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Abstract

The field of machine learning (ML) has gained
widespread adoption, leading to significant de-
mand for adapting ML to specific scenarios,
which is yet expensive and non-trivial. The pre-
dominant approaches towards the automation
of solving ML tasks (e.g., AutoML) are often
time-consuming and hard to understand for hu-
man developers. In contrast, though human
engineers have the incredible ability to under-
stand tasks and reason about solutions, their
experience and knowledge are often sparse and
difficult to utilize by quantitative approaches.
In this paper, we aim to bridge the gap between
machine intelligence and human knowledge
by introducing a novel framework MLCopi-
lot1, which leverages the state-of-the-art large
language models to develop ML solutions for
novel tasks. We showcase the possibility of
extending the capability of LLMs to compre-
hend structured inputs and perform thorough
reasoning for solving novel ML tasks. And we
find that, after some dedicated design, the LLM
can (i) observe from the existing experiences of
ML tasks and (ii) reason effectively to deliver
promising results for new tasks. The solution
generated can be used directly to achieve high
levels of competitiveness.

1 Introduction

Past decades have witnessed a great advance and
rapid development of machine learning (ML), but
ML algorithms are still notoriously hard to config-
ure (Hutter et al., 2019). For specific tasks, config-
uring and conducting corresponding ML solutions
is non-trivial, which thus requires extensive human
labor. Many challenges arise in developing practi-
cal ML solutions. First, it is of large human efforts
considering the large space of ML solutions, such

∗Work done during Lei Zhang’s internship at Microsoft
Research Asia. Correspondence to Kan Ren.

1Examples and code available at https://github.com/
microsoft/CoML

as feature engineering, model design, optimization
details, etc. Second, ML algorithms are sensitive
to even minor changes of the task context. As a
result, even the same algorithm may need to be re-
configured for different application tasks. Last but
not least, transferring successful experiences across
different tasks is also intractable, which demands
high-level reasoning abilities of human experts to
derive reasonable solutions for novel tasks.

The predominant approaches that relieve the hu-
man effort of algorithm configuration have been
some automation mechanisms such as AutoML
(Automated Machine Learning) (Hutter et al.,
2019). One major branch of AutoML formulates
the problem as black-box optimization, and re-
sorts to some optimization approaches such as
Bayesian optimization (BO) (Frazier, 2018) to
solve it. Though the obtained results are shown
to be promising, it is time-consuming to spawn
multiple trials, especially for large datasets and
complex tasks. Moreover, AutoML does not follow
the natural pattern of ML development that humans
are accustomed to, which leaves a huge gap for hu-
mans to understand and control the whole process.
Specifically, it is either difficult to explain the be-
havior of auto-tuning, or intractable to incorporate
human prior such as the knowledge of the model ar-
chitectures into the process, making it less flexible
for human developers. Furthermore, the ML solu-
tions derived by these optimization-based methods
may only fit to the specific domains, and the trans-
ferring ability of these results also remains an open
problem (Chen et al., 2022; Yan et al., 2022).

Contrarily, we notice two tendencies in how hu-
mans approach an ML task. Instead of jumping
into solving the new task directly, humans often
try to comprehend the task at hand and draw from
their past experiences on relevant tasks. Addition-
ally, humans recall their knowledge, which may
have came from a textbook or prior experiences.
This process differs significantly from the auto-
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mated approach mentioned earlier, which leads us
to a natural question: can we leverage both ma-
chine intelligence and human design patterns to im-
prove our ability to solve ML tasks? The advances
of Large Language Models (LLM) (Brown et al.,
2020; Chowdhery et al., 2022; Ouyang et al., 2022)
have illustrated tremendous promising performance
in mimicking human behaviors on conversation-
based tasks. It seems plausible to utilize the power
of LLM to address ML problems in a more human-
like way.

Nevertheless, several challenges remain when
incorporating LLMs to achieve this goal. First,
we discovered that LLMs have trouble performing
ML tasks based solely on the task description, in
which case the performance is no better than ran-
dom generation. Attempting to leverage historical
ML experience, we found that the data often re-
side in heterogeneous formats (e.g., code, configs
and logs), which need to be canonicalized into for-
mats that are acceptable to LLMs. Moreover, the
amount of information that can be incorporated into
in-context learning (Brown et al., 2020) is quite lim-
ited, and thus some retrieval strategy is desired to
make the best out of it. Finally, deriving a ML solu-
tion based on historical experience is in its essence
a mathematical thinking and logical reasoning prob-
lem (Patel et al., 2021), which necessitates some
mechanisms to reasoning over knowledge.

In this paper, we explore and present a novel
framework MLCopilot, which leverages LLMs to
suggest solutions for novel real-world ML tasks,
based on the existing experiences from historical
tasks. We decompose the problem into offline
and online stages. In the offline stage, MLCopilot
canonicalizes historical data and creates an expe-
rience pool. LLMs are then used to elicit valuable
knowledge from historical experience. In the on-
line stage, MLCopilot retrieves experiences from
the most relevant tasks from the experience pool,
given the description of the target task. It then inter-
acts with LLMs to obtain multiple suggested ML
solutions in one round. We demonstrate that, with a
well-designed framework, LLMs can not only elicit
meaningful knowledge from historical experiences
but also provide reasonable and competitive ML
solutions for novel tasks.

Our work presents a three-fold contribution,
which can be summarized as follows. (i) To the best
of our knowledge, we are the first to utilize LLMs
as a tool to generate solutions for new ML tasks.
(ii) A novel retrieve-and-prompt framework has

been proposed to solve ML tasks almost instanta-
neously, without any time-consuming searching or
optimization. (iii) We leverage the text understand-
ing and generation capabilities of LLMs to produce
interpretable2 results for ML tasks. This approach
has shown comparable or even better performance
on a variety of real-world ML benchmarks.

2 Related Work

2.1 Large Language Models
Large language models (LLMs) are neural net-
works of significant sizes (typically containing
tens or hundreds of billions of parameters). They
have gained the incredible ability of processing and
generating natural languages, due to the training
on massive amounts of text data (Radford et al.,
2018, 2019; Brown et al., 2020). Studies show
that LLMs beyond a certain scale have “emergent
abilities” (Wei et al., 2022), and perform remark-
ably well in applications such as chatbots, machine
translation, and text summarization (Zhao et al.,
2023; Touvron et al., 2023).

While LLMs have illustrated superior perfor-
mance on natural language understanding and
human-like text generation, they are still quite
limited for complicated tasks that require reason-
ing (Huang and Chang, 2022) and mathematical
skills (Patel et al., 2021; Thawani et al., 2021; Han
et al., 2022; Saxton et al., 2019). The stream of task
automation (Lu et al., 2023; Shen et al., 2023) in-
vestigated a general approach to decompose a task
into a sequence of sub-tasks, but they are orthog-
onal to our work, since they did not take into past
experience or knowledge from other tasks when
planning a new task.

2.2 Machine Learning and AutoML
Machine learning (ML) is a subfield of artificial
intelligence (AI) that involves developing optimiza-
tion algorithms that can learn from data and make
predictions (Bishop and Nasrabadi, 2006) or de-
cisions (Sutton and Barto, 2018). Although ML
has been successful in many real-world applica-
tions, designing an effective ML solution for a new
task can be challenging due to the numerous design
choices required. AutoML (Hutter et al., 2019)
emerges as an approach to alleviate the manual ef-
fort involved. Popular methodologies include neu-

2The concept of “interpretability” in the context of our
work primarily pertains to the human-readable knowledge
generated by LLMs, which serves as a transparent reference
for decision-making.
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Term Definition Example
Task T ML problem to solve (optionally with constraints). Find an optimizer for a ResNet on ImageNet dataset.
Solution space S Solution hypothesis space to the task. Optimizer: {Adam, SGD}; Learning rate: [10−6, 0.1].
Solution S One particular choice within solution space. 2-layer ResNet with SGD optimizer using LR 10−3.

Experience E Successful solutions on historical tasks.
SGD with lr 0.024 achieves 76.2% accuracy for
ResNet on ImageNet.

Knowledge K High-level information acquired from experiences.
Usage of small LR makes training slower but could
yield better final result.

Table 1: Terminologies used throughout this paper.

ral architecture search (NAS) (Pham et al., 2018),
meta-learning (Andrychowicz et al., 2016), and
Bayesian optimization (Frazier, 2018).

AutoML is able to reach beyond-human lev-
els in solving ML tasks, but it still faces a few
drawbacks. First, most AutoML methods require
many rounds of trial-and-error, which can be time-
consuming. Second, AutoML typically searches
from scratch for a new task and neglects the expe-
rience on previous tasks. Finally, most AutoML
methods are not interpretable due to their black-
box nature, which excludes human understanding.
Some methods may address one or two of the draw-
backs, but not all of them. For example, the stream
of transferrable AutoML research seeks to lever-
age past experience to assist in searching for new
tasks (Bardenet et al., 2013; Wistuba et al., 2016;
Mittal et al., 2020; Yan et al., 2022; Wang et al.,
2021a), but they lack interpretability and most of
them only work for specific types of tasks. A recent
study (Chen et al., 2022) aims to use Transformer
model (Vaswani et al., 2017) with large-scale pre-
training to deal with broader types of tasks, but it
is still non-interpretable and a cost search remains
required for new tasks. Most recently, (Zheng et al.,
2023) tried to search for neural architectures using
GPT-4 (OpenAI, 2023). It prompts LLM to explain
rationales, but it only explores model architectures,
and still requires costly trial-and-error.

3 Preliminaries

The goal of MLCopilot is to assist humans in solv-
ing complex ML problems. Generally speaking,
given a task which is a real-world problem for ML
models to tackle, the goal of ML development is
to conduct a concrete solution. The solution can
be either a pipeline, configuration, or code snippet,
based upon which a concrete ML model could be
learned to handle the target task. The solution is
also a particular sample within a complicated so-
lution space that involves various design choices.
These choices are mutually correlated and the out-
come of different alternatives often influences the

others and eventually affects the final performance
of the overall ML solution.

To create reasonable ML solutions for new tasks,
we can draw on experiences from previous relevant
tasks. MLCopilot is designed to use historical ex-
periences for knowledge elicitation and effectively
conduct effective solutions for the given novel ML
task (details in § 4). To improve comprehension
and clarity, we summarize the terminologies with
descriptions and examples in Table 1.

4 MLCopilot

In this section, we present MLCopilot, with the for-
mulation of the main problem and the overall archi-
tecture of our method. Then, we will describe some
key components of MLCopilot in detail, including
target task description, retrieval, canonicalization,
and knowledge elicitation.

4.1 Overall Framework
As discussed previously, to unleash the power of
LLMs in solving complex ML tasks, explicitly
leveraging historical experience is crucial. How-
ever, utilizing past experience is not straightfor-
ward considering the heterogeneous data format
and the huge number of records. Therefore, our
technical design mainly focuses on addressing two
problems: (i) how to comprehend and exploit the
abundant raw experiences; (ii) how to effectively
solve ML tasks based on the result of (i).

The main idea behind MLCopilot is knowledge-
based reasoning, that is to leverage LLMs to con-
duct reasoning and task solving based on the pre-
vious knowledge, which has been analyzed and
elicited from past experiences. To this end, ML-
Copilot contains two stages, including offline and
online parts, both of which have been visually il-
lustrated in Figure 1. In the offline stage, LLM has
been incorporated to analyze the canonicalized his-
torical experience data and elicit useful knowledge.
And in the online stage, the user will query ML-
Copilot, which is also built upon LLM, to obtain a
suitable ML solution for the novel task.
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Offline stage

MLCopilot

Task description T̃
The task is to classify a brain tumor based on a
mpMRI scan. The dataset contains ~400k samples.

Demonstrations Ẽ
Task: Classify a lung tumor based on blood test
report. The dataset contains around 1k samples.
Solution: Model is xgboost. Using small max depth.
Task: Shoulder X-ray classification. Diagnose type
are A1, C1, D1. The dataset contains 500 samples.
Solution: Using pretrained EfficientNet-B0. Finetune
with a low learning rate and high weight decay.

Knowledge K̃
1. CNN is commonly used for image datasets. For
tabular datasets, use decision tree algorithms.
2. Use a low learning rate when finetuning on a
pretrained model. Use a high learning rate to
converge faster.
3. For small datasets, control regularization
parameters like max depth to prevent overfit.

Online stage

Experience pool PE

2. Retrieve
Experience

Knowledge pool PK

Offline Elicitation
（with LLM)

3. Retrieve
Knowledge

1. Describe
task

Solution
Finetune on a pretrained EfficientNet-B0 with
low learning rate and low weight decay.

User

Historical data H

Canonicalization

4. Prompt LLM

MLCopilot

Task description T̃
The task is to classify a brain tumor based on a
mpMRI scan. The dataset contains ~400k samples.

Demonstrations Ẽ
Task: Classify a lung tumor based on blood test
report. The dataset contains around 1k samples.
Solution: Model is xgboost. Using small max depth.
Task: Shoulder X-ray classification. Diagnose type
are A1, C1, D1. The dataset contains 500 samples.
Solution: Using pretrained EfficientNet-B0. Finetune
with a low learning rate and high weight decay.

Knowledge K̃
1. CNN is commonly used for image datasets. For
tabular datasets, use decision tree algorithms.
2. Use a low learning rate when finetuning on a
pretrained model. Use a high learning rate to
converge faster.
3. For small datasets, control regularization
parameters like max depth to prevent overfit.

Figure 1: Overview of MLCopilot. MLCopilot has offline and online stages.
During the offline stage, it creates pools of experience and knowledge. In
the online stage, it retrieves experience and knowledge based on the novel
task description. Finally, MLCopilot invokes LLM and returns solutions.

Historical data H

Canonicalize

Knowledge
1. Decision tree models work better for tabular
datasets. CNN work better for image datasets.
2. For small datasets, set max depth to lower for
RandomForest to reduce chances of overfitting.

Historical data 1
Task: Shoulder X-ray classification. ...
YAML:
model:
  type: resnet
  depth: 50
  pretrained: imagenet
Accuracy: 75.93%

Historical data 2
Task: Shoulder X-ray classification. ...
JSON:
{
  "model": "effnet-b5",
  "pretrained": true
}
Accuracy: 80.08%

Historical data 3
Task: Classify lung tumor. ...
Code:
model = RandomForest(
  n_estimators=30,
  max_dpeth=6
)
Accuracy: 53.3%

Experience pool PE

Experience 1
Task: Shoulder X-ray classification. ...
Solution: Model is ResNet. Depth is
medium. Pretrained dataset is
ImageNet.
Accuracy: fair

Experience 2
Task: Shoulder X-ray classification. ...
Solution: Model is EfficientNet-B5.
Pretrained dataset is ImageNet.
Accuracy: good

Experience 3
Task: Classify lung tumor. ...
Solution: Model is RandomForest.
Number of trees is low. Max depths is
medium.
Accuracy: good

Elicit Post-validation

Figure 2: Offline stage: canoni-
calization, knowledge elicitation.

4.1.1 Offline Stage: Understanding and
Reasoning

We first present the data settings and describe the
corresponding preprocessing procedure briefly. Let
H = {D1, . . . , DNH

} be the raw historical data
with NH previous records. The i-th record Di is
defined as a three-element tuple ⟨Ti, Si,Mi⟩ which
contains a task Ti ∈ T, a solution Si ∈ S, and the
evaluated metric performance Mi, e.g., classifica-
tion accuracy.

Note that, the historical data H may have het-
erogeneous and diverse formats. For example, the
task can be described in the natural text, while the
solution can be a JSON configuration, a row of tab-
ular data, or code snippets. An experience pool PE

is constructed, to canonicalize the data and store
them as experiences PE = {E1, . . . , ENE

}, where
Ej = C(Dj), and C(·) is the canonicalization func-
tion. For the simplicity of notations, we assume
all the solutions within PE come from a universal
solution space. It is easy to extend the framework
to scenarios with multiple solution spaces.

Knowledge, is high-level information acquired
from the experience (Dictionary, 1989), and we
leverage LLM to elicit knowledge from the con-
structed experience pool, in the offline stage.
Knowledge is the easy-to-understand summariza-
tion of previous ML experiences, which will further
be utilized when inferring the final solution in the
online stage. To be specific, a subset of experience
is first sampled from the experience pool, then a
LLM is incorporated to read and understand the ex-

perience data, allowing us to “elicit” knowledge K
from it. The process of elicitation is formulated as
K = IK(PE ; LLM), which is an iterative process
by interacting with LLM along with post-validation
on the obtained knowledge. The detailed process
of elicitation is discussed in § 4.5. All the gen-
erated knowledge is stored in a knowledge pool
PK = {K1, . . . ,KNK

} with totally NK items.
The obtained experience pool and knowledge

pool will be further utilized by MLCopilot in the
online stage, to conduct reasonable, promising, and
competitive ML solutions for novel tasks.

4.1.2 Online Stage: Retrieving and Solving
The online stage of MLCopilot aims to conduct
reasoning and task solving based on the off-the-
shelf information obtained from the offline stage.
Specifically, given the user query with a task de-
scription, MLCopilot will respond with the corre-
sponding reasonable ML solutions via retrieving
relevant experiences and knowledge, and interact-
ing with LLM by a curated prompt, in one round.

When a user comes with a novel target task T̃ ,
which has never been seen in history, MLCopilot
first retrieves the relevant experiences of other rel-
evant tasks as demonstrations Ẽ = RE(T̃ , PE),
where RE(·) is the retrieval functions for the ex-
perience pool. It also retrieves knowledge K̃ =
RK(T̃ , PK) to guide the response on the new
task, where RK(·) is the retrieval functions for
the knowledge pool. MLCopilot finally generates
a recommended solution by invoking LLM once:
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S̃ = LLM(T̃ , Ẽ, K̃).
The framework is shown in Figure 1, where we

illustrate an example of how MLCopilot handles
a task to classify a brain tumor by leveraging pre-
vious experiences and knowledge. Next we will
introduce the dedicated components in detail.

4.2 Task Description in Natural Language

Firstly, we show how the target task is described in
our framework, which is the input to MLCopilot.
The prior works (Feurer et al., 2015; Wang et al.,
2021a) usually use meta-features designed by hu-
mans for specific types of tasks (e.g., the number
of samples in the dataset) to describe a task, so as
to ease the difficulty of comprehending the task.
However, such design might degenerate the ability
of LLM to generalize to new types of tasks. We
believe that task description in natural language is
more straightforward to users. It is also agnostic
to task types, and does not require heuristics to
design meta-features. As such, we adapt the task
description without any feature engineering, and
users can freely describe dataset names, character-
istics, domain-specific constraints, and more. Fur-
thermore, our experiments (§ D) illustrated that in-
corporating a natural language user interface helps
recall and leverage previous knowledge contained
in the training corpus of LLMs.

4.3 Retrieval

The retrieval technique has been used to (i) gather
some demonstrations of the historical ML solutions
to the relevant tasks and (ii) apply useful knowl-
edge previously to further motivate and prompt the
LLM to better solve the target ML task.

We first discuss how to retrieve experienceRE

as demonstrations Ẽ. Intuitively, the most helpful
experience in solving a new task should come from
the most relevant tasks. The key question then be-
comes how relevance is defined. To this end, we
first embed the task description by invoking a lan-
guage model E (e.g., GPT-3 (Brown et al., 2020)) to
generate a embedding vector of the textual content.
Given a new task T̃ , MLCopilot retrieves the most
relevant historical tasks from the experience pool
PE by calculating the cosine similarity between the
embeddings of the new task and the stored tasks.
The corresponding experience to these embeddings
will serve as demonstrations Ẽ, as calculated as

Ẽ = RE(T̃ , PE) = arg top-k
⟨T,S,M⟩∈PE

(
E(T ) · E(T̃ )
|E(T )| · |E(T̃ )|

)
,

where the most relevant k entries of experience will
be retrieved for subsequent demonstration.

The retrieval of knowledge RK is based on
matching of solution space – retrieving all the
knowledge that are elicited from the same solu-
tion space as the new task, from the knowledge
pool PK . This simplicity ofRK is due to the fact
that the knowledge produced in the offline stage of
MLCopilot is concise and of high quality, whose
generation procedure will be discussed in § 4.5.

4.4 Canonicalization
As mentioned previously, the data of raw ML ex-
perience are heterogeneous and of diverse formats.
While some of them (e.g., task descriptions) have
already been in natural text format, the ML solu-
tions and the corresponding metric performance
are often expressed in structured configurations,
tabular formats, or programming languages. More
importantly, they might even contain a lot of num-
bers, which language models or even LLMs are not
good at processing and understanding (Thawani
et al., 2021; Han et al., 2022; Saxton et al., 2019).
To better unleash the power of LLM, we canonical-
ize all the data to express it in natural language.

The essential part of canonicalization is to con-
vert the raw data into a well-formed natural lan-
guage, as shown in the left part of Figure 2. Other
than unifying the solutions in diverse formats, a
crucial technique is number discretization which
avoids feeding numbers to LLM directly. We fol-
low (Thawani et al., 2021) that discretizes continu-
ous numerical data into several intervals, and map-
ping each value within each interval to the same
discrete value. To minimize performance loss, we
discretize each numerical value based on the corre-
sponding distribution and percentile points. More
details can be found in § 5.1.

4.5 Knowledge Elicitation
With the canonicalized experience stored in pool
PE , MLCopilot can then elicit knowledge, to bet-
ter support the online stage for solving novel ML
tasks. It is important to note that knowledge elicita-
tion occurs offline, prior to serving user tasks. The
approach involves the following steps: (i) construct-
ing a prompt that consists of a random subset of
the experience pool (to avoid bias towards certain
tasks), along with an inquiry that asks for analysis
and summary; (ii) sending the prompt to LLMs to
generate a knowledge “candidate”; (iii) validating
the candidate on experience pool. The flow of this
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process is illustrated in the right part of Figure 2
(pseudo-code in § A).

We elaborate on the validation step, which we
call automated post-validation after requesting
knowledge from the LLM. This step is designed
to alleviate the hallucination issue (Ji et al., 2023)
and raise the quality of generated knowledge. It
tests the knowledge by using it to solve a set of
validation tasks. If the generated knowledge is
found invalid (e.g., due to hallucination), it adjusts
the generation settings, such as the order of experi-
ences in the prompt, tone of hypophora questions,
and parameters of LLM invocation, and let LLM
regenerate knowledge. This iterative process con-
tinues until the performance on the validation tasks
has been converged, or the invocation has reached
the maximum number. This process can be repre-
sented formally as K = IK(PE ; LLM).

We argue that our knowledge elicitation is novel
and different from prior works of knowledge ex-
traction (Zhang et al., 2022) or knowledge gen-
eration (Yu et al., 2022; Lu et al., 2023) in natu-
ral language processing. Firstly, our knowledge
is obtained from heterogeneous resources using
general text completion models, without requiring
predefined templates or complicated pipelines. Sec-
ondly, acquiring knowledge for ML tasks requires
analysis, summarization, and high-level reasoning,
which is significantly more challenging than sim-
ply extracting simple facts (Zhang et al., 2022). Fi-
nally, the knowledge is anchored in experience data,
rather than purely based on LLM’s pre-training cor-
pus (Yu et al., 2022), which makes the framework
scalable to new scenarios.

Knowledge elicited by MLCopilot can be ben-
eficial not only for LLMs but also for human ML
practitioners. Since the knowledge is expressed
in natural language, it could potentially serve as a
cookbook for ML developers. In an effort to share
our findings and inspire future ML research, we
have released all the knowledge obtained so far
(see § E). Hopefully this will reveal some of the
“secret sauce” behind how ML works and promote
knowledge sharing within the community.

5 Experiment

We evaluate MLCopilot on a series of benchmarks,
aiming to answer the following research ques-
tions: (i) Can MLCopilot outperform traditional
approaches or simple interactions with LLMs? (ii)
How important are individual techniques in ML-

Copilot, e.g., knowledge and experience? (iii) Is
the elicited knowledge informative and reasonable?

5.1 Experiment Setup

Implementation details. The current implemen-
tation of MLCopilot involves maintaining dedi-
cated experience and knowledge pools for each
solution space. The historical data is sourced
from the benchmarks described below, while task
descriptions are crawled from benchmark web-
sites. Numerical values in the data are discretized
into five levels: “very low”, “low”, “medium”,
“high”, and “very high”. The precise value of
each level is determined by analyzing the statis-
tics of the best solutions within the solution space
(see detailed analysis in § 5.3). We interact with
the general-purpose GPT-3.5 model3 (code-named
“text-davinci-003”, without additional fine-tuning),
and “text-embedding-ada-002” to obtain embed-
dings for task descriptions. (Results with other
LLMs can be found in § D.3.) The temperature is
set to 0 to minimize randomness. Additional details
regarding prompt design can be found in § C.
Benchmarks. We selected benchmarks that have
established a predetermined solution space for all
possible solutions and provided performance met-
rics for all the solutions in the solution space (either
through a lookup table or surrogate). We conducted
experiments using MLCopilot on three ML bench-
marks: HPO-B (Arango et al., 2021), PD1 (Wang
et al., 2021b), and HyperFD (Yan et al., 2022).
These benchmarks comprise numerous ML tasks
and datasets, covering a broad spectrum of sce-
narios such as tabular data classification and re-
gression, image classification, and object detection.
Details can be found in § B.1.
Evaluation metrics. In each experiment, every
compared method makes three attempts to predict
successful solutions for an unseen task. Solutions
are evaluated in the order they were suggested.
Metric@t, where t ≥ 1, is defined as the best
metric performance achieved among the first t sug-
gested solutions. The reported performance metrics
are averaged over at least 5 random seeds.

5.2 Main Results

We show the performance of MLCopilot in Table 2.
Baselines we compared with include:

• Traditional AutoML or meta learning methods,
3https://platform.openai.com/docs/models/

gpt-3-5
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Method HPO-B ↑ PD1 ↑ HyperFD (Rank ↓ AP ↑)
nAcc@1 nAcc@2 nAcc@3 nAcc@1 nAcc@2 nAcc@3 Rank@1 Rank@2 Rank@3 AP@1 AP@2 AP@3

Random 54.70 60.70 64.80 -0.86 -0.08 0.39 109.55 73.16 54.79 90.76 91.20 91.38
Constant 72.85 74.61 75.02 1.27 1.56 1.59 78.00 54.33 49.25 91.13 91.23 91.28
TST-M 72.73 74.44 74.56 1.10 1.35 1.40 57.67 43.50 42.67 91.22 91.37 91.38

HyperSTAR 67.37 68.14 68.71 1.10 1.27 1.34 97.75 72.97 52.03 90.78 91.05 91.25
ASKL 77.01 81.76 85.02 1.26 1.29 1.44 92.58 64.67 51.25 90.93 91.15 91.34

FLAML 77.84 82.95 88.06 1.28 1.31 1.58 66.42 43.33 31.83 91.09 91.29 91.33
HyperFD – – – – – – 56.97 47.91 31.75 91.17 91.26 91.44
LLM-ZS 61.37 79.41 80.56 -1.03 1.25 1.26 119.25 90.42 41.00 90.69 90.96 91.38
LLM-FS 78.93 83.10 89.73 0.43 0.57 0.62 66.69 52.43 40.98 91.26 91.40 91.48

MLCopilot 81.59 83.23 90.72 1.48 1.54 1.62 59.74 38.67 25.58 91.38 91.60 91.66

Table 2: Main results on HPO-B, PD1 and HyperFD. nAcc, AP: the higher the better. Rank: the lower the better.

including Random, ASKL (Feurer et al., 2015),
Constant (Bardenet et al., 2013; Kotthoff et al.,
2019), TST-M (Wistuba et al., 2016), Hyper-
STAR (Mittal et al., 2020), HyperFD (Yan et al.,
2022) and FLAML-Zero (Wang et al., 2021a).
Details described in § B.2.

• LLM-ZS directly prompts LLM to generate a
zero-shot solution based solely on the task de-
scription, which is similar to using tools such as
GitHub Copilot4 or Amazon CodeWhisperer5.

• LLM-FS uses the few-shot prompt tech-
nique (Brown et al., 2020) by adding some
demonstrations to the prompt to enable in-
context learning. The demonstrations are ran-
domly selected from our canonicalized experi-
ence pool. Unlike MLCopilot, LLM-FS does
not have access to advanced techniques such as
experience and knowledge retrieval.

MLCopilot achieved the highest normalized ac-
curacy (nAcc) across all three trials. The improve-
ment is particularly significant for the first attempt
(nAcc@1). It is remarkable that LLM-FS has al-
ready surpassed all the traditional baselines, sug-
gesting the large capability of LLMs on ML tasks.

On PD1, Normalized accuracy (nAcc) are in
range [−2, 2] following the setting of (Wang et al.,
2021b). MLCopilot remains the best out of all
methods compared. Notably, “Constant” baseline
almost outcompetes all other baselines, which casts
doubt on the effectiveness of the task similarities
measured by other baselines. Meanwhile, both
LLM-ZS and LLM-FS fail on PD1, indicating PD1
is more challenging for LLMs.

For HyperFD, Following (Yan et al., 2022), we
use average precisions (AP) (the higher the better)
and rankings (within [1, 216], the lower are bet-
ter) to measure the performance. Similar to what

4https://github.com/features/copilot
5https://aws.amazon.com/codewhisperer/

was observed in HPO-B, LLM-FS achieves com-
parable performance to most baselines with a few
demonstrations. It is expected that the performance
of LLM-FS would improve with the inclusion of
techniques from MLCopilot. However, it is worth
noting that HyperFD is a private benchmark and
its benchmark was released after the knowledge
cutoff of GPT-3.5, making it unlikely that LLM has
memorized the best solutions on this benchmark.

5.3 Ablation study

In the ablation study, we use nAcc@1 (or Rank@1)
as the main metric for comparisons.
Study of retrieval. The first question we are
trying to answer is whether retrieving experience
and knowledge are necessary – what happens if
either of them is missing from the prompt sent to
LLM? The results are shown in Table 4. While
the absence of knowledge leads to a reduction in
performance, the absence of demonstrations leads
to a complete collapse. Examining the knowledge
generated (§ E), we found it often contains vague
claims such as “The size of the dataset can in-
fluence the configuration of eta” (HPO-B, Space
5971). The knowledge did not clarify what is the
“influence”, which is why experience is still much
needed even with the presence of knowledge.

We then compare different retrieval methods
(“Pipeline MLCopilot” columns in Table 3). ML-
Copilot retrieves the most relevant tasks based on
the embedding of textual description. Alternatively,
we can (i) measure similarities based on meta-
features; (ii) simply retrieve experiences randomly.
Shown in Table 3, both meta-feature and text em-
bedding consistently outperform random retrieval.

When choosing between meta-features or text
embedding, we believe that the latter has demon-
strated advantages over manually designed meta-
features. This is partly due to the fact that the
performance of meta-features depends largely on
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Retrieved by
Pipeline HPO-B ↑ PD1 ↑ HyperFD ↓

ASKL MLCopilot ASKL MLCopilot ASKL MLCopilot

Text embedding 75.34±0.00 81.59±0.94 1.40±0.00 1.48±0.06 79.17±0.00 59.74±1.89
Meta-feature 80.61±0.00 83.29±1.46 1.02±0.00 1.41±0.09 107.67±0.00 50.49±6.38

Random 73.67±2.51 78.00±2.82 0.06±0.25 1.37±0.12 84.23±14.84 57.95±10.19

Table 3: Comparison of approaches to retrieve experience (i.e., based on what measures to retrieve the experience)
and to consume the retrieved experience (ASKL: directly use the solutions for retrieved tasks on the new task;
MLCopilot: use the retrieved experience as demonstrations along with knowledge to prompt LLM).

Retrieve HPO-B ↑ PD1 ↑ HyperFD ↓
Exp.+Know. 81.59±0.94 1.48±0.06 59.74±1.89

Know. 62.77±1.78 1.10±0.00 127.75±0.00
Exp. 76.21±0.16 1.36±0.09 63.20±3.55

Table 4: Effect of retrieving experience and knowledge.

the quality of their design. While meta-features
have been shown to be promising for tabular
datasets where they are well-studied and carefully
designed (Feurer et al., 2015; Wang et al., 2021a),
the design of meta-features for complex tasks in
PD1 is non-trivial. In contrast, the text embedding
approach has the additional advantage of not re-
quiring any manual design for new types of tasks.
Furthermore, text embedding is more promising for
handling new and varied tasks, while meta-feature
for new tasks is not easily scalable.

Nevertheless, we would like to emphasize that
the key factor is not solely the method of retrieving
experience, but rather how the retrieved experience
is utilized. When the retrieved experience is used
directly, as done in ASKL, all retrieval strategies
perform poorly. In contrast, MLCopilot has the
ability to not only retrieve relevant experience, but
also provide guidance through elicited knowledge
and leverage the power of LLMs.
Study of canonicalization. As shown in Table 6,
the performance suffers considerably without dis-
cretization as sending continuous numerical values
directly to LLM is not feasible. Furthermore, it
is crucial to compute the split points based on the
statistics of the best solutions. If the range is ex-
panded to include all possible values, the split point
may not fall on the sensitive points, resulting in sub-
par performance. This is demonstrated by “On All”
in Table 6, which performs even worse than no
discretization at all6.
Study of knowledge. In Table 5, we conducted
an ablation study to evaluate the impact of knowl-
edge on our method. The results show that, remov-
ing knowledge retrieval in the online stage of our

6Please note that HyperFD is not included in the ablation
study as it adopts a discrete solution space.

Method HPO-B ↑ HyperBO ↑ HyperFD ↓
MLCopilot 81.59±0.94 1.48±0.06 59.74±1.89

w/o Post-Val. 78.34±0.71 1.44±0.05 62.41±3.66
w/o Know. 76.21±0.16 1.36±0.09 63.20±3.55

Table 5: Ablation on knowledge utilization in online
stage and post-validation in offline stage.

Discretization HPO-B↑ PD1 ↑ HyperFD↓
On Best 81.59±0.94 1.48±0.06 59.74±1.89
On All 70.82±0.01 1.41±0.02 –

✗ 74.09±0.44 1.45±0.05 84.96±7.16

Table 6: Discretization in canonicalization.

method results in a significant decrease in the final
performance. This is because knowledge is instru-
mental in helping LLMs arrive at the most effective
solutions. Furthermore, the post-validation in elici-
tation procedure in the offline stage of MLCopilot
also plays a vital role in enhancing its usefulness.

Based on our qualitative study on the generated
knowledge (see § E), we found that, the knowledge
serves as a helpful summary of past ML experi-
ences while providing guidance on how to adjust
parameters and settings based on task characteris-
tics. We observe that post-validation significantly
reduces the chances that trivial, vague, or halluci-
nated knowledge is produced, although such knowl-
edge is still sometimes observed. For example, in
the case of “UniRef50” task with “Transformer”
model on PD1, the knowledge contains certain nu-
merical examples that were not part of the demon-
strations and instead the result of hallucinations.

6 Conclusion

In conclusion, this paper proposes MLCopilot, a
framework that unleashes the power of LLMs to
solve practical ML tasks. MLCopilot showcases
the versitility of LLMs, that it can handle not only
text-related tasks, but also tasks involving hetero-
geneous inputs and intricate reasoning. We believe
this represents a significant advancement in expand-
ing the scope of LLM applications to a broader
spectrum of complex problems.
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7 Ethical considerations

The architecture of MLCopilot is meticulously en-
gineered to ensure that the solutions it recommends
always remain within the bounds of the solution
space provided by the user. As a result, it acts as
a safeguard against the generation of unethical so-
lutions, provided that the defined solution space
adheres to ethical standards.

However, the foundational techniques outlined
in this paper, including experience retrieval and
knowledge elicitation, possess broader applicabil-
ity across various scenarios beyond machine learn-
ing, such as task automation (Lu et al., 2023) and
scientific research (Boiko et al., 2023). In these
contexts where the solution space extends beyond
the constraints of a strictly-defined machine learn-
ing problem and where Large Language Models
(LLMs) exhibit inherent limitations, the potential
for unpredictability arises. Therefore, it becomes
imperative to exercise ethical prudence when de-
ploying MLCopilot in diverse cases.

8 Limitations

Potential data leakage. Since LLMs are trained
on large corpus of data from Internet, it is likely
that the benchmarks (especially HPO-B based on
OpenML) have already been encountered during
the pre-training phase of LLMs. To mitigate this
potential bias, we conducted an evaluation of ML-
Copilot on HyperFD (Yan et al., 2022). It is worth
noting that the HyperFD dataset was introduced in
a paper published after the knowledge cutoff date
of GPT-3.5, and the dataset itself remains private.
We empirically reveal that MLCopilot exhibits ro-
bust performance on the HyperFD dataset.

Furthermore, our findings indicate a significant
performance enhancement when the data is canon-
icalized (Table 6). If the data were indeed memo-
rized during the pre-training process, LLMs would
likely benefit from access to unaltered, raw data.
These results provide valuable supporting evidence
for the assertion that the capabilities of LLMs ex-
tend beyond mere memorization. They encompass
a broader spectrum of cognitive skills, including
mathematical reasoning and logical thinking.
Distinction from AutoML methods. MLCopi-
lot is not intended to serve as a replacement for
established AutoML approaches. The distinction
is grounded in the inherent limitations of Large
Language Models (LLMs) when it comes to per-
forming mathematical computations, as illustrated

in recent work (Imani et al., 2023). Consequently, it
is improbable that MLCopilot would surpass state-
of-the-art Bayesian optimization methods in the
pursuit of superior solutions. In Table 2 we termi-
nated our evaluation at t = 3 (i.e., three solutions),
as we observed that performance reached a point
of saturation with further increases in t.

We argue that the true value of MLCopilot lies in
the following facets: (i) it accepts arbitrary types of
task descriptions; (ii) it leverages ML experiences
from diverse sources, encompassing both pretrain-
ing and prompting; (iii) it exhibits an exceptional
ability to rapidly produces multiple out-of-the-box
solutions for a novel task. Consequently, we envi-
sion the possibility of combining MLCopilot with
existing AutoML methods, opening up an intrigu-
ing avenue for future exploration.
Robustness of MLCopilot. As MLCopilot has
the ability to accommodate heterogeneous formats
of inputs, it is worth discussing the robustness of
MLCopilot in the wild. This consideration extends
to situations where users submit poorly-formatted
task descriptions and when the experience pool in-
cludes data with noisy accuracy labels or flawed
canonicalization. A detailed assessment of ML-
Copilot’s robustness is presented in § D.

The experiments conducted shed light on the
system’s robustness against certain challenges (e.g.,
the choice of LLMs and task description formats).
But it is still important to note that its performance
can degrade under specific conditions, such as
when dealing with a severely limited prompt con-
text window length.
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A Algorithms

We summarize our method as algorithm 1 and algorithm 2.

Algorithm 1: Offline Stage of MLCopilot
Input :Historical data H = {D1, . . . , DNH

}. Maximum iterations rounds. Stagnation patience
patience. Candidate question list Questions. Validation tasks ValTasks.

Output :Experience Pool PE ; Knowledge k∗.
1 PE ← {C(Di)} ; /* C is canonicalization function */
2 r∗ ← −∞;
3 stagnation← 0;
4 for n=1 to rounds do
5 E ← RandomSample(PE);
6 q ← RandomSample(Questions) ; /* Sample one hypophora question */
7 τ ←Uniform(0, 1); ; /* Random temperature */
8 k ← LLM (E, q; τ) ; /* Generate knowledge candidates */
9 S ← LLM (E, k;ValTasks; 0) ; /* Mock online stage on validation tasks */

10 r ← Evaluate(S) ; /* Run and evaluate the solution */
11 if r > r∗ then
12 r∗ ← r;
13 k∗ ← k;
14 stagnation← 0;

15 else
16 stagnation← stagnation + 1;
17 if stagnation > patience then
18 break;

19 return PE , k
∗

Algorithm 2: Online Stage of MLCopilot

Input :A new task description T̃ . Experience pool PE . Knowledge pool PK .
Output :Solution S̃.

1 Ẽ ← RE(T̃ , PE) ; /* Retrieve experiences */

2 K̃ ← RK(T̃ , PK); /* Retrieve knowledge */

3 S̃ ← LLM(T̃ , Ẽ, K̃);
4 return S̃

B Experiment Details

B.1 Benchmarks

HPO-B. HPO-B-v3 (Arango et al., 2021) comprises 16 solution spaces for 101 datasets obtained from the
OpenML (Vanschoren et al., 2014). Each space has a fixed ML algorithm such as random forest (Breiman,
2001), SVM (Cortes and Vapnik, 1995), or XGBoost (Chen and Guestrin, 2016), and the goal is to
determine the optimal configuration of the algorithm for a given dataset. HPO-B also provides successful
configurations from past tasks, which are canonicalized into experience in our case. Additionally, they
have released surrogate models to expedite the evaluation of solutions that have not been attempted before.
The final benchmark performance is determined by averaging the normalized accuracy (nAcc) across all
datasets, following the normalization protocol in (Arango et al., 2021).
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PD1. The PD1 Neural Net Tuning Dataset is proposed by HyperBO (Wang et al., 2021b), consisting of
24 classification tasks, covering image classification, next token prediction, and translation. Each task is
associated with a predefined neural network (CNN (Krizhevsky et al., 2017) or transformer (Vaswani et al.,
2017)), and has four configurable parameters of a SGD optimizer with Nesterov momentum (Nesterov,
1983). Due to the high cost of training neural networks, evaluating the solutions suggested by MLCopilot
by running them in real-time is not feasible. So we created a surrogate model to predict the performance of
suggested solutions for each task (see § B.4 for details). As per (Wang et al., 2021b), we report normalized
accuracy (nAcc).

HyperFD. HyperFD (Yan et al., 2022) is a benchmark designed to optimize the performance of a
neural face detector on an unseen dataset by properly configuring data augmentation, neural architecture,
loss function, and training recipe. For this purpose, they formulated a solution space and provided both
average precision (AP) and rank for every possible solution on all datasets. The benchmark was published
after the claimed knowledge cutoff of GPT-3.5 (September 2021), and it has not been publicly released
yet, making it unlikely that it has appeared in the training data of LLM.

B.2 Compared Baselines
Details about the traditional baselines used in our experiment are described below.

• Random method randomly generates a solution.

• ASKL (Auto-sklearn 1.0) (Feurer et al., 2015) finds the most similar tasks based on manually selected
meta-features of tasks and directly uses the best solutions on them.

• Constant (Bardenet et al., 2013; Kotthoff et al., 2019) (a.k.a. Average) uses a constant set of solutions
for any new task. The produced set of solutions is the one with the best average performance on the
historical tasks. This method is straightforward and has no specific literature reference. We reference
the two literatures for “Constant” as they also adopt a similar baseline for comparison.

• TST-M (Wistuba et al., 2016) employs Gaussian processes to approximate the performance of solutions
in the solution space for each task. When a new task is encountered, it combines performance
predictions of solutions for different tasks and predicts the performance of each solution on the new
task by averaging predictions on history tasks weighted by task similarities.

• HyperSTAR (Mittal et al., 2020) trains a performance predictor for a joint encoding of solution and
task features. HyperSTAR is originally built for vision tasks. To adapt it for non-image tasks, we
incorporate handcrafted meta-features as task features.

• HyperFD (Yan et al., 2022) is a method specifically designed for the HyperFD benchmark, which uses a
sophisticated meta-feature extractor for neural face detection tasks. However, it is not a general-purpose
method and is not designed to work with other types of tasks.

• FLAML-Zero (Wang et al., 2021a) is a recent method that generates a portfolio of ML solutions
through offline meta-training, minimizing overall regret across meta-training tasks. It uses meta-features
to link new tasks to existing ones based on their similarity.

B.3 Post-validation
The post-validation step that we have incorporated draws inspiration from established practices within
machine learning, where a dedicated validation set is employed to enhance model performance. In
our specific case, we allocate 10% of the training meta-dataset for validation purposes, allowing us to
systematically filter and select the most valuable generated knowledge. This additional layer of validation
contributes significantly to adcressing hallucination-related issues.

Detailed steps of post-validation include a loop of: sampling hypophora question, sampling temperature,
generating knowledge candidates, validating candidate knowledge, and an earlystopping mechanism that
determines stagnation. This is described in algorithm 1.
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B.4 Building Surrogate Model for PD1
The metric in PD1 contains many NaN values, which correspond to network training divergence. For
benchmarking purposes, it is more important to be able to distinguish the top-performing solutions, i.e.,
solutions above medium accuracy. To accomplish this, we adopt a two-stage surrogate approach. We
use a classification model to distinguish the top-performing solutions, and then two regression models:
one specially optimized for the top-performing solutions, and the other one for all solutions. We utilize
XGBoost (Chen and Guestrin, 2016) for building classifiers and regressors. Default parameters are used
for those models.

C Prompt Design

We show two example prompts used on HPO-B. One of them is used for the online stage, as shown in
Table 7, when MLCopilot receives a task description given by the user and sends it to LLM to obtain a
recommended solution.

Table 8 shows an example of prompt used during the offline stage, when we generate a series of
knowledge candidates. For post-validation, we use the prompt same as the online stage (example in
Table 7).
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Prompt
Space description

Here are some classification datasets along with best hyper-
parameter configurations to train a R language model "Learner
mlr.classif.svm from package(s) e1071" on them.

Demonstrations
Dataset: The dataset name is "ada_agnostic". It contains 2 classes,
4562 instances, 49 features, 48 numeric features, 1 categorical
features. The majority class size is 3430 and the minority class
size is 1132.
Configuration 1: cost is very small. kernel is linear.
Configuration 2: cost is very small. kernel is linear.
Configuration 3: cost is very small. kernel is linear.

Dataset: The dataset name is "credit-g". It contains 2 classes, 1000
instances, 21 features, 7 numeric features, 14 categorical features.
The majority class size is 700 and the minority class size is 300.
Configuration 1: cost is medium. gamma is small. kernel is radial.
Configuration 2: cost is medium. gamma is very small. kernel is
radial.
Configuration 3: cost is medium. gamma is small. kernel is radial.

Dataset: The dataset name is "ozone-level-8hr". It contains 2
classes, 2534 instances, 73 features, 72 numeric features, 1 cate-
gorical features. The majority class size is 2374 and the minority
class size is 160.
Configuration 1: cost is small. gamma is small. kernel is radial.
Configuration 2: cost is very small. gamma is small. kernel is
radial.
Configuration 3: cost is small. gamma is small. kernel is radial.

Knowledge
Guidelines:
1. For datasets with many numeric features, larger cost values and
smaller gamma values tend to be more effective.
2. For datasets with many categorical features, linear kernels tend
to be more effective.
3. For datasets with few numeric features, small cost values and
larger gamma values tend to be more effective.
4. For datasets with few categorical features, polynomial kernels
tend to be more effective.

Instruction
Based on the examples and guidelines above, recommend 3 hyper-
parameter configurations for a new classification dataset

Description for new task
Dataset: The dataset name is "gina_agnostic". It contains 2 classes,
3468 instances, 971 features, 970 numeric features, 1 categorical
features. The majority class size is 1763 and the minority class
size is 1705.

Table 7: Example prompt for HPO-B in online serving.

Prompt
Space description

Here are some classification datasets along with
best hyper-parameter configurations to train a R
language model "Learner mlr.classif.svm from
package(s) e1071" on them.

Demonstrations
Dataset: The dataset name is "wilt". It contains
2 classes, 4839 instances, 6 features, 5 numeric
features, 1 categorical features. The majority class
size is 4578 and the minority class size is 261.
Configuration 1: cost is medium. gamma is large.
kernel is radial.
Configuration 2: cost is medium. gamma is
medium. kernel is radial.
Configuration 3: cost is large. gamma is medium.
kernel is radial.

Dataset: The dataset name is "ilpd". It contains
2 classes, 583 instances, 11 features, 9 numeric
features, 2 categorical features. The majority class
size is 416 and the minority class size is 167.
Configuration 1: cost is medium. gamma is
medium. kernel is radial.
Configuration 2: cost is very small. gamma is
very large. kernel is radial.
Configuration 3: cost is medium. gamma is very
large. kernel is radial.

Dataset: The dataset name is "steel-plates-fault".
It contains 2 classes, 1941 instances, 34 features,
33 numeric features, 1 categorical features. The
majority class size is 1268 and the minority class
size is 673.
Configuration 1: cost is small. kernel is linear.
Configuration 2: cost is very small. kernel is
linear.
Configuration 3: cost is very small. kernel is
linear.

Instruction
Q: From the examples above, what patterns can
we observe about the relationship between dataset
characteristics and the best hyper-parameter con-
figurations? Answer MUST be concise, critical,
point-by-point, line-by-line, and brief. Only in-
clude relevant observations without unnecessary
elaboration.

Table 8: Example prompt for HPO-B in the offline
stage.
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Table 9: Comparison of different description formats.

Description Format HPO-B ↑ PD1 ↑ HyperFD ↓
Original 81.59±0.94 1.48±0.06 59.74±1.89

Condense 79.66±0.06 1.52±0.01 57.33±3.21
Anonymous 77.43±0.04 1.21±0.06 68.42±10.01

Misleading names 75.80±3.01 1.43±0.05 62.52±3.92
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Figure 3: Effect of the experience number and the number of solutions demonstrated for each task.

D Robustness of MLCopilot

D.1 Task description in the wild.

When MLCopilot is deployed, it may be impractical to require users to strictly adhere to a specific format
when writing task descriptions. We must consider if MLCopilot is robust enough to handle various
formats. To simulate diverse formats, we ask GPT-3.5 to rewrite the descriptions by: (i) condensing the
original task descriptions; and (ii) anonymizing the descriptions by removing task names. The results
are shown in Table 9. We observed fluctuations in performance when the description format changed,
indicating that LLM is sensitive to prompt format. This aligns with the previous researches (Webson and
Pavlick, 2022; Lu et al., 2022) suggesting that LLMs may not interpret inputs in the same way as humans.
Performance was particularly worse when tasks were anonymized, leading us to conjecture that task
names stimulate neurons in the LLM that are important for solving the relevant tasks and also leverage
the previous knowledge already memorized from the training corpus of LLMs. To further verify this, we
conducted an additional experiment by randomly swapping task names between tasks, and surprisingly
observed performance improvement on PD1 and HyperFD. This echoes the finding in (Min et al., 2022),
which suggests that “random labels are better than no labels at all”.

D.2 Length of prompt.

We study the effect of prompt length, which is mainly influenced by the number of retrieved ML
experiences as demonstrations, to the performance. In our previous experiments, we retrieved as many
experiences as possible, either until all the experiences had been retrieved or the maximum prompt length
was reached. For each task, the three best solutions were demonstrated, which was an arbitrary choice in
our early experiments. In this section, we vary these two factors. As shown in Figure 3, the performance
generally improves as the number of demonstrations in the prompt increases, measured by prompt tokens.
However, the performance soon saturates at around 1.5k tokens and fluctuates. Moreover, demonstrating
more solutions for each task leverages more data and has higher potential, especially above 3k tokens.

D.3 Choice of LLMs.

We report performance of MLCopilot if equipped with LLMs other than GPT-3.5 (code-named “text-
davinci-003”) used in our main experiments. The models we have experimented with include:
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Method (with LLM) HPO-B ↑ PD1 ↑ HyperFD ↓
ASKL 77.01±0.00 1.26±0.00 92.58±0.00

FLAML 77.84±0.00 1.28±0.00 66.42±0.00
MLCopilot (gpt-3.5-turbo) 81.67±1.99 1.37±0.10 72.41±10.48

MLCopilot (text-davinci-001) 82.13±2.05 1.58±0.04 71.25±10.70
MLCopilot (LLAMA-7B) 79.51±0.57 1.43±0.08 67.47±5.60

MLCopilot (text-davinci-003) 81.59±0.94 1.48±0.06 59.74±1.89

Table 10: Performance of MLCopilot equipped with different LLMs.

• GPT-3.5 Turbo7: a cost-efficient version of GPT-3.5 that uses chat completion as its user interface.

• GPT-3 (Brown et al., 2020) (code-named “text-davinci-001”): the original GPT-3 model trained
without instruction finetuning.

• LLAMA-7B (Touvron et al., 2023): a well-known open-source model with a large user community,
with a relatively loose requirement of GPU memory.

We compare the results with the original results with text-davinci-003 (GPT-3.5) and our main baselines.
As shown in Table Table 10, MLCopilot is robust to choices of LLMs. It is compatible with all the LLMs
we have tested and achieves competitive results under different settings. Also, we see a trend that when
working with stronger and larger models, MLCopilot still achieves even better results.

D.4 Noisy accuracy and faulty canonicalization.

Method w/ original data w/ perturbed data

FLAML 77.84±0.00 73.53±0.00
MLCopilot 81.59±0.94 78.54±3.25

Table 11: Impact of noises in accuracy.

Method nAcc

MLCopilot (original) 81.59±0.94
MLCopilot (faulty canonicalization) 77.11±1.77

FLAML 77.84±0.00

Table 12: Effect of faulty canonicalization.

We discuss the cases where the experience pool is polluted during the operation of the system. We
evaluated the robustness under such scenarios on HPO-B (the largest solution space).

Firstly, we assessed the impact of noises in accuracy, by perturbing the accuracies in historical data.
We added Gaussian noise to the accuracy values. The standard deviation of the Gaussian noise is 10% of
the accuracy distribution. As a result of such disturbance, suboptimal configurations might pop up as the
best configurations and serve as demonstrations in the prompt. After experimenting on HPO-B, we found
(in Table 11) that MLCopilot does suffer from such disturbance (performance drop from 81.59 to 78.54).
However, such a result is still competitive with the state-of-the-art baselines (FLAML 77.84). Moreover,
if a similar disturbance was done to the input data of FLAML, its performance further drops to 73.53.
Full results (top-1 normalized accuracy) are shown in the table below.

Secondly, we investigate the effect of faulty canonicalization. In our paper, we showed (in Table 6)
that canonicalization is an important component of MLCopilot, and a misconfigured canonicalization
can lead to degraded performance. Following your suggestions, we introduced random noise into the
canonicalization process by replacing 10% of the canonicalized data with random discrete values. That
is, each parameter of the configuration has a 10% probability to be replaced with a random choice from
“very low”, “low”, “medium”, “high”, “very high”. We show the results (top-1 normalized accuracy on
HPO-B) in Table 12.

Although the result is still competitive with baseline FLAML, we can see that faulty canonicalization
does lead to worse performance. Notably, the impact is even more severe than the setting of perturbed
accuracy. We speculate that false canonicalization can be particularly misleading for the logical reasoning
of large language models. We will include a discussion of these findings in our revision.

7https://openai.com/blog/introducing-chatgpt-and-whisper-apis
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E Knowledge

All contents in this section are generated by Large Language Models.

E.1 HPO-B

HPO-B contains 16 design spaces. We finalize one set of knowledge for each space.

Space: 5860

1. Generally, datasets with more numeric features require larger
alphas and smaller lambdas for better performance.

2. Datasets with a higher ratio of minority to majority class size
require smaller alphas and larger lambdas for better performance.

3. Datasets with more features require larger alphas and smaller
lambdas for better performance.

4. Datasets with more categorical features require larger alphas and
larger lambdas for better performance.

Space: 4796

1. For datasets with a large majority class size and a small minority
class size, a larger cp and minbucket size tend to be better
hyper-parameter configurations.

2. For datasets with a small majority class size and a large minority
class size, a smaller cp and minbucket size tend to be better
hyper-parameter configurations.

3. For datasets with a large number of numeric features, a larger cp
and minbucket size tend to be better hyper-parameter configurations.

4. For datasets with a small number of numeric features, a smaller cp
and minbucket size tend to be better hyper-parameter configurations.

5. For datasets with a large number of categorical features, a
smaller cp and minbucket size tend to be better hyper-parameter
configurations.

6. For datasets with a small number of categorical features, a larger
cp and minbucket size tend to be better hyper-parameter
configurations.

Space: 5971

1. Generally, larger datasets require higher nrounds and larger
subsample values.

2. The majority class size and minority class size of the dataset can
influence the configuration of alpha, booster, colsample bylevel,
colsample bytree, eta, lambda, max depth, min child weight, nrounds,
and subsample.

3. The number of numeric and categorical features in the dataset can
determine the booster used.

4. The size of the dataset can influence the configuration of eta,
lambda, max depth, min child weight, nrounds, and subsample.

5. The size of the minority class can determine the configuration of
alpha, colsample bylevel, colsample bytree, eta, lambda, max depth,
min child weight, nrounds, and subsample.
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Space: 6766

1. For datasets with a larger majority class size, high values of
alpha and low values of lambda tend to perform better.

2. For datasets with a smaller majority class size, low values of
alpha and high values of lambda tend to perform better.

3. For datasets with more numeric features, medium values of alpha
and low values of lambda tend to perform better.

4. For datasets with more categorical features, high values of alpha
and large values of lambda tend to perform better.

5. For datasets with a larger number of features, high values of
alpha and large values of lambda tend to perform better.

Space: 5965

1. The larger the majority class size, the smaller the min node size
and sample fraction tend to be.

2. The larger the minority class size, the larger the min node size
and sample fraction tend to be.

3. The larger the number of features, the larger the mtry tends to be.
4. The larger the number of numeric features, the larger the mtry

tends to be.
5. The larger the number of categorical features, the smaller the

mtry tends to be.
6. The larger the number of trees, the smaller the mtry tends to be.
7. The larger the number of instances, the larger the sample fraction

tends to be.
8. The replace parameter is usually set to True.
9. The respect unordered factors parameter is usually set to False.

Space: 5906

1. Smaller datasets tend to have smaller alpha and eta values, while
larger datasets tend to have larger values.

2. Datasets with more features tend to have larger colsample bylevel
and colsample bytree values, while datasets with fewer features tend
to have smaller values.

3. Datasets with more numeric features tend to have larger lambda and
max depth values, while datasets with fewer numeric features tend to
have smaller values.

4. Smaller datasets tend to have smaller nrounds and subsample
values, while larger datasets tend to have larger values.

5. Datasets with more categorical features tend to have smaller min
child weight values, while datasets with fewer categorical features
tend to have larger values.

Space: 7607

1. The min node size generally decreases as the dataset sizeincreases.
2. The mtry is usually small for datasets with few features and large

for datasets with many features.
3. The num trees is usually small for datasets with few instances and

large for datasets with many instances.
4. Replace is usually set to False for small datasets and True for
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large datasets.
5. Respect unordered factors is usually set to False for datasets

with few categorical features and True for datasets with many
categorical features.

6. Sample fraction is usually set to small for datasets with few
instances and large for datasets with many instances.

Space: 6794

1. For datasets with a large majority class size, larger min node
size and sample fraction values are usually used, while for datasets
with a smaller majority class size, smaller min node size and sample
fraction values are usually used.

2. For datasets with more features, larger mtry values are usually
used.

3. For datasets with more numeric features, replace is usually set to
True, while for datasets with more categorical features, replace is
usually set to False.

4. Respect unordered factors is usually set to True when the dataset
has more categorical features.

Space: 7609

1. For datasets with more features, larger mtry values are preferred.
2. For datasets with more instances, larger sample fractions are

preferred.
3. For datasets with more majority class instances, smaller min node

sizes are preferred.
4. For datasets with more numeric features, replace is typically set

to True.
5. For datasets with more categorical features, respect unordered

factors is typically set to False.
6. For datasets with a more balanced class size, num trees is

typically set to a smaller value.

Space: 5859

1. larger datasets tend to require smaller cp values and larger
minbucket values.

2. Smaller datasets tend to require larger cp values and smaller
minbucket values.

3. For larger datasets, maxdepth tends to be very large or medium,
whereas for Smaller datasets , maxdepth tends to be very small or
small.

4. For larger datasets, minsplit tends to be very large or large,
whereas for Smaller datasets , minsplit tends to be very small or
small.

Space: 5889

1. The larger the dataset size, the larger the mtry and num trees,
and the smaller the sample fraction.

2. The larger the majority class size, the larger the mtry and num
trees, and the smaller the sample fraction.
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3. The smaller the number of features, the smaller the mtry and num
trees, and the larger the sample fraction.

4. The more numeric features, the larger the mtry and num trees, and
the smaller the sample fraction.

5. The more categorical features, the smaller the mtry and num trees,
and the larger the sample fraction.

6. The replace parameter is usually set to True.

Space: 6767

1. Datasets with a larger majority class size tend to require larger
nrounds and larger subsample values.

2. Datasets with more numeric features tend to require larger
colsample bylevel and colsample bytree values.

3. Datasets with more categorical features tend to require smaller
min child weight values.

4. Datasets with a smaller minority class size tend to require
smaller eta and lambda values.

5. Datasets with more features tend to require larger max depth
values.

Space: 5970

1. For datasets with more numeric features, smaller alpha and smaller
lambda values tend to be the best hyper-parameter configurations.

2. For datasets with more categorical features, larger alpha and
larger lambda values tend to be the best hyper-parameter
configurations.

3. For datasets with majority class size significantly larger than
minority class size, larger alpha and larger lambda values tend to be
the best hyper-parameter configurations.

Space: 5527

1. The cost parameter tends to increase as the dataset size increases.
2. The gamma parameter tends to decrease as the number of numeric

features increases.
3. The kernel parameter tends to be radial for datasets with numeric

features, and polynomial or linear for datasets with categorical
features.

4. The degree parameter tends to increase as the number of
categorical features increases.

Space: 5636

1. The larger the majority class size, the smaller the cp value
should be.

2. The larger the minority class size, the larger the cp value should
be.

3. The larger the number of features, the smaller the maxdepth value
should be.

4. The larger the number of numeric features, the larger the
minbucket value should be.

5. The larger the number of categorical features, the smaller the
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minbucket value should be.
6. The larger the number of instances, the larger the minsplit value

should be.

Space: 5891

1. For datasets with many numeric features, larger cost values and
smaller gamma values tend to be more effective.

2. For datasets with many categorical features, linear kernels tend
to be more effective.

3. For datasets with few numeric features, small cost values and
larger gamma values tend to be more effective.

4. For datasets with few categorical features, polynomial kernels
tend to be more effective.

E.2 PD1

We performed leave-one-out evaluation on the PD1 benchmark, which consists of 23 tasks. However,
some tasks are using the same model and dataset but only different in batch size. These tasks should
not appear in training tasks and test tasks at the same time (Wang et al., 2021b). Therefore, only 13
distinct sets of training tasks were available for testing. For each set of training tasks, we generated a
corresponding set of knowledge, which is presented below.

Test task: CIFAR100, Wide ResNet

1. Set the initial learning rate (LR) according to the size of the
dataset and the complexity of the model.

2. Set the momentum parameter to a lower value for larger datasets
and a higher value for simpler models.

3. Set the power parameter to a higher value for more complex models.
4. Set the lambda parameter to a higher value for more complex models

and a lower value for simpler models.

Test task: CIFAR10, Wide ResNet

1. Adjust the initial learning rate and momentum based on the size
and complexity of the dataset: higher for large and complex datasets,
lower for small and simple datasets.

2. Adjust the power and lambda parameters based on the desired speed
of the learning process: higher power and lower lambda for faster
learning, lower power and higher lambda for slower learning.

3. Consider any domain-specific constraints when configuring the
optimizer, such as accuracy requirements.

Test task: Fashion-MNIST, Max Pooling CNN with ReLU

1. Set the initial learning rate to a low or medium value.
2. Set the momentum to a high or medium value.
3. Set the power to a low or medium value.
4. Set the lambda to a low or medium value.
5. Adjust the initial learning rate, momentum, power, and lambda

according to the characteristics of the task, such as the dataset
size, model architecture, and the complexity of the prediction task.
For example, for tasks with larger datasets, a higher initial
learning rate may be beneficial, while for tasks with smaller
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datasets, a lower initial learning rate may be more suitable.
Similarly, for tasks with more complex models, a higher momentum may
be beneficial, while for simpler models, a lower momentum may be more
suitable. Additionally, for tasks with more complex prediction tasks,
a higher power may be beneficial, while for simpler tasks, a lower
power may be more suitable. Finally, for tasks with more complex
models, a higher lambda may be beneficial, while for simpler models,
a lower lambda may be more suitable.

Test task: Fashion-MNIST, Max Pooling CNN with Tanh

1. Choose an initial LR that is appropriate for the size of the
dataset and complexity of the model.

2. Set the momentum to a value that is appropriate for the size of
the dataset and complexity of the model.

3. Set the power parameter to a value that is appropriate for the
size of the dataset and complexity of the model.

4. Set the lambda parameter to a value that is appropriate for the
size of the dataset and complexity of the model.

Test task: Fashion-MNIST, Simple CNN

1. Set the initial learning rate (LR) to a value that is appropriate
for the size of the dataset.

2. Set the momentum to a value that is appropriate for the size of
the dataset.

3. Set the power parameter to a value that is appropriate for the
size of the dataset.

4. Set the lambda parameter to a value that is appropriate for the
size of the dataset and the desired level of regularization.

Test task: ImageNet, ResNet50

1. For tasks with larger batch sizes, use a higher initial learning
rate and higher momentum. For tasks with smaller batch sizes, use a
lower initial learning rate and lower momentum.

2. For tasks with larger vocabularies, use a higher lambda value. For
tasks with smaller vocabularies, use a lower lambda value.

3. For tasks with more complex models, use a higher power value. For
tasks with simpler models, use a lower power value.

Test task: LM1B, Transformer

1. Set the initial learning rate to a value that is suitable for the
size and complexity of the dataset.

2. Set the momentum to a value that is suitable for the size and
complexity of the dataset.

3. Set the power parameter to a value that is suitable for the noise
and outliers in the dataset.

4. Set the lambda parameter to a value that is suitable for the noise
and outliers in the dataset.
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Test task: MNIST, Max Pooling CNN with ReLU

1. Set the initial learning rate to a low or medium value.
2. Set the momentum to a high or medium value.
3. Set the power to a low or medium value.
4. Set the lambda to a low or high value.
5. Consider the characteristics of the task, such as the dataset

size, model architecture, and the complexity of the prediction task,
when adjusting the parameters.

6. For tasks with larger datasets, a higher initial learning rate and
lower momentum may be more suitable.

7. For tasks with Smaller datasets , a lower initial learning rate and
higher momentum may be more suitable.

8. For tasks with more complex models, a higher initial learning rate
and lower momentum may be more suitable.

9. For tasks with simpler models, a lower initial learning rate and
higher momentum may be more suitable.

10. For tasks with more complex prediction tasks, a higher initial
learning rate and lower momentum may be more suitable.

11. For tasks with simpler prediction tasks, a lower initial learning
rate and higher momentum may be more suitable.

Test task: MNIST, Max Pooling CNN with Tanh

1. Set the initial learning rate to a high value to ensure that the
model is able to learn quickly and efficiently.

2. Set the momentum to a low value to prevent the model from
overfitting.

3. Set the power and/or lambda to high values to ensure that the
learning rate decays slowly and the model is able to continue
learning for a longer period of time.

4. For tasks such as training a CNN with max-pool and ReLU on Fashion
MNIST, set the initial learning rate to a low value to prevent the
model from overfitting.

5. For tasks such as training a ResNet50 on ImageNet, set the initial
learning rate to a high value to ensure that the model is able to
learn quickly and efficiently.

6. For tasks such as training a Wide ResNet on CIFAR100, set the
initial learning rate to a very high value to ensure that the model
is able to learn quickly and efficiently.

7. For tasks such as training a Transformer on UniRef50, set the
initial learning rate to a low value to prevent the model from
overfitting.

Test task: MNIST, Simple CNN

1. Adjust the initial learning rate and momentum according to the
size and complexity of the dataset: higher for large and complex
datasets, lower for small and simple datasets.

2. Adjust the power and lambda parameters according to the size and
complexity of the dataset: higher for large and complex datasets,
lower for small and simple datasets.

3. Adjust the initial learning rate and momentum according to the
task requirements: higher for tasks requiring high accuracy, lower
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for tasks requiring high speed.

Test task: SVHN, Wide ResNet

1. For image classification tasks, set the initial learning rate (LR)
to a higher value and the momentum to a lower value.

2. For language tasks, set the initial LR to a lower value and the
momentum to a higher value.

3. For tasks with larger batch sizes, set the initial LR to a higher
value and the momentum to a lower value.

4. For tasks with smaller batch sizes, set the initial LR to a lower
value and the momentum to a higher value.

5. For tasks with more complex models, set the power to a higher
value and the lambda to a higher value.

6. For tasks with simpler models, set the power to a lower value and
the lambda to a lower value.

Test task: UniRef50, Transformer

1. Set the initial learning rate, momentum, power, and lambda values
according to the following guidelines:

- For larger batch sizes and larger datasets, use a higher learning
rate, higher momentum, lower power, and higher lambda.

- For smaller batch sizes and Smaller datasets , use a lower
learning rate, lower momentum, higher power, and lower lambda.

2. Examples:
- For a CNN with max-pool and ReLU on Fashion MNIST with a batch
size of 256, use an initial learning rate of 0.001, a momentum of
0.9, a power of 0.1, and a lambda of 0.01.

- For a Wide ResNet on CIFAR10 with a batch size of 2048, use an
initial learning rate of 0.01, a momentum of 0.9, a power of 0.5, and
a lambda of 0.001.

- For a Transformer on LM1B with a batch size of 2048, use an
initial learning rate of 0.001, a momentum of 0.9, a power of 0.01,
and a lambda of 0.001.

Test task: WMT15, xformer

1. Set the initial learning rate to a low or medium value.
2. Set the momentum to a high or medium value.
3. Set the power to a low or medium value.
4. Set the lambda to a high or medium value.
5. Adjust the initial learning rate and momentum based on the

characteristics of the task, such as the dataset size, model
architecture, and the complexity of the prediction task. For example,
for tasks with larger datasets, a higher initial learning rate and a
lower momentum may be more suitable, while for tasks with smaller
datasets, a lower initial learning rate and a higher momentum may be
more suitable. Additionally, for tasks with more complex models, a
higher initial learning rate and a lower momentum may be more
suitable, while for tasks with simpler models, a lower initial
learning rate and a higher momentum may be more suitable. Finally,
for tasks with more complex prediction tasks, a higher initial
learning rate and a lower momentum may be more suitable, while for
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tasks with simpler prediction tasks, a lower initial learning rate
and a higher momentum may be more suitable.

E.3 HyperFD
Similar to PD1, evaluation on HyperFD is also leave-one-out on 12 tasks. We show 12 sets of knowledge
based on the choices of test tasks.

Test task: AFLW

1. Configure crop size and anchor matching IoU threshold based on the
number of faces in the dataset:

- For datasets with more faces, use larger crop sizes and higher
anchor matching IoU thresholds.

- For datasets with fewer faces, use smaller crop sizes and lower
anchor matching IoU thresholds.

2. Configure learning rate and negative to positive ratio based on
the number of faces in the dataset:

- For datasets with more faces, use higher learning rates and more
negative to positive ratios.

- For datasets with fewer faces, use lower learning rates and fewer
negative to positive ratios.

3. Configure location loss weight based on the presence of facial
landmarks in the dataset:

- For datasets with facial landmarks, use higher location loss
weights.

Test task: ANIME

1. Set the crop size and anchor matching IoU threshold according to
the number of faces in the dataset:

- For datasets with more faces, use larger crop sizes and higher
anchor matching IoU thresholds.

- For datasets with fewer faces, use smaller crop sizes and lower
anchor matching IoU thresholds.

2. Set the location loss weight according to the presence of facial
landmarks in the dataset:

- For datasets with facial landmarks, use higher location loss
weights.

- For datasets without facial landmarks, use lower location loss
weights.

3. Set the learning rate and optimizer according to the negative to
positive ratio in the dataset:

- For datasets with higher negative to positive ratios, use higher
learning rates and optimizers such as SGD or Adam.

Test task: FaceMask

1. Set the crop size according to the number of faces in the dataset:
larger crop sizes for datasets with more faces, and smaller crop
sizes for datasets with fewer faces.

2. Set the anchor matching IoU threshold according to the number of
faces in the dataset: higher thresholds for datasets with more faces,
and lower thresholds for datasets with fewer faces.

3. Set the location loss weight according to the presence of facial
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landmarks in the dataset: higher weights for datasets with facial
landmarks, and lower weights for datasets without facial landmarks.

4. Set the negative to positive ratio according to the number of
faces in the dataset: higher ratios for datasets with more faces, and
lower ratios for datasets with fewer faces.

5. Set the learning rate according to the number of faces in the
dataset: higher rates for datasets with more faces, and lower rates
for datasets with fewer faces.

Test task: FDDB

1. Set the crop size to be larger and the anchor matching IoU
threshold to be higher for datasets with more faces.

2. Increase the location loss weight and decrease the negative to
positive ratio for datasets with more faces.

3. Use a lower learning rate and an optimizer such as Adam or SGD for
datasets with facial landmarks.

Test task: FDDB-360

1. For datasets with more faces, use a larger crop size and a higher
anchor matching IoU threshold.

2. For datasets with fewer faces, use a smaller crop size and a lower
anchor matching IoU threshold.

3. For datasets with no facial landmarks, use a lower location loss
weight and a higher negative to positive ratio.

4. For datasets with facial landmarks, use a higher location loss
weight and a lower negative to positive ratio.

5. For datasets with more faces, use a higher learning rate and an
SGD optimizer.

6. For datasets with fewer faces, use a lower learning rate and an
Adam optimizer.

Test task: MAFA

1. Set the crop size and anchor matching IoU threshold according to
the number of faces per image in the dataset: larger crop sizes and
higher IoU thresholds for datasets with more faces per image, and
smaller crop sizes and lower IoU thresholds for datasets with fewer
faces per image.

2. Set the location loss weight according to the presence of facial
landmarks in the dataset: higher weights for datasets with facial
landmarks, and lower weights for datasets without facial landmarks.

3. Set the negative to positive ratio according to the difficulty of
the dataset: higher ratios for datasets with more challenging
scenarios (e.g. weather-based degradations, motion blur, focus blur).

4. Set the learning rate and optimizer according to the size of the
dataset: lower learning rates and optimizers such as Adam or SGD for
datasets with more images.

Test task: PASCAL VOC

1. Set the crop size according to the number of faces in the dataset:
larger crop sizes for datasets with more faces, and smaller crop
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sizes for datasets with fewer faces.
2. Set the anchor matching IoU threshold according to the number of

faces in the dataset: higher thresholds for datasets with more faces,
and lower thresholds for datasets with fewer faces.

3. Set the location loss weight according to the presence of facial
landmarks in the dataset: lower weights for datasets with no facial
landmarks, and higher weights for datasets with facial landmarks.

4. Set the negative to positive ratio according to the number of
faces in the dataset: higher ratios for datasets with more faces, and
lower ratios for datasets with fewer faces.

5. Set the learning rate and optimizer according to the difficulty of
the dataset: higher learning rates and optimizers such as SGD for
more challenging datasets.

Test task: UFDD

1. Set the crop size and anchor matching IoU threshold according to
the number of faces in the dataset: larger crop size and higher IoU
threshold for datasets with more faces, smaller crop size and lower
IoU threshold for datasets with fewer faces.

2. Set the location loss weight and negative to positive ratio
according to the number of faces in the dataset: higher location loss
weight and higher negative to positive ratio for datasets with more
faces, lower location loss weight and lower negative to positive
ratio for datasets with fewer faces.

3. Set the learning rate and optimizer according to the presence of
facial landmarks in the dataset: lower learning rate and Adam
optimizer for datasets with facial landmarks, higher learning rate
and SGD optimizer for datasets without facial landmarks.

Test task: UMDAA-02

1. Set the crop size according to the number of faces in the dataset:
larger crop sizes for datasets with more faces, and smaller crop
sizes for datasets with fewer faces.

2. Set the anchor matching IoU threshold according to the number of
faces in the dataset: higher thresholds for datasets with more faces,
and lower thresholds for datasets with fewer faces.

3. Set the location loss weight according to the presence of facial
landmarks in the dataset: higher weights for datasets with facial
landmarks, and lower weights for datasets without facial landmarks.

4. Set the negative to positive ratio according to the number of
faces in the dataset: higher ratios for datasets with more faces, and
lower ratios for datasets with fewer faces.

5. Set the learning rate and optimizer according to the difficulty of
the dataset: higher learning rates and optimizers such as SGD or Adam
for more challenging datasets.

Test task: WIDER FACE

1. Set the crop size to a value that is proportional to the number of
faces in the dataset.

2. Set the anchor matching IoU threshold to a value that is
proportional to the number of faces in the dataset.
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3. Set the negative to positive ratio to a value that is proportional
to the number of faces in the dataset.

4. Set the learning rate to a value that is proportional to the
number of faces in the dataset.

5. If the dataset contains facial landmarks, set the location loss
weight to a value that is proportional to the number of faces in the
dataset.

Test task: WIDER-FACE-360

1. Set the crop size and anchor matching IoU threshold according to
the number of faces in the dataset: larger crop size and higher IoU
threshold for datasets with more faces, and smaller crop size and
lower IoU threshold for datasets with fewer faces.

2. Set the location loss weight according to the presence of facial
landmarks: higher weight for datasets with facial landmarks, and
lower weight for datasets without facial landmarks.

3. Set the negative to positive ratio according to the number of
faces in the dataset: higher ratio for datasets with more faces, and
lower ratio for datasets with fewer faces.

4. Set the learning rate according to the number of faces in the
dataset: higher rate for datasets with more faces, and lower rate for
datasets with fewer faces.

5. Set the optimizer according to the number of faces in the dataset:
SGD for datasets with more faces, and Adam for datasets with fewer
faces.

Test task: WIKI

1. Set the crop size to a value that is proportional to the number of
faces in the dataset.

2. Set the anchor matching IoU threshold to a value that is
proportional to the number of faces in the dataset.

3. Set the location loss weight to a value that is proportional to
the presence of facial landmarks in the dataset.

4. Set the learning rate to a value that is inversely proportional to
the negative to positive ratio in the dataset.

5. Use an optimizer such as Adam or SGD.
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