate sentence embeddings. SBERT im-
proves accuracy and significantly reduces the time
required to identify the most similar pair of sen-
tences within a set of 10,000 sentences, reducing
the process from 65 hours to just 5 seconds. De-

spite the integration of these enhancements into
BERT, a fundamental question arises: why are
these modifications necessary in the first place?

Li et al. (2020) brings attention to a concern re-
lated to BERT’s sentence embeddings, specifically
highlighting the presence of anisotropy in the em-
bedding space. Their empirical observations reveal
that the sentence embedding space lacks smooth-
ness and is poorly defined in certain regions, posing
challenges when applying cosine similarity directly.
To address this issue, they propose a solution that
involves transforming sentence embeddings into
a Gaussian distribution that is both smooth and
isotropic. This transformation is achieved through
the utilization of normalizing flows. The proposed
flow-based generative model is trained in an unsu-
pervised manner with the objective of maximizing
the likelihood of generating BERT sentence embed-
dings from a standard Gaussian latent variable.

Liu et al. (2021) present MirrorBERT, a method
that improves sentence representations through a
straightforward approach of duplicating or slightly
augmenting the text input, all without external su-
pervision. These augmentations can take place
either within the input space, involving actions like
random span masking, or within the feature space,
using techniques such as dropout. Notably, dropout
is not only implemented within the MLP but also
leads to the deactivation of attention heads, all
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Figure 2: The performance of various non-contrastive objectives on STSBenchmark evaluation dataset (Cer et al.,
2017) in the Projection Model or SimCSE setting. The difference between models is the number of MLP layers.
MLP layer is adopted from BSL (Zhang et al., 2021b).

while preserving the model’s performance across
various tasks. Furthermore, it has been demon-
strated that MirrorBERT also enhances isotropy.

Gao et al. (2021b) introduce SimCSE, which
employs conventional dropout as a means of in-
put augmentation. By feeding a single sentence
through two passes, this approach generates two
distinct feature embeddings, which can be treated
as similar to positive pairs, while other sentences
serve as negative samples. This dropout-based ap-
proach offers a straightforward technique for cre-
ating positive-negative pairs in contrastive learn-
ing. Impressively, it achieves superior performance
compared to Mirror-BERT with only moderate
modifications.

The current state-of-the-art embedding mod-
els (Xiao et al., 2023; Li et al., 2023; Su et al.,
2023; Wang et al., 2022) distinguish themselves by
their training on exceptionally large and extensive
corpora. These corpora encompass a vast amount
of both unlabeled and labeled text data. The uti-
lization of such extensive and diverse training data
has played a crucial role in the impressive perfor-
mance exhibited by these models in the MTEB
benchmark (Muennighoff et al., 2023), despite their
fundamental similarity to SimCSE.

On the contrary, models such as SimCSE follow
a significantly different paradigm, undergoing train-
ing on a relatively modest dataset consisting of just
1 million sentences. Considering the substantial dif-
ference in the scale and diversity of training data,
attempting direct comparisons between SimCSE-
like models and these state-of-the-art embedding
models seems impractical and might not provide
meaningful insights into their relative capabilities.
Therefore, we exclude them from our analysis.

3 Background

In this section, we provide an extensive overview
of non-contrastive representation learning and the
methods that form the core of our research.

3.1 Non-Contrastive Representation Learning

Recent advancements in the field of self-supervised
visual learning have extended beyond the tradi-
tional contrastive approach, exploring innovative
avenues that reduce the reliance on negative sample
pairs. These methods primarily focus on enhanc-
ing the quality of independently augmented rep-
resentations, forming a subset of non-contrastive
frameworks. To address challenges such as model
collapse, various effective strategies have emerged
within this domain. These include the adoption
of asymmetric network architectures (Grill et al.,
2020; Chen and He, 2020), feature decorrelation
techniques (Zbontar et al., 2021; Bardes et al.,
2022; Ozsoy et al., 2022; Ermolov et al., 2020),
as well as clustering methods (Amrani and Bron-
stein, 2021; Assran et al., 2022; Caron et al., 2019,
2020), all of which contribute to the progress in
self-supervised visual learning while addressing
the challenges inherent to this domain.

3.2 CorInfoMax

CorInfoMax (Ozsoy et al., 2022) utilizes a second-
order statistics-based mutual information measure
to gauge the level of correlation among its input
components. The primary aims of maximizing this
measure between different representations of the
same input are twofold: firstly, it mitigates the risk
of feature vector collapse by generating feature vec-
tors with non-degenerate covariances. Secondly, it
establishes relevance among these alternative rep-
resentations by enhancing their linear interdepen-
dence.
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Figure 3: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Online
Projection Model with SimCSE hyperparameters. The difference between models is the number of MLP layers.
MLP layer is adopted from BSL (Zhang et al., 2021b).

An approximation of this information maximiza-
tion objective simplifies into an Euclidean distance-
based objective function, which is further regulated
by the logarithm of the determinant of the feature
covariance matrix. This regularization term serves
as a natural safeguard against feature space degen-
eracy. Consequently, the proposed approach not
only prevents complete output collapse to a single
point but also effectively averts dimensional col-
lapse by encouraging the dispersion of information
across the entire feature space.

3.3 Barlow Twins

The Barlow Twins (Zbontar et al., 2021) is designed
to prevent collapse naturally. It accomplishes this
by assessing the cross-correlation matrix between
the outputs of two identical networks, which are
fed with altered versions of a sample. The goal
is to make this cross-correlation matrix as similar
to the identity matrix as possible. Consequently,
this approach ensures that the embedding vectors
of these distorted sample versions become more
alike, all while reducing redundancy among their
components. Importantly, Barlow Twins operates
without the need for large batch sizes or introducing
any disparities between the network twins, such
as the inclusion of a predictor network, gradient
stopping, or utilizing a moving average for weight
updates.

3.4 VICReg

VICReg (Bardes et al., 2022), short for Variance-
Invariance-Covariance Regularization, is an ap-
proach specifically designed to address the issue
of collapse straightforwardly. It accomplishes this
by introducing a simple regularization term that
focuses on the variance of the embeddings along
each dimension individually. In addition to the

variance component, VICReg incorporates a mech-
anism that reduces redundancy and ensures decor-
relation among the embeddings, achieved through
covariance regularization.

3.5 BYOL

BYOL (Grill et al., 2020) hinges on the utiliza-
tion of two distinct neural networks, namely the
online and target networks, which collaborate and
mutually enhance their learning processes. This
technique operates by presenting an augmented
view of an image to the online network, to train
it to predict the representation of the same image
as processed by the target network but under a dif-
ferent augmented view. Simultaneously, the target
network undergoes updates through a slow-moving
average mechanism based on the evolving state of
the online network.

This approach essentially fosters a dynamic inter-
play between the online and target networks, where
they iteratively adapt and refine their representa-
tions in response to the variations in augmented
views. Through this collaborative learning pro-
cess, BYOL aims to yield highly informative and
generalized feature representations, making it par-
ticularly valuable for self-supervised learning tasks,
where labeled data may be limited or unavailable.

4 From SimCSE to the UNSEE

In this section, we detail the methodology em-
ployed to derive the final UNSEE models from Sim-
CSE. The STSBenchmark evaluation dataset (Cer
et al., 2017) serves as the basis for identifying the
optimal configuration. We follow a systematic ap-
proach, progressively discussing enhancements and
offering justifications for each decision. It’s worth
noting that SimCSE achieves a score of 82.5 in
the STSBenchmark. However, we intentionally ex-
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Figure 4: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Single
Projection Model with SimCSE hyperparameters.

clude it from our figures as its high score can distort
the visualization in certain experiments.

4.1 Projection Model

In Figure 1, Projection Model corresponds to the
precise configuration outlined in SimCSE (Gao
et al., 2021b), wherein dropout serves as a straight-
forward augmentation technique.

Figure 2 offers compelling evidence of substan-
tial deficiencies in non-contrastive models when
employed within the SimCSE framework. It’s con-
ceivable to assert that these models undergo a repre-
sentation collapse during their training phase. This
leads to critical questions regarding the broader ver-
satility and generalization capacity of such objec-
tives, hinting at their potential effectiveness within
constrained domains or contexts.

Conversely, it is noteworthy that dropout aug-
mentation plays a pivotal role within the SimCSE
paradigm. This realization leads us to consider
the prospect of exploring alternative augmentation
techniques, aiming to delve deeper into the inher-
ent potential of non-contrastive objectives. This
exploration of diverse augmentation strategies has
the potential to reveal the true efficacy and versatil-
ity of these objectives, providing insights into their
capabilities beyond their current limitations.

4.2 Online Projection Model

Considering the notable underperformance of non-
contrastive objectives, it becomes imperative to
explore novel avenues for their improvement. As
highlighted by Gao et al. (2021a), most input space
augmentations are not as effective as dropout. This
finding casts doubt on the likelihood of discovering
an input augmentation method superior to dropout.

This recognition has guided our exploration to-
wards the creation of a new augmentation tech-
nique, specifically, the incorporation of a target

network. This method constitutes a relatively
straightforward feature space augmentation strat-
egy aimed at infusing greater diversity into the em-
beddings, surpassing the effectiveness of conven-
tional dropout. An analogy can be drawn to lagged
dropout, where networks undergoing dropout dis-
play subtle variations, and the target network func-
tions as a slow-moving average of the online net-
work, actively contributing to the diversification of
embeddings.

Figure 3 demonstrates that the utilization of a
target network effectively prevents representation
collapse, ensuring a more stable training process.
However, it is noteworthy that, even in situations
where representation collapse is avoided, the over-
all performance remains suboptimal. The introduc-
tion of additional parametrization through MLP
layers has only yielded a marginal impact on im-
proving performance.

An argument can be made that creating effective
sentence embeddings presents a more formidable
challenge when non-contrastive objectives are uti-
lized, especially in comparison to tasks related to
vision. In contrastive learning, the approach in-
volves actively pushing data samples apart to im-
prove discrimination. However, in sentence embed-
dings with non-contrastive objectives, this process
becomes implicit.

To draw a parallel, envision a scenario where
each sample is assigned a distinct label, yet some
labels are shared among the samples. Similarly,
when training a sentence embedding model with
non-contrastive objectives, it reflects this intricate
situation. We utilize a dataset consisting of ran-
domly sampled Wikipedia sentences collected in
SimCSE (Gao et al., 2021b). While each sentence
in the dataset may possess unique content, there
exist underlying semantic or syntactic relationships
among them, akin to the shared labels in the prob-
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Figure 5: The performance of various non-contrastive objectives on STSBenchmark (Cer et al., 2017) in the Single
Projection Model with slightly optimized hyperparameters. The difference between models is the number of MLP
layers. MLP layer is adopted from BSL (Zhang et al., 2021b).

lem we are considering. The inherent complexity
and the necessity to implicitly capture these rela-
tionships contribute to the intricacy of the sentence
embedding task when utilizing non-contrastive ob-
jectives.

4.3 Single Projection Model

In our Online Projection Model, it is crucial to em-
phasize the significant contribution of MLP layers
for both target and online embeddings. Importantly,
the sentence embeddings themselves are initially
obtained from the BERT model.

The MLP layers should not be viewed as static
components in our model architecture; instead, they
play a dynamic and transient role during the train-
ing phase. Their function is crucial in continually
shaping the embeddings for effective loss mini-
mization. However, it is important to emphasize
that the outputs produced by these MLP layers do
not represent the definitive embeddings used for
subsequent evaluation.

This leads us to an intriguing hypothesis: What
if we were to consider avoiding the involvement
of MLP layers in the processing of the target net-
work’s embeddings? By establishing a direct, un-
mediated connection between the loss minimiza-
tion process and the generation of embeddings, we
aim to explore whether such architectural simpli-
fication could yield substantial advantages. This
modification holds the potential to provide insights
into whether a more simplified approach might en-
hance both the efficiency of loss minimization and
the quality of the resultant embeddings, thereby
refining the overall training process.

The outcomes presented in Figure 4 closely align
with our hypothesis. Throughout the training pro-
cess, the models consistently showcased incremen-
tal performance improvements, surpassing the ac-

complishments of the preceding model while main-
taining identical complexities and hyperparameters.
While these results are undeniably promising, it
is crucial to acknowledge that they have not yet
reached the performance level observed in Sim-
CSE. This suggests that additional optimization
endeavors are necessary to narrow the gap and en-
able our models to attain the performance parity
with their SimCSE counterparts. Hence, there is
ample room for refinement and enhancement in our
pursuit of achieving comparable or even superior
performance.

We have significantly improved our model’s per-
formance by making relatively minor adjustments
to specific hyperparameters, with a particular fo-
cus on the learning rate, batch size, and sequence
length. The optimal hyperparameters are set to
1e-4, 32, and 64, respectively. The decay rate is
maintained at 0.999 consistently across all exper-
iments. Remarkably, these subtle modifications
have enabled us to achieve the highest attainable
scores among non-contrastive objectives, all with-
out delving into the optimization of hyperparam-
eters within the loss objective. It’s important to
note that we intentionally adhered to default values
for the objectives, highlighting the robustness and
transferability of these objectives across different
domains. This observation underscores the versatil-
ity of the objectives, demonstrating their effective
performance even when applied in contexts beyond
their original domain.

The outcomes shown in Figure 5 do not signify
the peak of our accomplishments. We have ob-
tained superior results by increasing the frequency
of evaluations (20 evaluations per run) throughout
the training process and introducing a checkpoint-
ing system to preserve the best-performing model.
These particular runs were crafted to be consistent
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Class. Clust. PairClass. Rerank. Retr. STS Summ. Avg.
Num. Datasets (→) 12 11 3 4 15 10 1 56

Self-supervised methods

Glove 57.29 27.73 70.92 43.29 21.62 61.85 28.87 41.97
Komninos 57.65 26.57 72.94 44.75 21.22 62.47 30.49 42.06
BERT 61.66 30.12 56.33 43.44 10.59 54.36 29.82 38.33
SimCSE 62.50 29.04 70.33 46.47 20.29 74.33 31.15 45.45
UNSEE-BYOL(Ours) 62.55 27.81 65.3 46.47 23.11 73.04 30.68 45.46
UNSEE-Barlow(Ours) 62.76 30.04 65.7 46.9 23.06 72.15 30.25 45.82
UNSEE-CorInfoMax(Ours) 62.85 28.90 67.87 46.81 24.80 72.31 30.81 46.22
UNSEE-VICReg(Ours) 62.58 28.44 70.24 47.23 24.79 73.11 30.34 46.37

Table 1: Average of the main metric from Muennighoff et al. (2023) per task per model on MTEB English subsets.
SimCSE, BERT, Komnimos, and Glove scores are taken from Muennighoff et al. (2023)

with our earlier experiments, intending to showcase
the effectiveness of the implemented adjustments.

5 Evaluation Dataset

5.1 MTEB Benchmark
The primary goal of the Massive Text Embedding
Benchmark (MTEB) (Muennighoff et al., 2023) is
to offer a comprehensive assessment of model per-
formance across a diverse range of text embedding
tasks. It serves as a valuable resource for identi-
fying text embeddings that exhibit universal appli-
cability across a wide spectrum of tasks. MTEB
encompasses an extensive collection of 58 datasets
spanning 112 languages, encompassing 8 distinct
embedding tasks, including bitext mining, classi-
fication, clustering, pair classification, reranking,
retrieval, STS (Semantic Textual Similarity), and
summarization.

6 BYOL, BSL and Final Results

In our paper, we extensively examine and engage in
discussions concerning non-contrastive objectives
that incorporate a siamese network architecture.
However, it’s important to note that our most effec-
tive configuration closely resembles BYOL (Grill
et al., 2020), and we have conducted training
to incorporate this configuration into our results.
The ultimate model we present is a variation of
BSL (Zhang et al., 2021b) with dropout serving as
an augmentation method.

Throughout our experimentation, it becomes evi-
dent that non-contrastive methods consistently out-
perform SimCSE as the table 1 verifies. The de-
gree of improvement varies, with some methods
showing only marginal enhancements, while others
exhibit significantly more substantial gains. This

overarching pattern underscores the compelling
impact of non-contrastive objectives on augment-
ing BERT’s proficiency as a sentence embedding
model.

While MTEB aims to encompass a wide range
of applications for sentence embeddings, there are
noticeable score discrepancies within UNSEE mod-
els. Despite their shared objective of optimizing
feature decorrelation, implicit in the case of BYOL,
differences in their problem formulations lead to
variations in scores across different subtasks. For
instance, UNSEE-Barlow excels significantly in
clustering compared to other objectives. One could
argue that the exclusive focus of Barlow Twins
on minimizing feature decorrelation might make
it more effective in information dissemination, re-
sulting in superior clustering. However, VICReg’s
incorporation of variance and invariance aspects
may pose challenges in achieving the same level
of clustering performance. Another question arises
regarding why this performance difference doesn’t
extend to retrieval. One possible explanation is that
retrieval requires a finer-grained spread within a
subspace, a quality that other objectives (excluding
Barlow Twins) may achieve due to their invariance
objective.

Nonetheless, our findings collectively reinforce
the notion that non-contrastive methods contribute
to a notable expansion of BERT’s capabilities, ef-
fectively harnessing its potential to serve as a highly
effective and versatile tool for generating sentence
embeddings. This empirical evidence underscores
the transformative role these methods play in en-
hancing the utility and adaptability of BERT across
various sentence-related tasks.
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7 Conclusion

UNSEE (Unsupervised Non-Contrastive Sentence
Embeddings) is a simple framework for non-
contrastive sentence embeddings, which outper-
forms SimCSE in the Massive Text Embedding
Benchmark (MTEB). We address representation
collapse using a simple solution called the target
network, enabling stable training and achieving
performance similar to contrastive objectives. Our
meticulous fine-tuning leads to performant sen-
tence embedding models, showcasing the signifi-
cance of thoughtful optimization in advancing non-
contrastive methods for sentence representation.

Limitations

UNSEE models have inherent limitations stem-
ming from their training data, which encompasses
only one million sentences. In contrast, state-
of-the-art embedding models undergo training on
datasets comprising over a hundred million, or even
more than a billion pairs. As a result, our models
are expected to exhibit inferior performance when
compared to models specifically designed for sen-
tence embedding. We recommend considering the
top-performing models on the MTEB leaderboard
for more effective practical use.

Ethics Statement

The models under examination, UNSEE-*, lack
generative abilities, ensuring their incapacity to
produce unfair, biased, or harmful content. The
datasets utilized in this study have been meticu-
lously selected from reputable repositories known
for their safety in research applications, with strict
measures in place to prevent the inclusion of per-
sonal information or offensive material.

Training Details

We implement UNSEE with SentenceTransformers
from (Reimers and Gurevych, 2019). Our code
is available at GitHub. To compare our models
while developing them we keep the hyperparame-
ters as same as the SimCSE which are 64 for batch
size, 3e-5 for learning rate and 32 for the sequence
length. When the target network is employed, the
decay rate is 0.999 throughout all experiments. Our
best models have 32 for the batch size, 1e-4 for the
learning rate, and 64 for the sequence length, decay
rate is the same. Best BYOL and VICReg mod-
els use 3 layers of MLP. CorInfoMax and Barlow

Twins use 4. We use the same MLP architecture
as BSL (Zhang et al., 2021b). In Barlow Twins,
we use the same λ as the original paper which is
0.0051. In VICReg, we use the same hyperparame-
ter weights from the original paper which are 25 for
invariance and variance, 1 for covariance. In Cor-
InfoMax, we use R_ini=1, la_=0.01,la_mu=0.01,
R_eps_weight=1e-6, 0.2 for covariance and 2000
for invariance loss.

Computational Requirements

We only use Tesla T4 GPUs for our experiments.
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